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ABSTRACT
Medication safety continues to be a problem inside 
and outside the hospital, partly because new smart 
technologies can cause new drug-related challenges to 
prescribers and patients. Better integrated digital and 
information technology (IT) systems, improved education 
on prescribing for prescribers and greater patient-
centred care that empowers patients to take control of 
their medications are all vital to safer and more effective 
prescribing. In July 2021, a roundtable discussion was 
held as a spin-off meeting of the International Forum on 
Quality and Safety in Health Care Europe 2021 to discuss 
challenges and future direction in smart medication 
management. This manuscript summarises the discussion 
focusing on the aspects of digital and IT systems, safe 
prescribing, improved communication and education, and 
drug adherence.

INTRODUCTION
Medications are a cornerstone in patient 
management in primary, secondary and 
tertiary care. However, with about 9% of 
prescriptions containing errors1 and patients 
often taking their prescribed medications 
incorrectly or not at all, medication safety 
continues to be a problem inside and outside 
the hospital.

As the baby boomer generation enters their 
senior years, the population that needs most 
medications is expected to double by 2036, 
when one in four persons will be 65 or older.2 
This trend is present in many industrialised 
countries, where both health and social policy 
efforts are being mobilised to reduce prevent-
able morbidity that leads to healthcare use 
and loss of independence.3 4

In recent years, apps and other digital 
tools have been implemented in healthcare 
systems to assist in drug management. Yet, 
these new smart technologies can cause new 
challenges to prescribers, nurses, pharmacists 
and patients. Healthcare systems and staff 
need to ensure correct prescriptions and that 
patients take their medications as prescribed 
and report if side effects occur. To achieve 

improved outcomes for patients, human 
factors are as important as technology’s role.

In July 2021 a roundtable discussion was 
held as a spin-off meeting of the International 
Forum on Quality and Safety in Health Care 
Europe 2021 to discuss challenges and future 
direction in smart medication management.

This manuscript summarises the discus-
sion focusing on the aspects of digital and 
information technology (IT) systems, safe 
prescribing, improved communication and 
education, and drug adherence.

IMPROVING DIGITAL AND IT SYSTEMS FOR SAFER 
PRESCRIBING
In many developed countries, prescrip-
tions are nowadays written mostly electron-
ically. This allows them to be checked for 
safety related problems such as drugs that 
interact, allergies, doses that are too high 
or too low, and appropriateness of dosing in 
patients with conditions such as chronic renal 
insufficiency.

One of the main drivers for developing and 
implementing electronic medical records 
(EMRs) systems has been the promise of 
improved healthcare quality, using tools like 
Computerised Physician Order Entry and 
Clinical Decision Support (CDS).5 The ability 
of EMRs, especially CDS, to improve medi-
cation safety has been demonstrated6 7 and 
their transformative potential shown.8

However, more recently, it has been estab-
lished that drug alerts as part of CDS being 
delivered routinely appear to result in almost 
no benefit. This has occurred with the almost 
complete conversion in the USA to commer-
cial drug knowledge and alert applications. 
For example, one study9 showed that the 
effectiveness of warnings about drug inter-
actions fell dramatically after conversion to a 
commercial drug knowledge system. Another 
study10 demonstrated that among about 5000 
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warnings about renal dosing, physicians responded to 
none of them. A third11 showed that high-priority drug–
drug interaction alerts were regularly overridden, prob-
ably because clinicians were getting so many warnings 
that they developed alert fatigue and ignored even the 
most important.

There can be many ‘unintended consequences’12 which 
may include increased risk of medication errors, or new 
types of errors.13 Poorly designed or implemented EMRs 
are widely implicated in clinician burn-out14 which can 
also lead to poorer quality of healthcare.15

How then can the original goal of improved health-
care quality and medication safety through EMRs be 
achieved? The aviation industry provides a good example. 
A sustained focus on safety throughout the industry has 
transformed the inherently unsafe activity of flying into 
one of the safest forms of transportation in the world. 
Although the flying machines themselves have improved, 
consideration of human factors in designing cockpits, 
the development of safety procedures and continuous 
monitoring of risks and incidents has allowed continuous 
improvements in safety over the decades.16

To achieve similar success in medication safety, two areas 
of improvement are important. First, usability and human 
factors are critical to building safe and effective medica-
tion management in EMRs with end user input in CDS 
design increasing the likelihood of it being successful.17 
Some features have been verified that increased the alert’s 
perceived utility and can be used to improve effectiveness 
and reduce omitted warnings, for example, in a CDS tool 
targeting QT-interval prolonging medications.18

Second, a whole systems approach is needed. EMRs 
are complicated tools, being deployed in the complex 
healthcare delivery environment. The effects of interven-
tions may be impossible to predict. Just focusing on the 
prescribing physician and the prescription will not be suffi-
cient. All the processes, and all the healthcare providers 
involved in medication management in a patient’s health-
care journey must be considered. In particular, the role 
of the patients themselves has been underexplored in the 
field of medication safety.

There are also other areas that represent ongoing 
challenges in safe prescribing. Medication lists are often 
incomplete, and there is still no clear approach to getting 
the most accurate medication list. Patients’ role and 
common medication process practices agreed in hospital 
are crucial to ensure medication lists are up to date.

Difficulties also persist in writing prescriptions with 
complex descriptions of how the patient should take 
medications for example, prednisone that often requires 
stepwise tapering. In the inpatient and outpatient setting 
better approaches are needed to enable different special-
ties and all parts of the hospital team, including nursing, 
pharmacy, physicians respectively to be ‘on the same 
page’ regarding what the patient is taking. EMR records 
need to be implemented into practice and healthcare 
providers need to be educated how to use them in the 
medication process.

Still, the most obvious challenge—especially given 
the huge costs which have been expended on devel-
oping EMRs—is getting the point-of-care CDS to deliver 
important suggestions to clinicians—yet not bombard 
them with unimportant warnings. This issue represents a 
burning platform if EMRs are to realise their benefits on 
the medication safety front.

IMPROVING EDUCATION AND COMMUNICATION REGARDING 
PRESCRIBING
All prescribers must have a basic understanding of the 
medicines they prescribe to their patients. This tradi-
tionally includes knowing the indication for a particular 
drug, its pharmacological mechanism of action, common 
side effects and important interactions. In addition, they 
need to at least be aware of the evidence-base and trial 
data underlying its use, either first-hand or by following 
derived ‘guidelines’. However, the pros and cons of 
taking drugs are much less appreciated by prescribers 
when it comes to individual patients. As a rule, both clini-
cians and patients tend to overestimate the benefits and 
underestimate the harms of medicines.19 More ‘real-life’ 
research and studies are needed to inform prescribers.20 
In the future, it is likely that artificial intelligence gener-
ated algorithms, including pharmacogenetic variables, 
will also support this process.

Teaching and education around the practicalities of 
prescribing, adherence and polypharmacy need to be 
incorporated into medical school curricula as a matter of 
routine. The advent of the Prescribing Safety Assessment 
in the UK has certainly helped in this regard by focusing 
teaching on a hitherto neglected area.21

Furthermore, communication skills training for clini-
cians has tended to centre on explaining diagnoses, 
rather than the drugs patients take—why they need them, 
what they do, what effects the patient might feel, and 
what to note or look out for—all outlined in simple to 
understand language or graphics.

A single prescriber to co-ordinate all therapies, as 
opposed to having multiple prescribers, has obvious bene-
fits in terms of making communication about drugs more 
efficient. Similarly, sharing the decision-making process 
with individual patients before starting or indeed stop-
ping treatments is pivotal (figure 1).22 Making time for 
this is demanding, particularly if the patient has cognitive 

Figure 1  Decision-making challenges for physicians and 
patients.22
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impairment or learning difficulties and the clinician has 
a finite consultation period. Agreeing on the ‘goal of 
treatment’ also presents a substantial hurdle: should the 
emphasis be primarily on longevity or on comfort and 
symptom control only? Finally, education on geriatric 
pharmacotherapy is needed to improve prescribing on 
geriatric patients.

Empowering patients by educating them about 
the medications they take is also a crucial element of 
ensuring maximal adherence.23 Even basic steps such as 
encouraging patients themselves to keep an up-to-date 
list of their medications (prescribed, over the counter 
and herbal remedies) has evident advantages, especially 
during the transition between primary and secondary 
healthcare or vice versa.

As the coordination of patients’ medication is often 
missing, explaining to patients how to monitor the 
effects of pharmacotherapy and identify potential risk is 
important.

The act of medicines reconciliation with pharmacist 
input is in itself an informative exercise. Many health 
IT tools such as integrated electronic prescribing plat-
forms, and apps on mobile devices help to improve 
communication about drug prescribing and adher-
ence to medication, respectively.24 Most apps are based 
around ‘reminder technology’, although more sophis-
ticated ones that help patients with their drugs list are 
becoming available. In this regard, the utilisation of 
dosette boxes and medication administration records 
for those with dementia and in care settings provides an 
excellent support tool.

Finally, regular review of medication lists is mandatory 
to safeguard against polypharmacy and maintaining the 
focus on the goals of therapy. Again, time and training to 
do this as well as building it into routine clinical practice 
is an increasing necessity.

IMPROVING ADHERENCE TO MEDICATION
Non-adherence to disease-modifying medications is an 
avoidable cause of emergency department (ED) visits 
and hospitalisations. The prevalence of non-adherence 
varies by condition and study24–29 from 40% to 60% in 
chronic obstructive pulmonary disease,24 25 26% to 65% 
in myocardial infarction26–28 and up to 93% in heart 
failure.29 The estimated risk of ED visits and hospitalisa-
tions associated with non-adherence varies from 45% to 
85%30–32 and may be higher in patients with heart fail-
ure—a twofold increase in the risk of hospitalisation or 
death when adherence to disease-modifying medication 
is less than 80%.33

Previous studies reveal three primary reasons for medi-
cation non-adherence34–38:

	► Cost.
	► Fear of or experience with adverse medication effects.
	► Ambivalence, or lack of perceived need or relevance 

to the patient.

Depression, other psychiatric problems and cognitive 
impairment also contribute to non-adherence35 37 38 as do 
polypharmacy and complex drug regimens.37 39

Social support and a collaborative trusting relationship 
with the healthcare team increase adherence.

Systematic reviews of adherence interventions illustrate 
the wide variability in interventions evaluated and popula-
tions, conditions and medications targeted.24 40–43 Almost 
all targeted single groups of drugs demonstrated modest 
effect sizes at best and only a minority improved clinical 
outcomes. Moreover, while most adherence interventions 
are multifaceted, they typically combine generic medi-
cation information with simplistic behavioural strategies 
(eg, reminders, pill organisers).24 40–43 The Information-
Motivation-Behavioural Skills model provides a compre-
hensive theoretical framework for designing adherence 
interventions, bringing together key aspects of behaviour 
change theories to target and improve adherence. 
Interventions that incorporate self-determination 
theory38 44 and motivational interviewing45–47 to directly 
target intrinsic motivation, confidence and autonomy 
have proven efficacy in smoking cessation,48 weight loss44 
and medication adherence.49 However, such interven-
tions to change behaviour have not been extensively 
implemented due to resource intensity, inadequate 
health professional training and lack of reimbursement 
models to support implementation.40 41

Mobile technologies have emerged as popular and 
potentially powerful tools to provide individualised 
support to change health behaviours.50 In 2019, 53% 
of older adults in the USA owned a smartphone.51 This 
creates a new opportunity to assess how well mobile apps 
can improve health behaviours and outcomes among 
older adults. Although there are more than 700 medica-
tion management apps, most have not been evaluated,52 53 
and none have exploited the potential of this medium, 
limiting features to maintaining a medication list (by 
manual entry), pill reminders and refill requests.52 54–57

Hybrid interventions that combine mobile apps with 
monitoring and triage to the health team based on 
patient need can empower and motivate patients and 
caregivers via tools that help identify and address ambiv-
alence, promote adaptive problem solving and provide 
quicker access to the health team to address knowledge 
gaps. Systematic reviews of web-based and hybrid inter-
ventions show that they increase patient empowerment, 
motivation, medication self-efficacy,58–61 and in some cases 
patient outcomes.60–64 To date, hybrid interventions have 
not been used to improve medication adherence.59 61–63

CONCLUSION
Better integrated digital and IT systems, improved educa-
tion on prescribing for prescribers, and greater patient-
centred care that empowers patients to take control of 
their medications are all vital to safer and more effective 
prescribing. Future research should leverage the consid-
erable investment made by many countries in advancing 
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digital healthcare infrastructures and develop and eval-
uate multifaceted hybrid interventions to reduce avoid-
able adverse events and improve adherence.
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ABSTRACT
Objectives  The transition from ICD-9 to ICD-10 coding 
creates a data standardisation challenge for large-scale 
longitudinal research. We sought to develop a programme 
that automated this standardisation process.
Methods  A programme was developed to standardise 
ICD-9 and ICD-10 terminology into one system. Code 
was improved to reduce runtime, and two iterations were 
tested on a joint ICD-9/ICD-10 database of 15.8 million 
patients.
Results  Both programmes successfully standardised 
diagnostic terminology in the database. While the original 
programme updated 100 000 cells in 12.5 hours, the 
improved programme translated 3.1 million cells in 38 min.
Discussion  While both programmes successfully 
translated ICD-related data into a standardised format, 
the original programme suffered from excessive runtimes. 
Code improvement with hash tables and parallelisation 
exponentially reduced these runtimes.
Conclusion  Databases with ICD-9 and ICD-10 codes 
require terminology standardisation for analysis. By 
sharing our programme’s implementation, we hope 
to assist other researchers in standardising their own 
databases.

INTRODUCTION
On 1 October 2015, the department of Health 
and Human Services updated the Interna-
tional Classification of Diseases (ICD) system 
by mandating the adoption of ICD-10 diag-
nosis codes in electronic medical records.1 
Serving as the new standard for naming and 
categorizing patient diagnoses, the ICD-10 
system contains over five times more codes 
than ICD-9, posing a challenge for analysing 
longitudinal databases spanning both systems. 
Prior solutions have included the use of alter-
nate coding systems, which are updated each 
time a new ICD system is released. Current 
literature is aimed at the accuracy and scope 
of these systems,2 3 how they update with new 
ICD releases,3 4 and how systems are similar 
or different.5 6 These studies fail to address 
how to implement such a system on a large-
scale database, where manual reference and 
cell-by-cell translation is infeasible. We sought 
to develop a programme that quickly and 

accurately standardises a dataset to one diag-
nostic coding system.

METHODS
A nationwide dataset of paediatric hospital 
discharges was examined. Originating from 
the Healthcare Cost and Utilisation Project 
(H-CUP), this Kids’ Inpatient Database (KID) 
contained administrative data on 15.8 million 
hospital discharges across 2003–2016. The 
targets of our data manipulation were 20 
columns of diagnosis codes that represented 
patient comorbidities at the time of surgery: 
while most cases in the database occurred 
during ICD-9’s era, 3.1 million discharges 
(19.6%) occurred in the 2016 KID update, 
and thus had ICD-10 codes. As a solution 
to this difference, H-CUP offers Elixhauser 
Comorbidity Software, which assigns diagnosis 
names to comorbidities based on the ICD-9 
or 10 system.7 Prior to programme develop-
ment and testing, we defined a successful 
programme as one which cross-referenced all 
ICD-10 codes to their corresponding comor-
bidity classification. The resulting database 
would contain all 15.8 million discharges 
using the same classification system.

Prior to development, a Microsoft Excel 
File was acquired from H-CUP, which listed 
ICD-10 diagnosis codes in the first column, 
and Elixhauser diagnosis names in the first 
row. The remaining cells were marked with 
a ‘1’ if an ICD-10 code matched a corre-
sponding comorbidity. This served as the 
‘dictionary’ for our data translation. All 
computer code was developed and executed 
on RStudio, V.4.0.2.

A programme was written to examine each 
column of comorbidity data and extract 
any ICD-10 diagnosis codes encountered. 
Each code was individually compared with 
the ‘dictionary’: the programme scanned 
through rows until it found a matching ICD 
code, then scanned across that row until a 
‘1’ was seen (denoting it found a matching 
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diagnosis). When a match was found, the column name 
(the diagnosis) was captured, and the corresponding 
column in the KID was marked as a ‘1,’ denoting that 
patient as having this comorbidity. This process repeated 
until all diagnosis codes were translated in that patient 
row. The programme would then proceed to the next row 
in the database, and would start over on the new ICD-10 
codes.

During development, code was tested on a random 1000 
rows of data. Once it successfully translated these rows, 
the programme was deployed on the 3.1 million patients 
with ICD-10 codes. A duplicate of the programme was 
then created, and served as the starting point for runtime 
optimisation. In a similar fashion to the development of 
the original code, this new programme was tested on a 
random 1000 rows, then executed on the larger database.

RESULTS
Both programmes successfully translated ICD-10 codes 
to the Elixhauser comorbidity classification. Results on 
programme runtimes for the first iteration (‘Linear’) 
and the more efficient (‘Parallelised’) code are displayed 
in table 1. When testing runtimes for the linear code, it 
updated 100 000 rows in 12–13 hours, varying slightly in 
each test. As a result, this linear code would take 16 days 
to complete the 3.1 million target rows in our dataset. 
Programme testing was stopped after 7 days due to 
impracticality of runtime.

In development of a second iteration of code, runtime 
was reduced by targeting algorithm efficiency. Complexity 
was improved through conversion of the ‘dictionary’ 
into a hash table, exponentially reducing the number of 
computer operations performed. Runtime was further 
improved by breaking the data into subsets, and trans-
lating each subset simultaneously. On a computer with a 
16-core processor, this allowed the 3.1 million discharges 
to be broken into 16 subsets of roughly 200 000 discharges. 
This parallelised code translated all 3.1 million rows in 
38 min (1.2 min/100 000 samples), a more than 600-fold 
increase in processing speed compared with the original 
programme.

DISCUSSION
For longitudinal databases spanning across the 2010s, 
researchers face the challenge of analysing data that utilises 
both ICD-9 and ICD-10 codes. Prior literature addressed the 

creation and accuracy of standardised classification systems, 
but failed to discuss how to implement these systems on 
large databases where manual translation is impossible.2–6 
We successfully automated the standardisation of diag-
nostic terminology for a database of 15.8 million hospital 
discharges across 2003–2016. Databases of this size often 
pose a challenge for automated programmes, as evidenced 
by our initial programme’s excessively long runtime. The 
subsequent programme we developed, however, ran more 
than 600 times faster, underscoring the significance of code 
quality in large scale data manipulation.

The largest gains in runtime can be attributed to the imple-
mentation of hash tables instead) of a ‘dictionary’ Excel file. 
When a computer iterates through an Excel dictionary of R 
rows and C columns, up to R * C comparisons are needed to 
find a match for just one comorbidity. When translating up 
to 20 comorbidities per row, for 3.1 million datapoints, these 
accumulate to roughly 62 million * R * C computer operations, 
guaranteeing excessive runtimes. A hash table is a data struc-
ture composed of a list of ‘keys,’ where each key is associated 
with one and only one ‘value’. By converting our dictionary 
into a hash table with ICD-10 diagnosis codes as ‘keys’ and 
Elixhauser’s comorbidity names as ‘values,’ translating diag-
noses became exponentially simpler. Whereas the dictionary 
required R*C operations to find a match for a single ICD-10 
code, a hash table requires just one action by the computer.

In addition to reducing programme complexity, code 
parallelisation also contributed to its faster runtimes. By 
splitting the data into 16 subsets to simultaneously translate, 
our programme ran 16 times faster. This parallelisation is 
possible due to multicore processors available in computers 
sold today.

Other advantages in the development of a customised 
programme include generalisability to future imple-
mentations. Our programme examines the number of 
processing cores on the computer running the algorithm, 
ensuring that data are always divided and analysed as effi-
ciently as possible. Additionally, our programme should 
be easily implemented on any ‘dictionary’ that is plugged 
into our software, so that future systems such as ICD-11 
may also be translated. Any ‘dictionary’ of reference 
values may be used, ensuring long-term utility of our algo-
rithm in future practice of large-scale research.

CONCLUSION
Hash tables and parallelised code allowed us to stan-
dardise the coding system used by a 15.8 million patient 

Table 1  Computer program development, runtimes and relative efficiency

Program name
Time to complete 
100 000 rows

Time to complete entire 
3.1M translations Relative efficiency

Linear programme 12.5 hours 16.1 days 1×
Parallelised programme with hash table 1.2 min 38 min 610.1×

A programme was developed that successfully standardised the comorbidity coding system used in a 15.7 million patient database 
spanning 2003–2016. Parallelising this programme and implementing a hash table increased the speed by more than 600-fold, allowing 
3.1 million patient rows to be updated in under 40 min.
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database in under 40 min. We hope that by publishing our 
methods of translation on such a notably large database, 
we aid researchers in transforming other large datasets. 
When attempting to standardise data spanning multiple 
years, researchers should consider programming such as 
ours where hash tables and parallelisation allow extreme 
amounts of data review to be completed in an exponen-
tially quicker time frame.
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ABSTRACT
Objectives  To operationalise fairness in the adoption of 
medical artificial intelligence (AI) algorithms in terms of 
access to computational resources, the proposed approach 
is based on a two-dimensional (2D) convolutional neural 
networks (CNN), which provides a faster, cheaper and 
accurate-enough detection of early Alzheimer’s disease 
(AD) and mild cognitive impairment (MCI), without the 
need for use of large training data sets or costly high-
performance computing (HPC) infrastructures.
Methods  The standardised Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) data sets are used for the 
proposed model, with additional skull stripping, using the 
Brain Extraction Tool V.2approach. The 2D CNN architecture 
is based on LeNet-5, the Leaky Rectified Linear Unit 
activation function and a Sigmoid function were used, and 
batch normalisation was added after every convolutional 
layer to stabilise the learning process. The model was 
optimised by manually tuning all its hyperparameters.
Results  The model was evaluated in terms of accuracy, 
recall, precision and f1-score. The results demonstrate 
that the model predicted MCI with an accuracy of 0.735, 
passing the random guessing baseline of 0.521 and 
predicted AD with an accuracy of 0.837, passing the 
random guessing baseline of 0.536.
Discussion  The proposed approach can assist clinicians 
in the early diagnosis of AD and MCI, with high-enough 
accuracy, based on relatively smaller data sets, and 
without the need of HPC infrastructures. Such an approach 
can alleviate disparities and operationalise fairness in the 
adoption of medical algorithms.
Conclusion  Medical AI algorithms should not be 
focused solely on accuracy but should also be evaluated 
with respect to how they might impact disparities and 
operationalise fairness in their adoption.

INTRODUCTION
Recent studies show that artificial intelligence 
(AI) applications can perform on par with 
medical experts on MRI analysis.1 Such appli-
cations, to date, tend to oppose the accuracy 
of AI to the performance of clinicians. For 
instance, there have been more than 20 000 
studies on deep learning (DL) methods for 
MRI analyses the last decade, which compare 
the performance of AI to the one of clini-
cians.2 Recent work suggests that future 
studies should focus on the comparison of 

performance between clinicians using AI and 
their performance without an AI aid.3 The 
recent global pandemic, however, revealed 
another urgent need of early disease diag-
nosis: the ability to make predictions based on 
a limited number of cases. The AI computer-
aided detection (CAD) frameworks, to date, 
are based on large amounts of data and 
require high-performance computing (HPC) 
infrastructures. To address that lacuna, we 
propose a synergistic approach, in which 
clinicians and scientists collaborate for faster, 
cheaper and more accurate detection, relying 
on small data sets to make accurate-enough 
predictions. A promising frontier where AI 
can assist clinicians is Alzheimer’s disease 
(AD) since the release of promising clinical 
studies for a new drug have unearthed the 
need for its early detection. As it can take 

Summary box

What is already known?
	► Most prior studies on early Alzheimer’s disease (AD) 
and mild cognitive impairment (MCI) detection have 
used a three-dimensional (3D) convolutional neural 
networks (CNN) approach.

	► The 3D CNN approach is computationally expensive 
requiring high performance computing (HPC) infra-
structures, and, due to the high number of parame-
ters, it requires larger data sets for training.

	► A two-dimensional (2D) CNN needs less parameters, 
less computational power and execution time, while 
requires smaller data sets for training, but has not 
been applied to date for MCI detection.

What does this paper add?
	► The proposed approach based on a 2D CNN oper-
ationalises fairness in the adoption of medical ar-
tificial intelligence (AI) algorithms by providing fast, 
cheap and accurate-enough detection of early AD 
and MCI without the need for use of large data sets 
or costly HPC infrastructures.

	► The proposed approach can be extended to other 
diseases as well as to other cases where time is 
scarce, powerful computational resources are not 
available, and large data sets are out of reach.
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up to 20 years before patients with AD show any signs of 
cognitive decline, it can be challenging to diagnose AD 
in early stages. We, thus, motivate and implement an 
AI-CAD framework for the early detection of mild cogni-
tive impairment (MCI) and AD to assist clinicians, while 
the approach can be extended for the diagnosis of other 
diseases.

AD is caused by an accumulation of β-amyloid (Aβ) 
plaques, and abnormal amounts of tau proteins in the 
brain. This results in synapse loss, where the impulse does 
not reach the neurons, and in loss of structure or func-
tion of neurons, including their death, causing memory 
impairment and other cognitive problems.4 AD has 
strong impact on the cognitive and physical functioning 
of patients, resulting in death. Recent developments in 
slowing AD decline have increased the relevance of its 
early detection,5 and MCI plays an important role in 
this. MCI is a syndrome where the patients have greater 
cognitive decline than normally expected, but it does not 
necessarily affect their daily lives. Although some patients 
with MCI remain stable or return to cognitively normal 
(CN), there is a 10%–15% risk per year of progression 
to AD.4 Before the aetiology of AD became known, its 
diagnosis relied on neurocognitive tests. The develop-
ment of biomarkers improved AD detection. A common 
method to diagnose AD is hippocampus segmentation, 
which relates to memory function, and its small volume 
is an AD biomarker. For a long time, AD diagnosis was 
done manually by looking at the brain structure and size 
of the hippocampus on MRI, which requires practice and 
precision. Prior studies on automated methods for hippo-
campus segmentation have used DL approaches with 
promising results.6 Automated hippocampus segmenta-
tion for the diagnosis of AD and MCI, however, requires 
clinicians’ expertise and is sensitive to interrater and intr-
arater variability.6

Convolutional neural networks (CNN) can become the 
foundation of an AI-CAD framework for supporting clini-
cians in the detection of early AD and MCI, since it is 

a successful approach for image classification. CNN can 
improve the performance of image classification,7 and 
they are becoming increasingly popular in MRI analysis. 
For instance, recent studies show that CNN can work on 
par with specialists for classifying MRI of patients with skin 
cancer.1 Similar approaches with three-dimensional (3D) 
as well as two-dimensional (2D) CNN have also been used 
for AD detection with promising results. When it comes 
to the inner mechanics of these approaches, the classifi-
cation filter of a 3D CNN slides along all the three dimen-
sions of the input image, resulting in 3D feature maps, 
whereas in a 2D CNN the classification filter slides along 
only the height and width of the input image. Thus, the 
latter results in 2D feature maps, which need less param-
eters, computational power and execution time. Most 
prior studies have used 3D CNN achieving high accu-
racy,8 while others obtained similar results with 2D CNN.9 
Although previous work on the topic has established that 
3D CNN perform better for patch classifications, the 
results between 2D and 3D approaches for whole image 
labelling did not differ much.10 A 3D CNN, however, is 
more computationally expensive, and, due to the high 
number of parameters, it requires larger data sets for 
training.11 Concurrently, prior studies have not incorpo-
rated a 2D CNN approach for detecting MCI. A summary 
of prior 2D and 3D CNN applications in the literature is 
presented in table 1.

We suggest that medical algorithms should not be solely 
focused on accuracy but should also be evaluated with 
respect to how they might impact disparities and opera-
tionalise fairness in their adoption. Thus, we investigate 
the extent to which a 2D CNN can detect MCI and early 
AD.

METHODS
CNN is the most common neural network (NN) archi-
tecture for image classification. Fully connected NN take 
multiple inputs, and hidden layers perform calculations 

Table 1  Performance comparison of 2D and 3D approaches in the literature

Study

2D CNN 3D CNN

AD MCI AD MCI

Basaia et al8 – – 0.99 0.87

Feng et al16 – – 0.95 0.86

Korolev et al25 – – 0.80 –

Liu et al17 – – 0.85 –

Liu et al18 – – 0.91 –

Senanayake et al26 – – 0.76 0.75

Hon and Khan27 0.96 – – –

Sarraf and Tofighi19 0.99 – – –

Sarraf and Tofighi20 0.97 – – –

Wang et al9 0.98 – – –

AD, Alzheimer’s disease; CNN, convolutional neural network; MCI, mild cognitive impairment.
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on them, while the neurons in the network connect to each 
other. Neurons in CNN, however, connect only to those 
close to them. CNN, therefore, needs fewer parameters, 
which results in benefits such as small risk of overfitting, 
higher accuracy and faster processing time. Moreover, 
in CNN, there is no need to transform the input images 
to one dimensional, a process which can result in loss of 
structural information, as the CNN can learn the relation-
ships among the pixels of input by extracting representa-
tive features with kernel convolutions4 :

	﻿‍
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where ﻿‍ I‍ is the input and ﻿‍ K‍ is the kernel; the input 
indices are represented by ‍i‍ and ‍j‍, and the kernel indices 
are represented by ﻿‍m‍ and ﻿‍n‍.

The data sets used in this study were obtained under 
permission from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (​adni.​loni.​usc.​edu). The 
ADNI was launched in 2003 as a public–private partner-
ship. The primary goal of ADNI has been to test whether 
MRI, biological markers and clinical as well as neuropsy-
chological assessment can be combined to measure the 
progression of MCI and early AD. The ADNI is sepa-
rated into three studies of 5 years, while the first was 
prolonged by 2 years under the name ADNI-GO. In total, 
2517 people of ages 55–90 participated in the study. The 
ADNI encourages the use of their standardised data sets 
to ensure consistency in analysis and direct comparison of 
various methods among studies. We, therefore, used their 
two standardised data sets ‘ADNI1: complete 2 year 1.5T’ 
and ‘ADNI1: complete 3 year 1.5T’, which contain MRI 
that has passed quality control assessment.12

Our data set consists of 3312 images, distributed in 828 
MRI of CN subjects, 453 MRI of patients with AD and 1203 
MRI of patients with MCI. The data set was split into one 
with CN and AD subjects (1281 MRI), and one with CN 
and MCI subjects (2031 MRI). Since the participants of 
the ADNI study returned for more than one check-up, any 
patient can have up to 12 MRI, which are not identical as 
they are taken at different moments, and every MRI in the 
standardised data set was treated independently. The data 
set, thus, refers to 99 patients with AD, 212 patients with 
MCI and a control group of 165 CN subjects. We present 
the demographic information of the included subjects in 
table 2, to enable comparison with other studies.

While the data sets are preprocessed, we further 
performed skull stripping using the Brain Extraction 
Tool V.2 (BET2), which is part of the NiPype library. Skull 
stripping locates the brain in the MRI and removes all 
surroundings to further remove noise from images. For 
optimal skull stripping results, neck slices were removed 
with the robustfov function. We used a fraction intensity 
of 0.3 as an evaluation of BET2 parameters for the ADNI 
data set found that this leads to best results. Due to the 
differences in scanners and techniques used by the ADNI 
over the years, the MRIs used in the data sets were of 
different sizes, and, therefore, had to become uniform. 
All the MRIs in our data set were resized to: (136, 192, 
160) with the ndimage zoom function of the Scipy library, 
which zooms the array using spline interpolation. Resizing 
the MRI results in a different range of pixel values, and, 
therefore, to assure that the pixel values of all MRI had 
the same range, z-score normalisation was applied, which 
is defined as follows:

	﻿‍
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‍�
where ‍x‍ is the MRI data and ‍zi‍ the ‍i‍th normalised MRI. 

The data set was then split into train set, validation set 
and test set with a ratio of 60:20:20, respectively.

An NN consists of an input layer, hidden layers and 
an output layer. A CNN has hidden layers divided into 
convolution, pooling, activation and classification layers. 
We based our architecture on LeNet-5, which includes 
two convolutional layers, two pooling layers and two fully 
connected layers (supplementary files, table 3).

We employ the Leaky Rectified Linear Unit (LReLU) 
as activation function for all convolutional layers, which 
allows for a small non-zero gradient.13 The LReLU activa-
tion function in the model, with ‍x‍ being the input data, 
is described as:
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A Sigmoid activation function was applied to the dense 

layer, which outputs the probability of the images’ class, 
with 0 if healthy and 1 if not (AD or MCI). The Sigmoid 
activation function in the model, with ‍x‍ being the input 
data, is described as:

	﻿‍
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We optimised the model by manually tunning the 
hyperparameters (see table 4).

The batch size was set to 16 and we used the Adam opti-
miser14 with a learning rate of 10-3. The model showed 

Table 2  Demographic information of subjects in the 
dataset

MCI AD CN

Images 891 412 662

Subjects 212 99 165

Gender 142 M / 70 F 52 M / 47 F 82 M / 83 F

Age μ=75.84
σ=7.02

μ=76.49
σ=7.43

μ=76.93
σ=5.23

AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild 
cognitive impairment.

Table 3  CNN architecture

Layer C1 P1 C2 P2 FC1 FC2 FC3

Kernel 3×3 2×2 3×3 2×2 – – –
Filter 32 32 64 64 128 64 2

CNN, convolutional neural network.
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overfitting, which means that it includes more terms or 
uses more complicated approaches than necessary.15 
Regularisation can control overfitting and drop-out 
regularisation is a commonly used approach because it 
is computationally inexpensive, and it prevents coadap-
tation among feature map units.11 In drop-out regularisa-
tion, only a fraction of the weights is learnt by the NN in 
each iteration. We added a drop-out layer with a value of 
0.2 after each pooling layer (ie, 80% of the weights were 
learnt in each iteration), leading to better results on all 
the train, validation and test sets. To stabilise the learning 
process, we added batch normalisation after every convo-
lutional layer. For each unit in a layer, the value was 
normalised as follows:
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where ‍a‍ represents the activation vector of the ith layer ‍l‍. 
Thereafter, the normalised values were scaled and shifted 
accordingly. After  ~40 epochs, the model did not show 
increment in accuracy or reduction in loss, and overfit-
ting increased, thus, we applied an early stopping at 40 
epochs instead of the initial set of 50.

The CNN was built with a Jupyter Notebook using Python 
V.3.6.4, Tensorflow V.2.4.0 and Keras V.2.4.0. To load the 
data in NIfTI format, we used the Nilearn library, and we 
used the scikit-learn and SciPy libraries for data prepro-
cessing. The development, testing and application of the 
model took place on the Google Cloud Console, where 

we used a storage bucket to store the data sets, and three 
compute engine instances to perform the skull stripping 
and preprocessing and to run our model independently 
as these steps require different computational resources. 
For skull stripping, we used an instance with 8 vCPUs, 52 
GB RAM, and two NVIDA Tesla K80 GPUs, for prepro-
cessing, we used an instance with 40 vCPUs and 961 GB 
RAM. For the CNN, we used an instance with 64 vCPUs, 
416 GB RAM and four NVIDA Tesla T4 GPUs.

RESULTS
The model was evaluated in terms of accuracy, recall, preci-
sion and f1-score. Recall provides sensitivity information 
on how many patients were correctly identified. Preci-
sion expresses how many of the positives that the model 
returns were actually positive. F1-score is the harmonic 
mean between precision and recall. An NN adjusts its 
weights to optimise the loss, which is calculated with the 
use of binary cross entropy loss:
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where ‍C‍ represents the classes, ‍si‍ is the predicted prob-
ability value for class ‍i‍ and ‍t‍ is the true probability for 
that class. Since the data were unevenly distributed, the 
accuracy baseline of random guessing was also calculated. 
The baseline was calculated with respect to the class distri-
bution of the data set. First, we trained and tested our 

Figure 1  Model performance for the AD and MCI datasets. AD, Alzheimer’s disease; MCI, mild cognitive impairment.

Table 4  Parameter tuning on the AD dataset

Parameters

Round 1 2 3 4 5 6 7 8 9 10*

Learning rate 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.0001 0.01 0.001 0.001

Batch size 32 16 16 8 32 16 8 8 8 8 16

Epochs 50 50 50 30 30 30 30 30 30 30 40

Dropout – 0.3 0.3 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2

Batch norm. – x x x x x – x x x x

Metrics

Loss 1.040 0.711 0.637 0.461 0.742 0.600 2.292 0.805 0.639 0.600 0.677

Acc 0.833 0.794 0.802 0.840 0.833 0.840 0.728 0.767 0.825 0.833 0.837

Precision 0.881 0.977 0.891 0.768 0.947 0.949 0.628 0.972 0.788 0.859 0.948

Recall 0.628 0.447 0.521 0.809 0.574 0.596 0.628 0.372 0.713 0.649 0.585

AD, Alzheimer’s disease.
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model on the AD data set. After passing the baseline of 
random guessing on the training data (>0.548) with an 
accuracy of 0.994, we applied the same model on the MCI 
data set. The random guessing baseline for the test data 
set of the AD model was 0.536 and for the test data set of 
the MCI model was 0.521. The overepochs performance 
of the model is depicted in figure 1 for AD (left) and for 
MCI (right).

While the above graphs indicate a normal learning 
curve, as the performance of the model keeps increasing 
on the train data set, the validation performance flattens, 
which implies overfitting. This appears to be true mainly 
on the AD data set. Our model achieved accuracy of 0.837 
on the AD test set. Irrespective of overfitting, the achieved 
test accuracy on the AD data set surpasses the random 
guessing baseline of 0.536. The model predicted MCI with 
accuracy of 0.735, passing the random guessing baseline 
of 0.521. Table 5 presents the performance metrics of the 
models on the test sets. The model performs better than 
chance on both sets, with a better predictive performance 
for the AD data set than for the MCI data set. The MCI 
model, however, seems to perform better on selecting 
relevant items (ie, recall, predicted positives relative to all 
positives). The MCI model shows notably less overfitting 
than the AD model, which might be due to the size of 
the data set, as the dataset used for the MCI was larger 
(almost double in size) than the AD one.

By comparing our study to previous ones in the rele-
vant literature (see table 6), we notice a large difference 

in the size of the used data sets. Moreover, some of the 
prior studies only report the number of subjects in the 
used data set,8 16–18 but the number of images can differ 
from these since one subject can have up to 12 images 
in these data sets. As expected, studies with larger data 
sets achieved higher accuracy. Furthermore, some of 
the studies with a 2D approach treated the slices inde-
pendently,9 19 20 thereby enlarging the size of their data 
set, however, the MRI was not treated as a whole.

DISCUSSION
While AI-CAD frameworks have been thoroughly studied, 
they have not been proposed as a tool for assisting clini-
cians. Furthermore, while the literature on AI-CAD frame-
works is mostly approached from a computer science 
perspective, clinicians have been shown to lack trust in 
them.2 3 21 Our work addresses that lacuna by providing 
a synergistic approach between clinicians and scientists. 
We contribute to the line of research on using CNN for 
AD and MCI detection, by applying a 2D approach. Our 
model predicts AD better than chance by 0.301 and MCI 
by 0.214. As expected, the model performed worse on 
detecting MCI than AD. The learning process on the MCI 
data set, however, was much cleaner than the process on 
the AD data set. This might be due to the size of the data 
set, which can have a large impact on the process and 
outcomes of the model. The proposed AI-CAD frame-
work, thus, performs better than chance for AD as well as 
for MCI and could assist clinicians in the early detection 
of AD and MCI.

We suggest that medical algorithms should not be 
focused solely on accuracy but should also be evaluated 
with respect to how they might impact disparities and oper-
ationalise fairness in terms of computational resources, 
when it comes to their adoption. Our framework can be 

Table 5  Performance metrics on test data

Data Loss Accuracy Precision Recall F1 MRI

AD 0.677 0.837 0.948 0.585 0.724 1281

MCI 1.377 0.735 0.728 0.894 0.802 2031

AD, Alzheimer’s disease; MCI, mild cognitive impairment.

Table 6  Comparison of data and accuracy with previous studies

Study Subjects Images Dimensions

Accuracy

AD MCI

Basaia et al8 645 – 3D 0.99 0.87

Feng et al16 193 – 3D 0.95 0.86

Korolev et al25 111 111 3D 0.80 –

Liu et al17 193 – 3D 0.85 –

Liu et al18 902 – 3D 0.91 –

Senanayake et al26 – 322 3D 0.76 0.75

Hon and Khan*27 200 6400 2D 0.96 –

Sarraf and Tofighi**19 302 62 335 2D 0.99 –

Sarraf and Tofighi**20 43 367 200 2D 0.97 –

Wang et al.**9 98 17 738 2D 0.98 –

Our 476 3312 2D 0.84 0.74

*Accuracy before transfer learning=0.74.
†Used MRI slices independently.
AD, Alzheimer’s disease; MCI, mild cognitive impairment.
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further extended to other diseases, and to cases where 
time is scarce, computational resources are not available, 
and large data sets are out of reach. Finally, our work is 
in line with the broader Information Systems research 
agenda,22 on the adoption of responsible medical AI algo-
rithms,23 and the stewardship of sensitive personal data.24 
Therefore, our work can give rise to new avenues for 
interdisciplinary research and can become the bedrock 
for novel methodological advances as well as ground-
breaking empirical findings on the broader topic.

CONCLUSION
Prior studies have used CNN to diagnose MCI and early 
AD, most of which applied 3D approached. The 3D CNN, 
however, have drawbacks that relate to needs for HPC 
infrastructures. Other studies have focused on detecting 
AD with a 2D CNN, achieving similar results as the 3D 
approach. Despite the relevance of detecting MCI, prior 
studies did not investigate how these methods perform 
on detecting MCI. Our main goal was to determine 
whether a 2D CNN can be used to diagnose AD and MCI. 
Our work resulted in an AI-CAD framework that can 
assist clinicians in the early detection of MCI and AD with 
high-enough accuracy, based on a relatively small data 
set, and without the need of HPC infrastructures. Our 
work has limitations that need to be acknowledged. First, 
an important preprogressing step is image resizing. We 
used Scipy ndimage, which distorts the image and could 
have a negative effect on the learning process. A better 
solution for resizing images is needed but to the best of 
our knowledge is not available. Second, the ADNI data 
sets consist of more images than participants. If subjects 
appear in both data sets, the model could learn subject-
specific features, but the impact on model performance 
is unknown, as most physical features are removed during 
skull stripping. Third, the AD model appears to be over-
fitting, which is a common problem in DL models. To 
further optimise our model, the overfitting problem 
needs to be addressed by future research. Future research 
should also replicate the existing 3D CNN approaches 
and compare their execution time with the 2D CNN one 
of our models on the same computational infrastructure. 
Such a comparison will further illustrate the merits of our 
approach. Finally, future research should also evaluate 
the performance of clinicians using our framework and 
their performance without an AI aid.
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ABSTRACT
Objectives  The American College of Cardiology 
and the American Heart Association guidelines on 
primary prevention of atherosclerotic cardiovascular 
disease (ASCVD) recommend using 10-year ASCVD 
risk estimation models to initiate statin treatment. For 
guideline-concordant decision-making, risk estimates 
need to be calibrated. However, existing models are often 
miscalibrated for race, ethnicity and sex based subgroups. 
This study evaluates two algorithmic fairness approaches 
to adjust the risk estimators (group recalibration 
and equalised odds) for their compatibility with the 
assumptions underpinning the guidelines’ decision rules.
MethodsUsing an updated pooled cohorts data set, we 
derive unconstrained, group-recalibrated and equalised 
odds-constrained versions of the 10-year ASCVD risk 
estimators, and compare their calibration at guideline-
concordant decision thresholds.
Results  We find that, compared with the unconstrained 
model, group-recalibration improves calibration at one of 
the relevant thresholds for each group, but exacerbates 
differences in false positive and false negative rates 
between groups. An equalised odds constraint, meant 
to equalise error rates across groups, does so by 
miscalibrating the model overall and at relevant decision 
thresholds.
Discussion  Hence, because of induced miscalibration, 
decisions guided by risk estimators learned with an 
equalised odds fairness constraint are not concordant 
with existing guidelines. Conversely, recalibrating the 
model separately for each group can increase guideline 
compatibility, while increasing intergroup differences in 
error rates. As such, comparisons of error rates across 
groups can be misleading when guidelines recommend 
treating at fixed decision thresholds.
Conclusion  The illustrated tradeoffs between satisfying 
a fairness criterion and retaining guideline compatibility 
underscore the need to evaluate models in the context of 
downstream interventions.

INTRODUCTION
While risk stratification models are central 
to personalising care, their use can worsen 
health inequities.1 In an effort to mitigate 
harms, several recent works propose algo-
rithmic group fairness—mathematical criteria 

which require that certain statistical prop-
erties of a model’s predictions not differ 
across groups.2 3 However, identifying which 
statistical properties are most relevant to fair-
ness in a given context is non-trivial. Hence, 
before applying fairness criteria for eval-
uation or model adjustment, it is crucial to 
examine how the model’s predictions will 
inform treatment decisions—and what effect 
those decisions will have on patients’ health.

Here, we consider the 2019 guidelines of 
the American College of Cardiology and the 
American Heart Association (ACC/AHA) on 
primary prevention of atherosclerotic cardio-
vascular disease (ASCVD),4 which codify 

Summary

What is already known?
	► Algorithmic fairness methods can be used to quanti-
fy and correct for differences in specific model per-
formance metrics across groups, but the choice of 
an appropriate fairness metric is difficult.

	► The pooled cohort equations (PCEs), 10-year ath-
erosclerotic cardiovascular disease risk prediction 
models used to guide statin treatment decisions in 
the USA, exhibit differences in calibration and dis-
crimination across demographic groups, which can 
lead to inappropriate or misinformed treatment de-
cisions for some groups.

	► Two theoretically incompatible fairness adjustments 
have been separately proposed for re-deriving the 
PCEs.

What does this paper add?
	► Proposes a measure of local calibration of the PCEs 
at therapeutic thresholds as a method for probing 
guideline compatibility.

	► Quantifies the effect of two proposed fairness meth-
ods for re-deriving the PCEs in terms of their impact 
on local calibration.

	► Illustrates general principles that can be used to 
conduct contextually-relevant fairness evaluations 
of models used in clinical settings in the presence 
of clinical guidelines.
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the use of 10-year ASCVD risk predictions to inform a 
clinician-patient shared decision-making on initiating 
statin therapy. These guidelines recommend that individ-
uals estimated to be at intermediate risk (>7.5%–20%) 
be considered for initiation for moderate-intensity to 
high-intensity statin therapy, and that those at high risk 
(>20%) be considered for high-intensity statin therapy. 
Individuals at borderline risk (>5%–7.5%) may be consid-
ered for therapy under some circumstances.4 5

These therapeutic thresholds were established based on 
randomised control trials, and correspond to risk levels 
where expected overall benefits derived from low-density 
lipoprotein cholesterol reduction outweigh risks of side 
effects (online supplemental file C).4 6 In general, such 
thresholds can be identified using decision analysis 
methods7 (figure  1A). The models accompanying the 
guidelines (pooled cohort equations, PCEs6 8 9), devel-
oped for Black women, white women, Black men and 
white men, differ in both calibration and discrimina-
tion across groups.10 11 The resultant systematic bias in 
risk misestimation in these subgroups can lead to inap-
propriate or misinformed treatment decisions. Since 
then, several works derived updated equations,11–14 some 
explicitly incorporating fairness adjustments.13 14

If therapeutic thresholds recommended by guidelines 
reflect a balance of relevant harms and benefits for all 
subgroups,15 16 therapeutic decisions could be unfair if 
thresholds used for different groups differ, as they would 
lead to suboptimal treatment decisions for some groups 
(figure 1A). As such, subgroup calibration at optimal ther-
apeutic thresholds is an important fairness criterion for 
10-year ASCVD risk estimation models,14 since under miscal-
ibration (systematic overestimation or underestimation of 
risk), treatment thresholds implicitly change (figure  1C) 
from treatment thresholds to implied thresholds.17 18

An alternative fairness criterion, known as equalised odds 
(EO),3 which has previously been used to evaluate several 
clinical predictive models,13 19 20 requires equality in false 
positive and false negative error rates (FPR and FNR) 
across groups. One work proposed to explicitly incorpo-
rate EO constraints into the training objective to learn 
ASCVD risk estimators with minimal intergroup differ-
ences in FPR and FNR.13

In the context of ASCVD risk estimation, the EO crite-
rion lacks a clear motivation and can thus yield misleading 
results. FPR and FNR are sensitive to the distribution 
of risk and are expected to differ across groups when 
the incidence of outcomes differs (figure  1B).18 21 22 

Figure 1  (A) Identifying an optimal therapeutic threshold. An individual with risk r should be treated if the expected value of 
treatment exceeds that of non-treatment. As risk increases, the benefits of treatment become more significant, and assigning 
treatment becomes more optimal than withholding it. The optimal therapeutic threshold t is the value of risk at which treatment 
and non-treatment have the same expected value (the indifference point)—for individuals with r>t, treatment is expected to be 
more beneficial than non-treatment. Setting a non-optimal therapeutic threshold could lead to suboptimal treatment decisions 
for some individuals (treating some individuals for whom non-treatment has a higher expected value, or not treating individuals 
for whom treatment has a higher expected value). (B) Illustration of the sensitivity of FPR and FNR to the distribution of risk. 
Assume that there are two types of easily distinguishable individuals: with 5% and 50% chance of developing a disease, 
respectively, and there are two groups composed of both types of individuals, but one has a higher proportion of lower-risk 
individuals. If the same therapeutic threshold is applied to both groups, false positive rates (FPR) and false negative rates 
(FNR) will not be equal, even though we would be making optimal treatment decisions for each patient, in both populations. 
(C) Under miscalibration, implied thresholds differ from therapeutic thresholds. If risk scores are miscalibrated, taking action 
at the threshold of 7.5% corresponds to different observed outcome rates in the two groups. For Group I, a risk score of 7.5% 
corresponds to an observed outcome incidence of 10%, while for Group II it corresponds to 6%, therefore, individuals in Group 
II would be treated at a lower risk than individuals in Group I.
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Furthermore, approaches to build EO-satisfying models 
either explicitly adjust group-specific decision thresholds, 
introduce differential miscalibration or reduce model fit 
for each group3—which may lead to suboptimal decisions 
(figure 1A,C). EO-satisfying models may therefore be less 
appropriate than calibrated estimators for use with the 
ACC/AHA guidelines.17

We aim to evaluate the tension between calibration, 
EO and guideline-concordant decision-making. To do so, 
we propose a measure of local calibration at guideline-
concordant therapeutic thresholds as a method for 
probing guideline compatibility and apply it to uncon-
strained, group-recalibrated and EO-constrained versions 
of the 10-year ASCVD risk prediction models learnt 
from the updated pooled cohorts data set,9 11 as well as 
the original8 and revised PCEs.11 We assess the proposed 
local calibration measure and error rates across groups 
for each model, and conclude with recommendations 
for identifying quantification and adjustment criteria for 
enabling fair model-guided decisions.

METHODS
Data sets
We use an updated pooled cohorts data set,11 comprised 
of ARIC (Atherosclerosis Risk in Communities Study, 
1987–2011), CARDIA (Coronary Artery Risk Devel-
opment in Young Adults Study, 1983–2006), CHS 
(Cardiovascular Health Study, 1989–1999), FHS OS 
(Framingham Heart Study Offspring Cohort, 1971–
2014), MESA (Multi-Ethnic Study of Atherosclerosis, 
2000–2012) and JHS (Jackson Heart Study, 2000–2012). 
Following the original PCE inclusion criteria,9 we 
include individuals aged 40–79, excluding those with 
a history of myocardial infarction, stroke, coronary 
bypass surgery, angioplasty, congestive heart failure or 
atrial fibrillation, or receiving statins at the time of the 
initial examination. We include all individuals, regard-
less of racial category, and classify them as Black and 
non-Black, consistent with the use of PCEs in practice 
for non-Black patients of colour.

We extract features included in the PCEs (total choles-
terol, high-density lipoprotein (HDL) cholesterol, treated 
and untreated systolic blood pressure, diabetes, smoking 
status, age, binary sex and race) and body mass index, 
recorded at the initial examination. We also extract dates 
of observed ASCVD events (myocardial infarction, lethal 
or non-lethal stroke or lethal coronary heart disease), 
and of last recorded observation (follow-up or death), 
to define binary labels for 10-year ASCVD outcome and 
censoring. Individuals whose last recorded observation 
happened before an ASCVD event and before year 10 are 
considered censored. We remove records with extreme 
values of systolic blood pressure (outside 90–200 mm 
Hg), total cholesterol and HDL cholesterol (outside 
130–320 and 20–100 mg/dL, respectively) or missing 
covariates.

Models
Unconstrained model
The original PCEs consist of four separate Cox propor-
tional hazards models, stratified by sex and race, to 
account for differences in ASCVD incidence across the 
four groups (Black women, white women, Black men and 
white men).8 One revision of the PCEs, which reduced 
overfitting and improved calibration, replaced the 
Cox models with censoring-adjusted logistic regression 
models, stratified by sex and included race as a variable in 
each model.11 Our implementation of the unconstrained 
(UC) models consists of a single inverse probability of 
censoring (IPCW)-adjusted logistic regression model,23 
and includes race and sex as binary variables. Censoring 
weights are obtained from four group-level Kaplan-Meier 
estimators applied to the training set. We include all 
features and their two-way interactions.

Group-recalibrated model
For recalibration, we logit-transform the predicted prob-
abilities generated by the UC model, and use IPCW-
adjusted logistic regression to fit a calibration curve for 
each group. We then use the resulting group-recalibrated 
model to obtain a set of recalibrated predictions.

EO model
The EO criterion requires that both the FPR and FNR be 
equal across groups at one or more thresholds.3 We use 
an in-processing method for constructing EO models,22 24 
which provides a better calibration-EO tradeoff than the 
post-processing approach.25 We define the training objec-
tive by adding a regulariser to the UC model’s objective 
(online supplemental file A), with the degree of regu-
larisation controlled by λ. The regulariser penalises 
differences between FPR and FNR at specified decision 
thresholds (7.5% and 20%), across the four groups.

Training procedures
Using random sampling stratified by group, outcome 
and presence of censoring, we divide our cohort into 
the training (80%), recalibration (10%) and test (10%) 
sets. Using the same procedure, we divide the training set 
into 10 equally-sized subsets and, for each subset, train 
a logistic regression model using stochastic gradient 
descent for up to 200 iterations of 128 minibatches, with 
learning rate of 10−4 on the remaining subsets. We termi-
nate training if the cross-entropy loss does not improve 
on the held-out subset for 30 iterations. This procedure 
generates 10 UC models. To generate group-recalibrated 
models, we first generate predictions on the recalibration 
set, using the UC models (figure 2) and then use those 
train logistic regression models using BFGS (Broyden-
Fletcher-Goldfarb-Shanno) optimisation, implemented 
in Scikit-Learn,26 with up to 105 iterations. To examine the 
impact of the EO penalty, we repeat the unconstrained 
training procedure using the regularised training objec-
tive with four different settings of the parameter λ, 
distributed log-uniformly on the interval 0.1–1.0 (0.100, 
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0.215, 0.464, 1.000) and refer to the resulting models as 
EO1 through EO4. PyTorch V.1.5.027 is used to define all 
models and training procedures. We make our code avail-
able at https://github.com/agataf/fairness_eval_ascvd.

Evaluation
We introduce threshold calibration error (TCE), a measure 
of local calibration, defined as the difference between 
the therapeutic threshold (t1=7.5% or t2=20%) applied 
on the risk estimate and the implied threshold on the risk, 
measured by the calibration curve (figure 1C). As in the 
recalibration procedure, we estimate implied thresholds 
ga(ti) at a fixed therapeutic threshold ti by fitting a calibra-
tion curve ga for each group a (figure 1C). Then, for each 
threshold i we obtain TCE(i,a):

	﻿‍ TCE(i, a) = ti − ga ‍�

A negative TCE indicates risk underestimation, since 
the threshold applied to the risk score is lower than the 
observed incidence of the outcome at that predicted 
risk level. Similarly, a positive TCE indicates risk 
overestimation.

To understand the tradeoff between TCE, FPR and 
FNR, we calculate intergroup SD (IGSD) between the four 
group-specific values of the three metrics. For a threshold 
i, metric M and A distinct groups, IGSDMi is defined as

‍
ISGD(M, ti) =

√∑A
a=1(Mia−µMi )

2

A ‍
, where‍µMi =

∑A
a=1 Mia

A ‍

IGSD captures the degree of performance disparity 
between groups; high IGSD in FPR and FNR corresponds 
to an EO disparity, and high IGSD in TCE corresponds to 
a treatment rule disparity.

For each of the four subgroups, and overall population, 
we report calibration and discrimination metrics at both 
the aggregate (absolute calibration error, ACE22 and area 
under the receiver operating characteristic, AUROC) and 
the threshold level (TCE, FPR and FNR) at t1 and t2, for 
the UC model, the group-recalibrated model (rUC) and 
the best-performing EO model, as well as the original 
PCEs9 (PCE) and revised PCEs11 (rPCE). We draw 1000 
bootstrap samples from the test set, stratified by group 
and outcomes, to derive point estimates and 95% CIs 
for each metric. The 95% CIs are defined as the 2.5% to 
97.5% percentiles of the distribution obtained via pooling 
over both the bootstrap samples and the 10 model repli-
cates derived from the training procedure. We also report 
IGSD between the four group-specific median values in 
TCE, FPR and FNR at both thresholds. All metrics are 
computed over the uncensored population and adjusted 
for censoring using IPCW.

RESULTS
We describe the study population and present perfor-
mance of the models. We report the TCE, FPR and FNR 
in figure 3, and IGSD of those three metrics in figure 4. 
We present results for EO3 in figure 3, as it was the only 
equalised odds model that achieved a reduction of IGSD 
(FPR) while keeping a low IGSD (FNR) at both thresh-
olds. Results for the remaining EO models are included 
in online supplemental file B.

Study population
Overall, 25 619 individuals met the inclusion criteria, 
of whom 80% (N=20495) were assigned to the training 
set, and 10% (N=2562) to each the recalibration and test 
sets. Table  1 summarises the mean age, ASCVD event 
incidence and frequency of censoring across the six data 
sets and four demographic groups. A cohort construction 
flowchart is included in online supplemental figure B1.

Model performance
The UC model achieved an overall AUROC of 0.827, 
(95% CI=(0.800 to 0.853)), comparing favourably with 
PCE (0.808 (0.779 to 0.835)) and rPCE (0.804 (0.777 
to 0.831)), while maintaining differences of AUROC 
between groups (figure  3A). While UC had a slightly 
higher overall ACE (0.011 (0.006 to 0.023)) than rPCE 
(0.005 (0.001 to 0.015)), as well as a slightly higher local 
miscalibration at t1 (TCE(t1) 0.012 (0.006 to 0.019) versus 
0.000 (−0.004 to 0.005)), IGSD(TCE, t1) and IGSD(TCE, 
t2) both reduced under UC (from 0.018 to 0.004, and 
0.053 to 0.016, respectively) (figure 4).

The group recalibration procedure (rUC) reduced 
the magnitude of TCE(t1) overall (−0.001 (−0.007 to 
0.006)), and for each group, relative to UC (0.012 (0.006 

Figure 2  Visual abstract. Data from the six considered data 
sets: ARIC (Atherosclerosis Risk in Communities Study), 
CARDIA (Coronary Artery Risk Development in Young 
Adults Study), CHS (Cardiovascular Health Study), FHS OS 
(Framingham Heart Study Offspring Cohort), MESA (Multi-
Ethnic Study of Atherosclerosis) and JHS (Jackson Heart 
Study), is extracted using the cohort definition used in the 
original pooled cohort equations (PCEs), and divided into 
train (80%), validation (10%) and test (10%) sets. Equalised 
odds and unconstrained (UC) models are derived directly 
from the training set. The recalibrated model is derived from 
the UC model using a recalibration procedure, which uses 
the validation data set (not seen during training). Finally, 
predictions on the test set are generated for all models—
including the PCEs and the revised PCEs (rPCE), derived in 
past work—and evaluated.

https://github.com/agataf/fairness_eval_ascvd
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to 0.019)) (figure  3A). While recalibration improved 
TCE(t2) overall (0.00 (−0.019 to 0.016) vs 0.006 (−0.013 
to 0.023)), it increased the magnitude of miscalibration 
of individual groups—for instance, shifting TCE(t2) 
from 0.033 (–0.016 to 0.066) to −0.071 (−0.196 to 0.008) 
for Black men, and increasing IGSD(TCE, t2) to 0.038. 

We also observe that, while TCE(t1) and IGSD(TCE, t1) 
improved for rUC, IGSD(FNR, t1) worsened, increasing 
from 0.020 to 0.038, as did IGSD(FPR, t2) and IGSD(FNR, 
t2) (figure  4). Additionally, at each threshold, for all 
models, we observe a relationship between TCE, FPR and 
FNR: increased TCE (overestimation) leads to higher 
FPR and lower FNR, and decreased TCE (underestima-
tion)—to lower FPR an higher FNR (figure 3B).

The EO procedure generated models with FPR and 
FNR which approached similar values across groups at 
both t1 or t2—bringing IGSD(FPR, t1) to 0.054 from 0.094 
(figure  4) while maintaining almost identical AUROC 
to UC (0.822 (0.794, 0.8)) (figure 3A). However, it did 
so by trading off error rates in opposite directions at the 
two thresholds, as described above (figure  3B). It also 
increased the magnitude of TCE at both thresholds (from 
0.012 (0.006 to 0.019) to 0.033 (0.025 to 0.047) at t1 and 
from 0.006 (−0.013 to 0.023) to −0.236 (−0.335 to –0.129) 
at t2), and increased IGSD(TCE, t1) to 0.011 (from 0.004) 
and IGSD(TCE, t2) to 0.039 (from 0.016), implying that 
the scores generated by the EO model did not closely 
correspond to their calibrated values.

DISCUSSION
We identified local calibration of 10-year ASCVD risk 
prediction models at guideline-recommended thresholds 
as necessary for fair shared decision-making about statin 
treatment between patients and physicians. We find that 
the rPCEs11 differ in local calibration between groups—
making guideline-compatibility of rPCE inconsistent 
across groups. We note that global measurements of cali-
bration, used previously to evaluate the PCEs,11 14 did not 
capture this difference, illustrating the importance of 
local calibration evaluation.

Recalibrating the model separately for each group 
increased compatibility with guidelines at low levels of 
risk, while increasing intergroup differences in error 
rates. Conversely, estimators learnt with an EO constraint 
would not be concordant with existing guidelines as a 
result of induced miscalibration. Thus, absent a contex-
tual analysis, fairness approaches that focus on error rates 
can produce misleading results.

In our experiments, group-recalibration did not 
improve calibration at t=20%. This may be due to the small 
sample size of the recalibration set, as well as of individ-
uals predicted to be at high risk. This suggests that group-
recalibration may not always be desirable, especially if 
local calibration of the UC model is deemed acceptable. 
However, improvement in local calibration observed at 
t=7.5% may be more relevant than calibration at higher 
risk levels for informing statin initiation decisions, since 
benefits of treatment are clearer at higher-risk levels.

Several design choices may have impacted the results, 
including the use of a single model with race and sex as 
variables in the UC and EO models, the use of a logistic 
regression as a recalibration method, and the use of an 
in-processing method that focused on particular decision 

Figure 3  Model performance across evaluation metrics, 
stratified by demographic group, evaluated on the test set. 
The left panel showsAUROC and absolute calibration error. 
The right panel shows false negative rates, false positive 
rates and threshold calibration error at two therapeutic 
thresholds (7.5% and 20%). EO, equalised odds; PCEs, 
original pooled cohort equations; rPCE, revised PCEs; rUC, 
recalibrated model; UC, unconstrained model.

Figure 4  Relationship between intergroup variability in 
threshold calibration rate (TCE) and error rates. The figure 
shows the relationship between intergroup SD (IGSD) of 
threshold calibration error (on the x-axis) and IGSD of false 
negative rate (FNR, circles) and false positive rate (FPR, 
crosses) across the models: EO1–4, equalised odds with 
increasing values of λ. The EO3 corresponds to the EO model 
discussed in the Results section. In the models we trained, 
IGSD of TCE scales inversely with the IGSD of FNR and FPR. 
PCE, original pooled cohort equations; rPCE, revised PCEs; 
rUC, recalibrated model; UC, unconstrained model.



6 Foryciarz A, et al. BMJ Health Care Inform 2022;29:e100460. doi:10.1136/bmjhci-2021-100460

Open access�

thresholds to impose EO. We anticipate that alternative 
modelling choices would impact the size of the observed 
effects, but would likely not change the conclusions, since 
known statistical tradeoffs exist between EO and calibra-
tion.18 21 22

Given this analysis, we recommend that developers 
building models for use with the ACC/AHA guidelines 
prioritise calibration across a relevant range of thresholds, 
and report group-stratified evaluation of local calibration 
alongside metrics of global fit. Before a model is deployed 
in a new setting, we recommend that it be evaluated on 
the target population, stratified by relevant groups—and 
group-recalibrated, if necessary. Knowledge about local 
miscalibration should also be incorporated into risk 
calculators to actively inform the physician-patient shared 
decision-making conversations, but should not replace 
recalibration efforts, since calibrated predictions are 
better suited for reasoning about potential consequences 
of treatment.10

Our analysis inherits the assumptions about relative 
importance of relevant risks and benefits used to derive 
therapeutic thresholds (online supplemental file C), 
which often fail to consider the impact of social deter-
minants of health on treatment efficacy and of structural 
forms of discrimination in generating health dispari-
ties.28 Additionally, our use of self-identified racial cate-
gories—which can be understood as proxies for systemic 
and structural racist factors impacting health—may be 

inappropriate, potentially exacerbating historical racial 
biases and disparities in the clinical settings.29 30 Deriva-
tion of new risk prediction models may be necessary for 
multiethnic populations.12 Future work should explore 
decision analysis and modelling choices that incorporate 
this context.

CONCLUSION
Our analysis is one of the first to consider algorithmic 
fairness in the context of clinical practice guidelines. It 
illustrates general principles that can be used to identify 
contextually relevant fairness evaluations of models used 
in clinical settings in the presence of clinical guidelines. 
Such analysis should include careful consideration of the 
interplay between model properties, model-guided treat-
ment policy, as well as the potential harms and benefits of 
treatment, for each relevant subgroup. At the same time, 
we note that striving for model fairness is unlikely to be 
sufficient in addressing health inequities, especially when 
their sources lay upstream of the model-guided interven-
tion, as is the case of structural racism.28 We encourage 
future work to situate fairness analyses in this broader 
context.
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Table 1  Cohort characteristics for patients who met inclusion criteria

Study

N Age
ASCVD event 
incidence* % censored N Age

ASCVD event 
incidence* % censored

Black women Black men

ARIC 1812 53.2 5.70% 6.51 1216 53.8 9.61% 10.03

CARDIA 232 43.0 4.42% 8.19 153 42.7 1.63% 14.38

CHS 304 70.7 22.52% 15.46 181 70.5 30.89% 27.62

JHS 1310 51.4 2.77% 14.96 751 51.1 4.47% 14.11

MESA 768 60.3 5.18% 9.64 630 60.9 7.19% 13.17

All 4426 54.6 5.69% 10.26 2931 55.1 8.15% 13.07

 �  Non-Black women Non-Black men

ARIC 4815 53.9 2.54% 3.30 4383 54.5 7.17% 4.86

CARDIA 289 42.7 0.39% 6.23 333 42.5 0.90% 6.91

CHS 1848 70.7 20.18% 15.58 1169 71.0 32.00% 17.45

FHS OS 828 46.4 2.61% 1.81 856 47.1 8.67% 3.86

MESA 1913 60.5 3.81% 7.68 1828 60.8 6.67% 10.07

All 9693 57.4 5.95% 6.47 8569 56.9 10.36% 7.67

 �  All

All 25 619 56.5 7.54% 8.28

Data are grouped by sex and race, as well as data set. Each group of patients is described by four values: total number of individuals, mean age, 
censoring-adjusted incidence of ASCVD events within 10 years of the initial examination and fraction of censored individuals.
*ASCVD event incidence was calculated by weighing the number of positive outcome and negative outcome uncensored individuals with the sum of 
their inverse probability of censoring weights.
ARIC, Atherosclerosis Risk in Communities Study; ASCVD, atherosclerotic cardiovascular disease; AUROC, area under the receiver operating 
characteristic; CARDIA, Coronary Artery Risk Development in Young Adults Study; CHS, Cardiovascular Health Study; FHS OS, Framingham Heart 
Study Offspring Cohort; FNR, false negative rate; FPR, false positive rate; IPCW, inverse probability of censoring; JHS, Jackson Heart Study; MESA, 
Multi-Ethnic Study of Atherosclerosis; PCE, Pooled Cohort Equations.
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ABSTRACT
Objectives  The Indian Liver Patient Dataset (ILPD) is used 
extensively to create algorithms that predict liver disease. 
Given the existing research describing demographic 
inequities in liver disease diagnosis and management, 
these algorithms require scrutiny for potential biases. We 
address this overlooked issue by investigating ILPD models 
for sex bias.
Methods  Following our literature review of ILPD papers, 
the models reported in existing studies are recreated and 
then interrogated for bias. We define four experiments, 
training on sex-unbalanced/balanced data, with and 
without feature selection. We build random forests 
(RFs), support vector machines (SVMs), Gaussian Naïve 
Bayes and logistic regression (LR) classifiers, running 
experiments 100 times, reporting average results with SD.
Results  We reproduce published models achieving 
accuracies of >70% (LR 71.31% (2.37 SD) – SVM 79.40% 
(2.50 SD)) and demonstrate a previously unobserved 
performance disparity. Across all classifiers females suffer 
from a higher false negative rate (FNR). Presently, RF and 
LR classifiers are reported as the most effective models, 
yet in our experiments they demonstrate the greatest FNR 
disparity (RF; −21.02%; LR; −24.07%).
Discussion  We demonstrate a sex disparity that exists 
in published ILPD classifiers. In practice, the higher FNR 
for females would manifest as increased rates of missed 
diagnosis for female patients and a consequent lack of 
appropriate care. Our study demonstrates that evaluating 
biases in the initial stages of machine learning can provide 
insights into inequalities in current clinical practice, reveal 
pathophysiological differences between the male and 
females, and can mitigate the digitisation of inequalities 
into algorithmic systems.
Conclusion  Our findings are important to medical 
data scientists,clinicians and policy-makersinvolved 
in the implementationmedical artificial intelligence 
systems. Anawareness of the potential biases of these 
systemsis essential in preventing the digital exacerbation 
ofhealthcare inequalities.

BACKGROUND
Liver cirrhosis accounts for 1.8% of deaths in 
Europe, a number which has grown signifi-
cantly over the past decade as rates of alcohol 
consumption, chronic hepatitis infections and 

obesity-related liver disease have increased.1 
Yet, liver disease does not affect all popula-
tions equally. Recent research has demon-
strated sex differences in the prevalence, 
diagnosis and management of various hepatic 
illnesses.2–5 A key determinant of patient 
outcomes from liver disease is the early detec-
tion of pathology, yet when it comes to diag-
nosis and referral, female patients appear to 
be at a significant disadvantage.2–5

In alcohol related liver disease, Vatsalya 
et al report that women are less likely to be 

Summary

What is already known on this topic
	⇒ Machine learning models that leverage biochemical 
data for modelling patient trajectories are rapidly in-
creasing, yet these algorithms are rarely scrutinised 
for demographic bias or their impact on health 
inequalities.

What this study adds
	⇒ Our study demonstrates a previously unobserved sex 
disparity in model performance for algorithms built 
from a commonly used liver disease dataset. We 
highlight how biochemical algorithms may reinforce 
and exacerbate existing healthcare inequalities.

How this study might affect research, practice 
or policy

	⇒ Bias in biochemical algorithms is an overlooked 
issue. In clinical practice, the higher rate of false 
negatives for female patients would manifest as an 
increased rate of missed diagnosis for female pa-
tients and a consequent lack of appropriate care.

	⇒ Furthermore, sex differences in biochemical fea-
ture importance reinforces existing research that 
suggests unisex biochemical thresholds may disad-
vantage female patients in current practice. These 
findings are important to medical data scientists, 
clinicians and policy-makers involved in the imple-
mentation medical artificial intelligence systems. An 
awareness of the potential biases of these systems 
is essential in preventing the digital exacerbation of 
healthcare inequalities
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suspected of alcohol abuse, diagnosed and often expe-
rience more severe disease with worse outcomes.2 3 Sex 
differences in diagnosis are compounded by inequali-
ties in the liver disease management. Mathur et al report 
disparities in access to liver transplantation that result 
in females having markedly lower transplant rates than 
their male counterparts.4 The problem extends beyond 
hepatology. In 2021, the UK parliamentary report on 
the gender health gap highlighted that the UK has the 
largest female health gap in the G20 and the 12th largest 
globally.5 The exclusion of females from research trials 
(extending to animal research), the neglect of female 
bodies throughout medical pedagogy and the uncon-
scious biases of practitioners are a few of the intersecting 
factors that result in worse health outcomes for female 
patients.6–10

Liver function tests are integral to patient diagnosis and 
monitoring. These ‘biochemical markers’ include proteins 
made by the liver (eg, albumin), and enzymes required for 
metabolism (eg, aspartate aminotransferase (AST)). Bias 
research has illustrated that biochemical markers are not 
equally effective for all patient groups.3 7 10–12 Suthahar 
et al describe how sex differences in biomarker thresh-
olds affect objectivity in management, as what is consid-
ered ‘normal’ in one sex, may not be so in the other.12 
Grimm et al investigate the relationship between albumin 
and mortality, reporting that albumin offers a higher 
predictive power for males compared with females.11 
Furthermore, Vatsalya et al and Stepien et al describe sex 
differences in biochemical cut offs, highlighting that the 
milder expression of liver injury for females may result in 
female disease going undetected.3 13 Such disparities in 
the predictive potential of clinical biomarkers have the 
potential to exacerbate healthcare inequalities.6 7 10 12

The rise in healthcare artificial intelligence (AI) has 
resulted in the increasing use of large clinical datasets 
for machine learning (ML).14 ML classifiers that use 
biochemical markers to model patient trajectories have 
consistently outperformed traditional statistical models.14 
However, despite the promise of ML tools, the presence 
of demographic biases in AI algorithms has indicated 
that historical harms may materialise in digital systems 
and worsen population inequalities.7 15–17 The develop-
ment of predictive models from biomarkers is one area 
in which medical ML models are at risk of encoding the 
errors of current practice. In our paper we explore for 
this possibility in liver disease prediction by examining 
models built from a commonly cited dataset: The Indian 
Liver Patient Dataset (ILPD).

The ILPD is a widely used open-source dataset that 
provides the biochemical markers of a sample of patients, 
some of whom have liver disease.18–22 BanuPriya and 
Tamilselvi provide an overview of classification models 
built from this dataset, since which time further models 
have been published from both academics and major 
industry.18 19 21 Authors consistently report accuracies 
of >70% for identifying liver patients, with logistic regres-
sion (LR) models and random forests (RFs) giving the 

best results. Jin et al23 demonstrate accuracies of 72.7% 
with LR models, similarly Adil et al achieve 74% accu-
racy with their LR model, outperforming artificial neural 
networks and support vector machines (SVMs).24 A recent 
study from Intel reproduces these models and performs 
additional feature selection giving model accuracies of 
74.6% (RF) and 71.2% (SVM).19

Predictive ML models may benefit patient care if 
they can diagnose liver disease at an earlier stage.25 Yet, 
despite the existing literature that describes biases in clin-
ical medicine, biochemical tests and algorithmic perfor-
mance, none of the ML studies on the ILPD focus on sex 
disparities in model performance.4 7 8 10–12 16 17 We seek to 
address this gap in the research by investigating the ILPD 
dataset and its respective models for sex bias.18–20

METHODOLOGY
The ILPD was originally collected from India and consists 
of 583 patient records, of which 416 have liver disease. We 
imported the ILPD from the UCI repository (full code-
book available in online supplemental material C).19 22

Data exploration and initial analysis
Data exploration is the primary stage of the ML process 
and involves file importation, formatting, descriptive 
statistics and configuring datatypes. Online supplemental 
table 1 gives the variables included in our dataset and 
their initial datatypes.

Feature exploration
Online supplemental table 2 presents the sex-stratified 
feature importance ranked by Pearson’s correlation coef-
ficient. For females, the enzymes ALT and AST are ranked 
fourth and fifth, whereas for males they are ranked 
seventh and eighth. Further, albumin and A/G ratio are 
ranked higher for male patients compared with female 
patients. These subtle differences in feature importance 
may reflect underlying sex differences in hepatic patho-
physiology and biomarker expression.3 4 26 Further, online 
supplemental table 2 demonstrates that the mean IQR 
across all biomarkers is less for females, suggesting that 
these biomarkers may have less of a predictive power for 
female patients overall (mean IQR; female 0.145, male 
0.175).

Data preprocessing
Data preparation steps reflected existing studies.19 20 Mean 
imputation was used to address missing values, gender 
was mapped to a 0/1 numerical datatype, normalisation 
was performed using minimum-maximum scaler func-
tion and the target variable was recoded to binary vari-
able, such that 1 represents diseased patients (n=416).

Addressing class imbalance
The original dataset demonstrated significant class 
imbalance (167 healthy vs 416) diseased patients) and 
sex imbalance (142 females vs 441 males). Similarly to 
existing models, we implement the imblearn SMOTE() 
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package to address these imbalances; oversampling 
both the minority class and under-represented females 
as detailed in table  1.19 The sex-unbalanced dataset is 
retained to compare the impact of female representation 
in the training data on sex disparities in performance.

Model development and implementation
Gulia and Praveen Rani review the classification algo-
rithms that have been built from the ILPD, including RFs 
and SVMs.20 A more recent review from BanuPriya and 
Tamilselvi describe the accuracies of additional models 
including Bayesian Networks, which is further built on by 
the work of Aswathy who evaluates the performance of 
LR models on the ILPD.18 19 We replicate the methods 
of these studies, reproducing RF, SVM, Gaussian Naïve 
Bayes (GNB) and LR classifiers. We implement these 
models across four experiments, in which we evaluate the 
overall and sex-stratified performance of the classifiers.

Experiment 1: models trained on unbalanced dataset, without 
feature selection
Initially, we reproduce existing studies, building a predic-
tive algorithm on the full unbalanced dataset to predict 
liver disease. Data were divided into test and training 
subsets (30%/70%), hyperparameters were tuned using 
GridSearchCV(), the model was trained on the mixed-sex 
data and results were stratified by sex to give the evalua-
tion metrics for males/females separately. We do this 100 
times (building, training and testing separate models) 
and report average results with SD over the 100 runs. 
This is done for all four classifiers resulting in four results 
tables (online supplemental material B Spreadsheets, 
‘Experiment 3.1.1—RF’—‘Experiment 3.1.1 GNB’).

Experiment 2: models trained on sex-balanced dataset, without 
feature selection
The methodology of experiment 1 is repeated using the 
sex-balanced dataset defined in Table 1 . We ensure sex 
balance in the training data by taking random subsets 
from the male and females separately, which are appended 
together to form the full sex-balanced training data for 
each individual experiment (online supplemental file 
3 Spreadsheets, ‘Experiment 3.1.2—RF’—‘Experiment 
3.1.2 GNB’).

Experiment 3: models trained on unbalanced dataset, with feature 
selection
In experiment 3, we perform feature selection based on the 
unbalanced dataset, in experiment 4, we perform feature 
selection on the sex-balanced dataset. Feature selection 
is performed using Recursive Feature Elimination (RFE) 
sklearn package, which returns the top five ranked features 
(online supplemental material B Spreadsheets, ‘Experi-
ment 3.1.3—RF’—‘Experiment 3.1.3 GNB’).

Experiment 4: models trained on balanced dataset, with feature 
selection
Lastly, models and feature selection are fitted to the sex-
balanced dataset. Our aim was to investigate whether 
feature selection would differ once the representation of 
females was addressed, and whether this would influence 
any performance disparities.

Model evaluation
Evaluation metrics are reported for all patients and sepa-
rately for the sexes (equations 1–3). We examine the 
mean difference between the male and females for each 
evaluation metric to demonstrate any disparities (equa-
tion 4). Two-sample paired t-tests are run on the series of 
100 experiments for the male and female patients to assess 
whether the mean difference between sexes, for each of 
the evaluation metrics, is statistically significant (p<0.05).

Equation 1: accuracy evaluation metric
Accuracy gives the proportion of correct predictions 
produced by a model.

	﻿‍ Accuracy = True positives+True Negatives
True positives+True Negatives+False Positives+False Negatives‍�

Equation 2: F-score evaluation metric, precision and recall
The F-score is the average of precision and recall, with a 
value of 1 being a perfect score.

	﻿‍ Recall = TP
TP+FN‍�

	﻿‍ F Score = 2×Precision×Recall
Precision+Recall ‍�

Table 1  Summary counts of classes in the Indian liver patient dataset dataset, including counts after the dataset is balanced

Target 
(disease=1)

Dataset 1
(original)

Total 
counts for 
sexes

Dataset 2 
(oversampled 
minority class)

Total 
counts for 
sexes

Dataset 3
(sex balanced, 
oversampled 
females)

Total 
counts for 
sexes

Female 0 50 142 145 237 408 595

1 92 92 187

Male 0 117 441 271 595 271 595

1 324 324 324

Total 583 832 1190

https://dx.doi.org/10.1136/bmjhci-2021-100457
https://dx.doi.org/10.1136/bmjhci-2021-100457
https://dx.doi.org/10.1136/bmjhci-2021-100457
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Equation 3: performance error rates
The following error rates are used throughout our 
evaluation.21

	► True positive: Predicted yes and they do have disease.
	► True negative: Predicted no and they do not have 

disease.
	► False positive: Predicted yes, but they do not have 

disease.
	► False negative: Predicted no, but they actually do have 

disease.

	﻿‍ True Negative Rate
(
TNR

)
= TN

TN+FP‍�

	﻿‍ True Positive Rate
(
TPR

)
= TP

TP+FN‍�

Equation 4: sex performance disparity
	
‍Sex performance disparity = Male evaluation metric

(
mean

)
− Female evaluation metric

(
mean

)
‍

�

RESULTS
We ran 16 experiments: experiments 1–4, with each of 
the four classifiers. The detailed results tables with the 
100 experiment runs are provided in the spreadsheet 
files in online supplemental material B. In online supple-
mental material A ‘Tables in Text’, we provide summary 
in several condensed tables, which give the average evalu-
ation metrics and the statistical significance of any male-
female differences.

Results for experiment 1
Online supplemental table 3 demonstrates that our four 
models reflect the existing literature, achieving accuracies 

>70% (71.31% (2.37 SD) LR – 79.40% (2.50 SD) SVM). 
Table 2 details the disparities for each evaluation metric, 
from which we observe a statistically significant sex disparity 
in Accuracy for all classifiers, with mixed results regarding 
the direction of the disparity (performance disparity −2.98 
SVM to 2.96% RF, p<0.05). In the case of the ROC_AUC 
score, we observe a significant disparity that negatively 
impacts females for the RF (6.80%, p<0.05), LR (2.93%, 
p<0.05) and GNB (5.53%, p<0.05) classifiers.

The accuracy and ROC_AUC disparities fluctuate 
depending on the balance between the different error 
rates, however, on examining the error rates individually, 
we see a consistency in error trends for each sex. Across 
all classifiers females suffer from a higher false negative 
rate (FNR), while males suffer from a higher false posi-
tive rate. The disparity demonstrates a consistently higher 
recall for males, with females experience a lower recall 
and correspondingly higher FNR disparity, −2.58% to 
−24.07%, table 2)

Results for experiment 2
In experiment 2, we trained on sex-balanced data, 
improving overall accuracy across all four classifiers 
(RF 81.66% (2.33 SD) vs 78.17 (2.36 SD); LR 74.53% 
(1.96 SD) vs 71.31% (2.37 SD); SVM 83.30% (1.75 SD) 
vs 79.40% (2.50 SD); GNB 74.75% (1.9 SD) vs 71.53% 
(2.61 SD)—online supplemental table 4). We now see a 
consistent accuracy disparity that benefits females across 
all four classifiers (−11.47% to −6.17%, p<0.05−table 3). 
Disparities in the ROC_AUC scores are less consistent 
(LR unbalanced ROC disparity 2.93%, LR balanced ROC 
disparity 4.79%; GNB unbalanced ROC disparity 5.53%, 
GNB balanced disparity 5.45%).

Table 2  Experiment 3.1.1—unbalanced training data without feature selection, sex performance disparities

Mean 
difference 
averaged 
over n=100

Random forest classifier
Logistic regression 
classifier Support vector machine Gaussian Naïve Bayes

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p Value

Accuracy 2.96 0.00 −2.85 0.01 −2.98 0.02 −2.72 0.02

FScore 15.63 0.00 15.86 0.00 4.14 0.00 16.19 0.00

ROC_AUC* 6.80 0.00 2.93 0.00 −2.41 0.08 5.53 0.00

Precision 5.25 0.00 −4.87 0.00 3.41 0.00 −3.13 0.05

Recall 21.02 0.00 24.07 0.00 2.58 0.04 19.31 0.00

False 
negative rate

−21.02 0.00 −24.07 0.00 −2.58 0.08 −19.31 0.00

True negative 
rate

−7.42 0.00 −18.20 0.00 −7.40 0.00 −8.24 0.00

False positive 
rate

7.42 0.00 18.20 0.00 7.40 0.00 8.24 0.00

True positive 
rate

21.02 0.00 24.07 0.00 2.58 0.04 19.31 0.00

*ROC AUC score is a measure of the separation between classes in a binary classifier, derived from the area under the ROC curve.

https://dx.doi.org/10.1136/bmjhci-2021-100457
https://dx.doi.org/10.1136/bmjhci-2021-100457
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Online supplemental table 5 presents a comparison 
of the evaluation metrics with/without balancing of 
the training data. In one case, we observe an improve-
ment in performance for all patients. When trained on 
the balanced dataset, the LR accuracy improves overall 
(74.53% (1.96 SD) vs 71.31% (2.37 SD)), for females 
(77.71% (2.42 SD) vs 73.33% (3.95 SD)) and for males 
(71.35% (3.22 SD) vs 70.49% (2.74 SD)).

Results for experiment 3
We did not see an improvement in overall perfor-
mance or a reduction in disparities with RFE. A signif-
icant ROC_AUC disparity is apparent across all four 

classifiers (3.60%–6.61%, p<0.05) that negatively impacts 
females. We see the same error rate findings as earlier, 
with a higher FNR for females (FNR Disparity −18.21 to 
−21.24%, p<0.05, table 4 and online supplemental table 
6).

Results for experiment 4
Experiment 4 gives mixed results. The accuracy disparity 
benefits females across all classifiers (−4.64% to −6.80%, 
p<0.05), whereas the ROC_AUC disparity demonstrates a 
benefit for males in three out of four classifiers (−0.05% 
to 5.95%, p<0.05, table 5) The results relate to the subtle 
changes in error rates with each model, however, across 

Table 3  Experiment 3.1.2—balanced training data without feature selection, sex performance disparities

Mean 
difference 
averaged 
over n=100

Random forest classifier
Logistic regression 
classifier Support vector machine Gaussian Naïve Bayes

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Accuracy −6.17 0.00 −6.36 0.00 −11.47 0.00 −7.43 0.00

FScore 7.69 0.00 20.17 0.00 −3.40 0.00 16.65 0.00

ROC_AUC 0.60 0.13 4.79 0.00 −9.06 0.00 5.45 0.00

Precision −0.94 0.88 −4.75 0.00 −2.32 0.14 0.24 0.37

Recall 12.88 0.00 29.22 0.00 −4.64 0.00 19.82 0.00

False 
negative rate

−12.88 0.00 −29.22 0.00 4.64 0.00 −19.82 0.00

True negative 
rate

−11.69 0.00 −19.65 0.00 −13.49 0.00 −8.93 0.00

False positive 
rate

11.69 0.00 19.65 0.00 13.49 0.00 8.93 0.00

True positive 
rate

12.88 0.00 29.22 0.00 −4.64 0.00 19.82 0.00

Table 4  Experiment 3.1.3—unbalanced training data with feature selection, sex performance disparities

Random forest classifier
Logistic regression 
classifier Support vector machine Gaussian Naïve Bayes

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Accuracy 3.42 0.00 −2.90 0.01 −2.75 0.01 −3.31 0.00

FScore 15.36 0.00 15.79 0.00 16.50 0.00 15.29 0.00

ROC_AUC 6.61 0.00 3.60 0.00 4.90 0.00 4.99 0.00

Precision 9.85 0.00 0.24 0.44 −0.87 0.90 −3.41 0.03

Recall 18.21 0.00 21.24 0.00 20.30 0.00 18.54 0.00

False negative 
rate

−18.21 0.00 −21.24 0.00 −20.30 0.00 −18.54 0.00

True negative 
rate

−4.99 0.00 −14.04 0.00 −10.50 0.00 −8.57 0.00

False positive 
rate

4.99 0.00 14.04 0.00 10.50 0.00 8.57 0.00

True positive 
rate

18.21 0.00 21.24 0.00 20.30 0.00 18.54 0.00

https://dx.doi.org/10.1136/bmjhci-2021-100457
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all classifiers the FNR is consistently higher for females 
(−9.70% to −22.78%, p<0.05 (online supplemental table 
7).

Analysis of feature selection
Online supplemental table 8 gives the feature rankings 
assigned by the RFE model when fitted to unbalanced 
and balanced data, focusing on RF classifiers. When 
we address the under-representation of females in the 
training data, ALP and gender are included as the top 
two features, while A/G ratio and total bilirubin are 
removed. This finding may reflect existing research 
that describes sex differences in biomarker expression. 
In their analysis gender-specific references intervals for 
hepatic biomarkers, Li et al highlight sex differences in 
ALP, ALT and GGT, indicating that differing thresholds 
may be appropriate for diagnosis.27 Sex differences in 
biochemical disease profiles may explain why integrating 
more female patients affects the feature selection in 
experiment 4.

DISCUSSION
In recent years, research has highlighted that medical 
biases and female under-representation may significantly 
contribute to differences in healthcare outcomes; in 
our paper, we have examined how this phenomena may 
extend into ML.6–8 10 28 We present several key findings:

	► Model reproduction and demonstration of disparity: 
We have demonstrated a previously unobserved sex 
disparity that exists in published ML classifiers based 
on the ILPD dataset.

	► Error disparities: Sex disparities in Accuracy and 
ROC_AUC fluctuate depending on model and the 
balance between error rates, however, sex differences 

in specific error rates are consistent. We observe a 
consistently lower recall and correspondingly higher 
FNR for females. Of note, RF and LR classifiers are 
reported as the most effective on the ILPD dataset, 
however, these models demonstrate the greatest 
disparity in the FNR when trained on the original 
dataset (RF, FNR disparity −21.02% (p<0.05); LR, 
FNR disparity −24.07%, (p<0.05)). Clinically, this FNR 
disparity would materialise as an inequality in disease 
detection that negatively impacts females, with higher 
instances of missed disease.

	► Balanced training: Training on sex-balanced data 
improved overall performance for all classifiers. In 
the case of the LR classifier, accuracy improves overall 
and for the sexes separately, indicating that with the 
right model selection addressing poor performance 
for the under-represented group does not need to 
come at the expense of the majority group.

	► Impact of model architecture on disparity: Our exper-
imental outcomes were not consistent across models, 
indicating that bias mitigation techniques may need 
to be tailored to model choice.

	► Analysis of feature ranking: Our comparison of feature 
importance reinforces existing clinical research that 
highlights the sex differences in the role of liver 
biomarkers.

Implications for data science
Our experiments demonstrated that sex-specific feature 
selection and addressing under-representation of females 
may be an important bias mitigation technique when 
developing ML algorithms in medicine. Furthermore, 
we illustrate that there is no consistent solution across 
all classifiers, suggesting techniques need to be tailored 

Table 5  Experiment 3.1.4—balanced training data with feature selection, sex performance disparities

Random forest classifier
Logistic regression 
classifier Support vector machine Gaussian Naïve Bayes

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Sex 
performance 
disparities (%)

t-test
p value

Accuracy −5.62 0.00 −6.80 0.00 −6.19 0.00 −4.64 0.00

FScore 7.86 0.00 14.39 0.00 16.46 0.00 21.63 0.00

ROC_AUC −0.05% 0.46 3.57% 0.00 5.95% 0.00 8.17% 0.00

Precision 4.60% 0.00 9.28% 0.00 12.82% 0.00 9.35% 0.00

Recall 9.70% 0.00 15.51% 0.00 15.38% 0.00 22.78% 0.00

False 
negative rate

−9.70 0.00 −15.51 0.00 −15.38 0.00 −22.78 0.00

True negative 
rate

−9.79 0.00 −8.37 0.00 −3.47 0.00 −6.44 0.00

False positive 
rate

9.79 0.00 8.37 0.00 3.47 0.00 6.44 0.00

True positive 
rate

9.70 0.00 15.51 0.00 15.38 0.00 22.78 0.00

https://dx.doi.org/10.1136/bmjhci-2021-100457
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to model choice. ML models also present novel oppor-
tunities for improving existing practice and addressing 
health disparities that relate to biochemical discrepan-
cies between the sexes. Given the evolving evidence that 
critiques the use of ‘unisex’ biochemical thresholds, ML 
models that do not rely on these defined thresholds may 
pose a superior alternative if developed with an awareness 
of the subtle sex differences in disease manifestation.

Implications for clinical medicine and public health
Classification algorithms are being increasingly used in 
healthcare settings to assist clinicians in medical diag-
nosis.20 Unless these algorithms are evaluated for biases, 
they may only improve care for a subset of patients and 
consequently increase healthcare inequalities.7 By evalu-
ating ML models for demographic biases before they are 
implemented in digital medicine, we can mitigate the 
perpetuation of these inequalities into digital systems.

Furthermore, insights from model development can be 
used to inform current clinical care. Our data exploration 
of feature correlation demonstrated sex differences in 
feature importance. Such research can inform practising 
clinicians on the relevance of different indicators for the 
patient in front of them, for example, albumin may be 
more indicative of pathology in males.11 Lastly, examining 
disparities in algorithmic performance offers an oppor-
tunity to reflect on which patients may be being missed 
in current practice. Throughout our analysis, we demon-
strated a persistently high FNR for females, suggesting 
that female disease is at risk of being overlooked. Exam-
ining the physiological profile of algorithmic false nega-
tives presents an opportunity to better understand which 
patients are at risk of being misdiagnosed.

It should be noted that the ILPD does not include 
demographic information on race or ethnicity.22 Racial 
biases have been reported in the biochemical tests used 
across different subspecialties, resulting in worse care for 
marginalised racial groups.29 30 A key limitation of our 
study is that we cannot perform a race stratified analysis. 
Furthermore, we are unable to evaluate the relevance of 
other demographic features. An intersectional approach 
to healthcare inequalities would consider the mediating 
impact of socioeconomic class, or the compounding 
impact of gender (as opposed to sex) and sexuality on 
marginalised patients. Accounting for the complex 
nature of these intersectional relationships requires more 
advanced modelling and new bias evaluation techniques.

CONCLUSIONS
The historic absence of women from the healthcare 
profession and from clinical research resulted in domain 
knowledge that centres around the male body and 
neglects female physiological differences. To ensure 
sex-based inequalities do not manifest in medical AI, 
an evaluation of demographic performance disparities 
must be integrated into model development. Evaluating 
biases in the initial stages of ML can provide insights into 

inequalities in existing practice, reveal pathophysiological 
differences between the sexes and can mitigate the digi-
tisation of healthcare inequalities in algorithmic systems.
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ABSTRACT
Objective  To demonstrate what it takes to reconcile 
the idea of fairness in medical algorithms and machine 
learning (ML) with the broader discourse of fairness and 
health equality in health research.
Method  The methodological approach used in this paper 
is theoretical and ethical analysis.
Result  We show that the question of ensuring 
comprehensive ML fairness is interrelated to three 
quandaries and one dilemma.
Discussion  As fairness in ML depends on a nexus of 
inherent justice and fairness concerns embedded in health 
research, a comprehensive conceptualisation is called for 
to make the notion useful.
Conclusion  This paper demonstrates that more analytical 
work is needed to conceptualise fairness in ML so it 
adequately reflects the complexity of justice and fairness 
concerns within the field of health research.

INTRODUCTION
Machine learning (ML) refers to algorithms 
that improve their performance indepen-
dent of human designers. Several biases are 
involved in developing and applying ML, 
such as data biases (eg, historical and repre-
sentation biases), modelling/design biases 
(eg, evaluation and aggregation biases) 
and human review biases (behavioural and 
social biases).1 2 Biases affect the fairness of 
the ML process’s outcome and deployment 
by wrongly skewing the outcome. ‘Fairness’ 
can be understood in different ways, but is 
usefully defined in the context of ML-based 
decision making as ‘the absence of any prej-
udice or favouritism towards an individual or 
a group based on their inherent or acquired 
characteristics’.3 Thus, when operationalising 
fairness into ML systems applied in health, 
the goal should be to eradicate biases in the 
processes of data sampling, modelling and 
human review so that the ML process does 
not promote health advantages or disadvan-
tages for any individuals or groups based on 
their inherent or acquired characteristics. 
Assessing what kind of characteristics are 
assumed relevant for a fairness approach 
relies on normative ideas about justice. In 
healthcare, the World Medical Association’s 

Declaration of Geneva identifies ‘age, disease 
or disability, creed, ethnic origin, gender, 
nationality, political affiliation, race, sexual 
orientation, social standing or any other 
factor’ as examples of factors that should 
not impact the doctors’ duty towards their 
patients.4 Thus, ML failing to perform 
adequately to certain patients with such char-
acteristics can be judged unfair.

In parallel, a more comprehensive and 
ambitious conceptualisation of fairness in 
health is discussed in the literature addressing 
how to distribute healthcare justly. Fairness is 
here understood in terms of how healthcare 
needs are unequally distributed within and 
across populations in the first place, which 
calls for justly allocated healthcare to reduce 
historically and socially conditioned inequali-
ties. Theoretically, this aim is captured by egal-
itarian approaches to ensure, for example, 
equal opportunities5 or capabilities,6 or social 
justice.7 8 Politically, it is reflected in empir-
ically informed reports on observed health 
inequalities (eg, WHO’s report on closing the 

Summary

What is already known?
	► Biases in data, modelling and human review impact 
the fairness of the outcome of machine learning 
(ML).

	► ML fairness in healthcare involves the absence of 
prejudices and favouritism towards an individual or 
group based on inherent or acquired characteristics, 
while fairness in health more broadly understood 
addresses historical fundamental socioeconomic bi-
ases that create health inequality within populations.

	► Healthcare systems can fairly mitigate unjust health 
inequalities by offering equal opportunities for 
healthy lives.

What does this paper add?
	► This paper argues that ML fairness in healthcare de-
pends on equal access to healthcare systems.

	► It demonstrates how a full conceptualisation of ML 
fairness in health is conditioned by a complex nexus 
of different fairness concerns.

	► It calls for a reconceptualisation of ML fairness in 
health that acknowledges this complexity.
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gap of inequalities in a generation9 and in the Sustainable 
Development Goal of promoting health equality10). In 
clinical settings, work has been carried out to clarify the 
appropriateness of considering socioeconomic factors 
to circumvent their adverse impact on patients’ ability 
to benefit from treatment.11 This work has been trans-
lated into a call for revising and clarifying the way ‘social 
standing’ requires clinical attention in the World Medical 
Association's Declaration of Geneva.12

Unjust health inequality is influenced by inequality in 
the socioeconomical, cultural and environmental factors 
(eg, access to clean water) that shape people’s living 
conditions.13 Although theories diverge as to what makes 
the resulting health disparities unfair, there is broad 
consensus that health inequality associated with socioeco-
nomic determinants of health creates inequity and calls 
for amendment.14 For this reason, ML fairness should not 
only be about avoiding prejudices and favouritism, but 
also about reducing unfair health inequalities,15 particu-
larly those associated with socioeconomic health determi-
nants . In line with Rajkomar and colleagues’ reasoning,15 
to avoid ML in healthcare contributing to maintaining or 
reinforcing health inequities, fairness should be opera-
tionalised into ML processes by ensuring equal outcome 
across socioeconomic status, equal performance of 
models across socioeconomic groups, as well as equal 
allocation of resources.

Against this backdrop, this paper aims to answer the 
following question: How can the narrow fairness discourse 
related to ML and absence of prejudice and favouritism, 
and the broader fairness discourse related to unjust health 
equality be reconciled in a comprehensive conceptualisa-
tion of ML fairness that can be operationalised to prevent 
health inequity from being maintained or reinforced 
by healthcare systems? A more comprehensive notion 
of fairness in ML healthcare can be used to articulate 
commitments of fairness and help structure guidelines 
and recommendations.16

We start the discussion by clarifying the nature of the 
ML algorithms we focus on and present two distinct 
versions of ‘justice’ (substantive and procedural). We then 
argue that an adequate notion of ML fairness depends 
on a comprehensive approach to fair access to healthcare, 
which is inherently connected with other fairness chal-
lenges calling for practical solutions. Next, we identify 
and describe three interrelated fairness quandaries and 
one fairness dilemma related to obtaining ML fairness in 
health. A meaningful conceptualisation of ML fairness, 
which can be implemented to avoid inequitable patient 
outcomes, must reflect this complex, intertangled nexus 
of fairness concerns.

METHOD
The methodological approach used in this paper is theo-
retical and ethical analysis.

RESULTS
By applying this method, we identify three ethical 
quandaries and a dilemma related to ML fairness in 
healthcare. First, there is what we call ‘the unfair data 
quandary’. Second, there is ‘the unfair design quandary’. 
Third, there is ‘the reasonable disagreement quandary’. 
Finally, there is the dilemma that arises from trade-offs 
between fairness and accountability. Figure  1 illustrates 
our approach.

DISCUSSION
ML refers to algorithms that improve their perfor-
mance based on previous results independently of 
human designers. An important subset of ML with much 
promise in medicine is deep learning algorithms, which 
process inputs (eg, data such as pictures, videos, speech 
and text) to provide output such as identified patterns, 

Figure 1  Three interrelated fairness quandaries and one fairness dilemma related to obtaining machine learning (ML) fairness 
in health are identified in this ethical analysis. A meaningful conceptualisation of ML fairness, which can be implemented to 
avoid inequitable patient outcomes, must reflect this complex, intertangled nexus of fairness concerns. This figure is made by 
the first author.
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classifications or predictions.17 Analogous to the animal 
brain, the mechanisms in deep learning are ‘deep neural 
networks’ consisting of hierarchically structured layers of 
‘neurons’. To work effectively, the neural networks are 
trained on vast data sets, which are sometimes labelled 
by humans (as in supervised learning) or they identify 
patterns in data sets on their own (as in unsupervised 
learning).18 Due to its ability to identify pattern in vast 
data sets much faster and often more accurately than 
medical doctors, health professionals and scientists are 
able to, ML algorithms have the potential to make the 
detection, prediction and treatment of disease more 
effective.17 19

Substantial and procedural justice
Fairness can be analysed in terms of distinct principles 
of what justice requires (substantive justice) or in terms of 
the acceptability of how the decision is made (procedural 
justice).20 The assumption behind procedural justice is 
that even though there may be widespread disagreement 
about what it would be just to do (eg, how to prioritise 
healthcare with resource scarcity), the affected parties 
may be expected to agree on what conditions must be in 
place to make the decision-making process fair.21 Proce-
dural justice requires, for example, that affected parties 
are treated equally by considering all interests at stake, 
and that decisions are based on reasons that individuals 
can recognise as relevant and reasonable.21 Both versions 
of justice are relevant for fair decision making and how 
fairness issues come into play in relation to ML fairness.

Three quandaries and one dilemma
The unfair data quandary
The first quandary is related to biased data. This quandary 
states that groups of people not accurately represented in 
the training data of ML algorithms could receive diagnosis 
and treatment recommendations systematically imprecise 
in their disfavour. Since healthcare data typically emerge 
from contact with and/or use of the healthcare system, 
the extent to which people have access to healthcare will 
predict their inclusion in ML training data.

A conceptualisation of ‘access to healthcare’ can be 
divided into a supply side of the organised service and a 
demand side of patients’ ability to benefit from the organ-
ised care. ‘Access to healthcare’ can be conceptualised 
across different phases involved in having a healthcare 
need met, that is, having a need, perceiving a need and 
desire for care, seeking healthcare, reaching healthcare 
services, using healthcare services and obtaining health-
care outcomes.22 This broad approach to access to health-
care is useful for a nuanced investigation of where, when, 
how and by whom inequality in access can emerge under 
the impact of organised healthcare itself.

Healthcare services can uphold or reinforce social 
inequality in health if access to services requires capaci-
ties associated with socioeconomic conditions unequally 
distributed in the population. If the supply side is not 
carefully developed to meet the social and economic 

challenges related to people’s abilities to reach and obtain 
care (eg, ability to pay or follow prescribed regimes, under-
standing of their own health or how the system works, 
cultural conflicts), data gathered from these services 
could be biased favouring those with the abilities to over-
come barriers (eg, by paying for health insurance). Thus, 
unequal access skews the representativeness of big data 
gathered within the healthcare system to the advantage 
of those who have historically been able to use it. As this is 
the available data that ML algorithms are trained on, the 
detection of disease and clinical recommendations might 
not be equally apt for the groups that experience barriers 
in reaching, receiving and benefiting from care. This can 
be so if these latter groups overlap with relevant biolog-
ical differences related to ethnical background, or if life-
style issues related to socioeconomic challenges, impact 
the uptake of treatments. For the training data to be fair, 
the real-world conditions for access to healthcare must 
be equal in the sense that socioeconomic barriers do not 
prevent people from obtaining care.

The challenge to ensure fairness stemming from a 
lack of representative data is structural. Use of histori-
cally biased data combined with underdeveloped label-
ling creates racial biases in healthcare management of 
populations.23 24 Space does not allow us to do justice 
to the vast literature on algorithm fairness and sugges-
tions to mitigate algorithm biases. For a comprehensive 
overview, there is a framework proposed by Suresh and 
Guttag, which identifies the multiple sources of down-
stream harms caused by ML through data generation, 
model building, evaluation and data deployment, and 
also describes mitigation techniques for targeting the 
same sources.2 As noted above, there are strong ethical 
and political calls to promote equal access to high-quality 
healthcare for all. To avoid a situation where ML unfairly 
maintains (or even reinforces) inequality in health 
outcomes, coordinated initiatives could be directed 
comprehensively towards identifying barriers and seeking 
innovative solutions to promote equal access to health-
care in the first place along all dimensions of supplying 
and demanding healthcare. Developers of ML systems, 
ethicists and funding bodies could join forces and gear 
attention towards mitigating the structural unfairness of 
unequal access to healthcare before addressing the ineq-
uitable outcome of this unfairness.

The unfair design quandary
Let us assume that comprehensive work has been done to 
ensure equal access to healthcare for all, which can enable 
fairness in algorithms deployed at the point of care. Now 
fairness is an issue about what kind of ML-based health-
care ought to be developed, that is, what kind of ML 
should be prioritised. How should this fairness aspect be 
ensured in the design phase when fair design then ideally 
must include broad oversight of consequences and justi-
fied priority-setting decisions before ML interventions have 
been developed and tested?
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First, the ethical issues that arise from an ML system 
will depend on its practical application and purpose: is 
the system used for home monitoring, clinical decision 
support, improved efficiency and precision in testing, 
distribution and management of medicines, or some-
thing else? What kind of disease or ailment is being 
addressed? The ethical problems will be different and 
include different actors.

Next, one should ask: is ML needed, or do existing 
approaches work better? This is about the performance of 
ML, for example in terms of improved prediction.25 But 
it is also about getting the process of interpreting what it 
means ‘to work better’, right. Who should decide that?

Depending on the problem being addressed, different 
actors will be involved. Design is not a linear process.26 It 
depends on reiterated cycles of design, implementation, 
testing (including with other data), assessment and eval-
uation. This is even more so with ML algorithms, as they 
might display unpredictable outcomes (depending on 
input data, but also coding and algorithms). They there-
fore need constant human monitoring and assessment. 
The European Commission, for example, emphasise the 
need for stakeholder involvement throughout all the 
cycles.27

Potentially, these phases will involve inputs from people 
such as medical doctors, nurses, hospital administrators, 
health economists, other technical people and (ideally) 
the patients themselves. This then poses the question 
of the competencies that should enter into the design, 
implementation and testing phases, how they should be 
made to cooperate, and what kinds of expertise should 
count. Whose professional perspective may frame the 
initial understanding of the problem, what happens to 
dissenting voices, and what about patients’ perspectives 
and autonomy? If these challenges to justice are not explic-
itly addressed, it might create an unfair design quandary . 
Procedural justice requires developing adequate and fair 
decision-making institutions for collaboration. This must 
be organised so all stakeholders can recognise them as 
being fair by including general requirements on trans-
parency, reasonable justifications and opportunities for 
revision.21 Still, figuring out how to best do so in these 
contexts requires more research.

The reasonable disagreement quandary
People are expected to disagree about principles of 
justice, what societal challenges one will trade off to 
improve people’s health, and what opportunity costs 
one will accept to achieve health equality in the design 
process. How should such ethical disagreements be 
resolved? Procedural fairness addresses the moral 
equality of anyone involved in or being affected by a deci-
sion by arranging a decision-making process in a way that 
all can find acceptable. This means, for example, that 
all stakeholders must be included, allowing everyone to 
voice their concerns and listen to them, ensuring trans-
parency of the rationales for the decision, and offering 
mechanisms to appeal.21 In the case of designing and 

applying ML in medicine, there are multiple groups of 
experts, professions and other stakeholders that might 
play a central role in this kind of ethical deliberation, for 
instance medical doctors, nurses, hospital administrators, 
health economists, technicians, ML developers, patients, 
and the public in general. However, such inclusive delib-
eration might not be feasible to arrange every time an 
ML system is developed. The complex task of identi-
fying, understanding and weighing all relevant medical, 
ethical, economical and societal issues to consider and 
reasonably justify what to prioritise in order to apply ML 
requires substantial technical and disciplinary expertise. 
Also, to ensure the prioritisation is adequately reflected 
in the design process, it is crucial to rely on ML experts 
and their interpretations when translating normative 
decisions into algorithms. This ‘reasonable disagree-
ment quandary’ requires a fix in terms of fairness, but 
an overall fair decision-making process can be difficult 
to realise. Moreover, the fairness of leaving the decision 
to trained decision makers or technical experts and the 
substantial principles of justice they happen to hold, is 
also questionable.

More research is required to learn how to better 
maximise inclusiveness and transparency and monitor 
whether ethical and political prioritisations are captured 
in ML systems in a meaningful way. The aim should be 
to accommodate procedural fairness. However, realism 
is needed in identifying and articulating the limitations 
of such a fairness approach. A hybrid model of fairness 
based on substantial and procedural justice might emerge 
as a solution.

A final ethical dilemma
Let us, for the sake of argument, assume that the above 
quandaries are solved. Let us suppose that measures 
have been taken to ensure that the training data are not 
skewed, that adequate institutional conditions for collab-
oration between stakeholders and designers have been 
established, and that an acceptable model of procedural 
fairness has been developed. There is still, however, the 
following dilemma that needs to be addressed: while 
medical algorithms might improve fairness by elimi-
nating biases that otherwise might affect the decisions 
of healthcare professionals and therefore result in more 
equitable access to healthcare services, they might also 
reduce the accountability of healthcare professionals 
for these same decisions. Algorithmic decision systems 
are built so it makes it difficult to determine why they 
do what they do or how they work. For example, neural 
networks that implement deep learning algorithms are 
large arrays of simple units, densely interconnected by 
very many links. During training, the networks adjust 
the weights of these links to improve performance, 
essentially deriving their own method of decision 
making when trained on a decision task. They therefore 
run independently of human control and do not neces-
sarily provide an interpretable representation of what 
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they do.28 29 The problem with this is that professional 
accountability cannot be enforced without explainability. 
Professional accountability implies that it is justifiable 
to ask a healthcare professional to explain their actions 
and to clearly articulate and justify the decisions they 
have made. Providing such an explanation engenders 
trust in the process that led to the decision and confi-
dence that the healthcare professional in charge of the 
process acted fairly and reasonably. It is true, as some 
have pointed out, that lack of explainability in medi-
cine is not uncommon—sometimes it may be close to 
impossible to reconstruct the exact reasoning under-
lying the clinical judgement of a medical expert and 
there may be little knowledge of the causal mechanisms 
through which interventions work.30 However, explain-
ability is still important in some contexts, particularly 
in those requiring informed consent. In contexts where 
explainability is important, the potential opacity of 
ML algorithms suggests that some trade-off must be 
made between deferring to said algorithms (which 
might improve fairness but reduce accountability) and 
relying on human professional discretion (which might 
preserve accountability but increase the risk of biases). 
The dilemma is that neither option comes without 
ethical costs: either reduced accountability or (poten-
tially) reduced fairness. Figure 2 shows how the quan-
daries and the dilemma are interrelated and part of a 
broad conceptualisation of ML fairness in healthcare.

CONCLUSION
We have demonstrated that operationalising fairness 
in ML algorithms in healthcare raises a whole host 

of fairness challenges across data, design and imple-
mentation biases, which all need to be solved before 
concluding that the algorithms are fair. Even if we have 
the ability to meet these challenges, we nevertheless 
face the problem of trading fair algorithms off against 
professional accountability. To avoid a rhetorical and 
insufficiently justified conception of fairness in ML 
technology, these fundamental and intangible chal-
lenges of fairness must be openly acknowledged and 
addressed. In addition, much more research on fair 
processes is called for to find ethically and politically 
sustainable responses to what fairness requires of ML 
algorithms employed in clinical care.
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ABSTRACT
We are at a pivotal moment in the development of 
healthcare artificial intelligence (AI), a point at which 
enthusiasm for machine learning has not caught up with 
the scientific evidence to support the equity and accuracy 
of diagnostic and therapeutic algorithms. This proposal 
examines algorithmic biases, including those related to 
race, gender and socioeconomic status, and accuracy, 
including the paucity of prospective studies and lack of 
multisite validation. We then suggest solutions to these 
problems. We describe the Mayo Clinic, Duke University, 
Change Healthcare project that is evaluating 35.1 billion 
healthcare records for bias. And we propose ‘Ingredients’ 
style labels and an AI evaluation/testing system to help 
clinicians judge the merits of products and services that 
include algorithms. Said testing would include input 
data sources and types, dataset population composition, 
algorithm validation techniques, bias assessment 
evaluation and performance metrics.

There have always been pivotal moments in 
the history of technology during which the 
enthusiasm for a specific innovation outpaces 
our ability to dispassionately evaluate its 
strengths and weaknesses. We are at that 
moment in the history of machine learning 
and its application in patient care. As clini-
cians and healthcare executives attempt to 
determine the role of machine learning-
enhanced algorithms in the diagnosis, treat-
ment, and prognosis of disease, many have 
raised this concern, questioning both the 
equity and accuracy of these sophisticated 
digital tools.

These concerns are now finding a voice 
in several recent guidelines. The Standard 
Protocol Items: Recommendations for Inter-
ventional Trials-Artificial Intelligence exten-
sion, a set of guidelines designed to help 
researchers develop AI-related clinical trials, 
states: ‘It has been recognised that most 
recent AI studies are inadequately reported 
and existing reporting guidelines do not 
fully cover potential sources of bias specific 
to AI systems’.1 Similarly, the Consolidated 
Standards of Reporting Trials-Artificial 

Intelligence extension, which serves as a 
guideline for reporting AI-related clinical 
trials explains: ‘It has been shown that AI 
systems may be systematically biased towards 
different outputs, which may lead to different 
or even unfair treatment, on the basis of 
extant features’.2

HOW EXTENSIVE IS ALGORITHMIC BIAS?
There are numerous examples in health-
care that warrant the establishment of these 
guidelines. They fall into several distinct 
categories, including bias related to race, 
ethnic group, gender, socioeconomic status 
and geographic location; these inequities 
are impacting millions of lives. Obermeyer 
et al3 have analysed a large, commercially 
available dataset used to determine which 
patients have complex health needs and 
require priority attention. In conjunction 
with a large academic hospital, the investiga-
tors identified 43 539 white and 6059 black 
primary care patients who were part of risk-
based contracts. The analysis revealed that at 
any given risk score, blacks were considerably 
sicker than white patients, based on signs and 
symptoms. However, the commercial dataset 
did not recognise the greater disease burden 
in blacks because it was designed to assign risk 
scores based on total healthcare costs accrued 
in 1 year. Using this metric as a proxy for their 
medical need was flawed because the lower 
cost among blacks may have been due to less 
access to care, which in turn resulted from 
their distrust of the healthcare system and 
direct racial discrimination from providers.4

Gender bias has been documented in 
medical imaging datasets that have been used 
to train and test AI systems used for computer-
assisted diagnosis. Larrazabal et al5 studied the 
performance of deep neural networks used 
to diagnose 14 thoracic diseases using X-rays. 
When they compared gender-imbalanced 
datasets with datasets in which male and 
female candidates were equally represented, 

http://bmjopen.bmj.com/
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they found that ‘with a 25%/75% imbalance ratio, the 
average performance across all diseases in the minority 
class is significantly lower than a model trained with a 
perfectly balanced dataset’. Their analysis concluded 
that datasets that under-represent one gender results in 
biased classifiers, which in turn may lead to misclassifi-
cation of pathology in the minority group. Their analysis 
is consistent with studies that have found women are less 
likely to receive high-quality care and more likely to die if 
they received suboptimal care.6

Similarly, there is evidence to suggest that machine 
learning enhanced algorithms that rely on electronic 
health record data under-represent patients in lower 
socioeconomic groups.7 Typically, poorer patients receive 
fewer medications for chronic conditions and diagnostic 
tests and usually have less access to healthcare. This bias 
is likely to distort the advice being offered by clinical deci-
sion support systems that depend on these algorithms 
because said algorithms might give the impression that a 
specific disorder is uncommon in this patient subgroup, 
or that early interventions are unwarranted.

The inequities detected in healthcare-related algo-
rithms mirror the biases observed in general purpose 
algorithms. One of the most well-known examples of 
these biases has been documented in an analysis of an 
online recruitment tool once used by the online retailer 
Amazon.8 The algorithm was based on resumes that 
the retailer has collected over a decade and consisted 
primarily of white male candidates. In analysing this 
dataset, the digital tool was trained to look at word 
patterns in the resumes instead of relevant skill sets. As 
Lee et al explain: ‘…[T]hese data were benchmarked 
against the company’s predominantly male engineering 
department to determine an applicant’s fit. As a result, 
the AI software penalized any resume that contained the 
word “women’s” in the text and downgraded the resumes 
of women who attended women’s colleges, resulting in 
gender bias’. Similarly, there is evidence to demonstrate 
the existence of bias in online ads and facial recognition 
software, the latter having difficulty recognising darker-
skinned complexions.

Of course, even a dataset that fairly represents all 
members of a targeted patient population is not very 
useful if it is inaccurate in other respects. A dataset that 
includes a representative sample of African-Americans, 
for instance, will be of limited value if the algorithm 
derived from that dataset is not validated with a second, 
external dataset. For example, when a machine learning 
approach was used to evaluate risk factors for Clostridium 
difficile infection, testing the algorithms in two different 
institutions found that the top 10 risk factors and top 10 
protective factors were quite different between hospitals.9

Likewise, an algorithm that takes into account socio-
economic status may fall short if it is derived solely from 
retrospective analysis based on data that is not represen-
tative of the population to whom it will be applied. For 
example, randomised controlled trials (RCTs), which 
are the gold standard on which to base decisions about 

the effectiveness of any intervention, often do not enrol 
fully representative populations due to numerous inclu-
sion and exclusion criteria. Carefully designed and well-
executed analyses of ‘real-world’ datasets can supplement 
and expand the insights that can be derived from RCT 
data, especially in the creation of clinical decision support 
tools. The expectation that an algorithm will perform 
well on a local health system level today, requires evalua-
tion of performance that incorporates the diversity of the 
current local population.

This highlights the importance of differentiating 
between algorithms that are supported by retrospec-
tive versus prospective research. There are hundreds of 
retrospective AI studies that have been mislabeled clin-
ical trials, but in a recent review of the literature, we 
found only five RCTs that examined the value of machine 
learning and AI in patient care, and nine non-RCT 
prospective studies.10 In light of these shortcoming, many 
healthcare providers hoping to implement algorithms 
with substantive evidence often turn to the US Food and 
Drug Administration (FDA) for guidance, working on the 
assumption that AI-enhanced software that has received 
FDA approval are more trustworthy and clinically proven 
to be safe and effective in patient care. Analysis of 130 
FDA-approved AI devices suggests that the agency may 
not be able to perform an evaluation that guarantees the 
granularity that might be sought by local users.11 Wu et al 
have found:

	► Of the 130 FDA-approved AI devices, 126 relied solely 
on retrospective studies.

	► Among the 54 high-risk devices evaluated, none 
included prospective studies.

	► Of the 130 approved products, 93 did not report 
multisite evaluation.

	► Fifty-nine of the approved AI devices included no 
mention of the sample size of the test population.

	► Only 17 of the approved devices discussed a demo-
graphic subgroup.

This summary of recent FDA approvals demonstrates a 
significant limitation in the way AI-enhanced algorithms 
and devices are being evaluated. In addition, research 
projects that support a specific ML-enhanced algorithm 
also need to demonstrate that an algorithm’s predictions 
are repeatable and reproducible. Similarly, the refer-
ence standard that is being used as ‘ground truth’ to 
evaluate an algorithm also has to be evidence-based. If, 
for example, a model compares a convolutional neural 
network’s ability to identify diabetic retinopathy with the 
diagnostic skills of human ophthalmologists, there must 
be consensus from expert specialists on how to define 
diabetic retinopathy based on imaging data.

Pencina et al have enumerated several simple principles 
that need to be followed when constructing an algorithm-
based clinical decision support tool.12 It starts with the need 
to align target population to whom the model will be applied 
and the sample used to develop the model. For instance, the 
equations used to create the current national cholesterol 
guidelines are derived from persons who do not have the 
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disease, are between 40 and 79 years of age and are not taking 
lipid-lowering medication.13 Using such a dataset to create 
algorithms that predict the likelihood of developing athero-
sclerotic cardiovascular disease among patients taking statins 
or who fall outside the age frame will incorrectly label many 
individuals as high and low risk. Likewise, careful selection 
and definition of the outcome of interest that aligns with the 
goals of care as well as one’s choice of predictors to measure 
can influence the value of an algorithm to identify at-risk indi-
viduals. Furthermore, Pencina et al argue that given similar 
performance, preference should be given to simpler and 
more easily interpretable models. Finally, thorough evalua-
tion of model performance consistent with the way the algo-
rithm will be applied in practice is necessary.

Another problem that can generate biased predictions 
is putting too much emphasis on the ‘average’ patient and 
neglecting investigation of subgroup effects. Clinical studies 
need to perform the necessary subgroup analyses to detect 
the ethnic, gender or physiological characteristics of unrep-
resented groups that will then inform the development of 
clinical decision support algorithms. Several clinical trial 
re-analyses have documented these shortcomings, which we 
have summarised in an earlier publication.14

Finally, while it is important to take into account subgroup 
analyses when evaluating an AI-based algorithm, it is also 
important to emphasise that the accurate performance of 
an ML model within specific subgroups does not guarantee 
equity in the accrual of benefit. The evaluation must encom-
pass the interplay of the model’s output with the prevailing 
intervention allocation policy. Often, equity can be reached 
by adjusting the policy without diving too deeply into the 
algorithmic fairness of the model.

SOLUTIONS TO IMPROVE ALGORITHM TRANSPARENCY AND 
PERFORMANCE AND PROMOTE HEALTH EQUITY
Starting from the premise that any complex societal 
problem must first be measured before it can be solved, 
Mayo Clinic and Duke School of Medicine entered a 
collaboration with Optum/Change Healthcare focused 
on analysis of their data consisting of >35.1 billion 

Box 1  Continued

510(k) Premarket approval—Approved December 2020
Warnings
This model is not intended to generate independent diagnostic deci-
sions but is to be used as an adjunct to radiologist and attending phy-
sician’s clinical expertise. Use of the algorithm should be discontinued 
if there are significant shifts in performance statistics or changes in 
patient population.
Published evidential support (fictitious references to illustrate the 
nutrition label model)
*Loretz A et al. Evaluation of an AI-based detection software in abdomi-
nal computed tomography scans. JAMA 2017;450:345–357.
†Mendez J et al. Randomised clinical trial to compare radiolog-
ical imaging algorithm to radiologists’ diagnostic skills. Lancet 
2019;333:450–460.

Box 1  The fictitious product description could serve 
as a template for an artificial intelligence (AI) evaluation 
service that helps clinicians and healthcare executives 
make a more informed decision about how to invest 
in digital services that are equitable and accurate. 
The sample only includes a few of the most important 
algorithm features that can be documented in a ‘nutrition 
label’ style format. For clinicians with no background 
in information technology, an educational training 
session may be required to enable them to make useful 
comparisons among competing products. The graphic is a 
simplified version of what a product card might look like. 
It is intended to serve as the starting point for an iterative 
design process

RadiologyIntel
Summary: machine learning-based decision support software to aug-
ment medical imaging-related diagnosis of abdominal CT scans.
Data:
Input data sources: radiology information system/picture archiving 
and communication system, and epic electronic health record (EHR) 
system.
Input data type: digital abdominal images, text reports from radiolo-
gists, EHR narrative data on signs and symptoms, laboratory test results.
Training data location and time period: Acme Medical Center, 
Jamestown, Virginia, September 2014 to December 2016.
Statistical tests and metrics employed during training and valida-
tion testing
High-level Python-based neural network, Keras, TensorFlow.
Conducted on NVIDIA GeForce Graphical processing units.
Population composition
Ethnic composition
Non-Hispanic white 60%
Hispanic and Latino 18%
Black or African-American 13%
Asian 6%
Other 3%
Gender balance 55/45%, male/female
Primary outcome(s) XXX
Time horizon XXX
Algorithm and performance:
Type of algorithm employed
Convolutional neural network
Algorithm validation
Retrospective analysis*
Prospective clinical trial†
Size/Composition of training dataset:
55 000 inpatients at academic medical centre
Size/Composition of cross-validation dataset:
35 000 inpatients at community hospital
Performance metrics
Area under the curve 0.85
Sensitivity
Specificity
Classification accuracy 75%
Summary receiver operating curve 0.75
Bias assessment evaluation
Google TCAV
Audit-AI
Food and Drug Administration approval status

Continued
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healthcare events and over 15.7 billion insurance claims 
to look for patterns of care and any possible inequities 
in that care. Change Healthcare provides social deter-
minants of health, including economic vulnerability, 
education levels/gaps, race/ethnicity and household 
characteristics on about 125 million unique de-identified 
individuals. This provides a unique combined clinical and 
non-clinical view of healthcare journeys in the USA. A 
better understanding of this dataset will enable Mayo and 
Duke to design initiatives to help eradicate racism and 
offer services to underserved communities. One compo-
nent of the project reviews the billing data, including 
ICD codes and CPT codes. It analyses diabetes care, as 
reflected by haemoglobin A1c testing and the use of tele-
medicine services, as well as planned study of the utilisa-
tion of colorectal cancer screening services, as reflected 
in the use of Cologuard, an at-home stool-DNA screening 
test (Mayo Clinic has a financial interest in Cologuard), 
colonoscopy and other screening methods. Utilisation 
of these services is being mapped against numerous 
social determinants of health when available, including 
a patient’s education level, country of origin, economic 
stability indicator (financial), how likely they were to 
search for medical information on the internet, requests 
to their physician for information about medications, the 
presence of a senior adult in the household, number of 
children and home and car ownership.

The results of such analyses will help clinicians and 
healthcare executives develop more equitable digital 
tools, but they do not obviate the need to formally 
evaluate AI-enhanced algorithms and digital services 
to ensure that they achieve their stated purpose and 
help improve health equity. Unfortunately, the current 
digital solutions marketplace remains a ‘Wild West’ that 
is acutely in need of certifying protocols to address the 
aforementioned shortcomings. There are three possible 
pathways to follow in creating these evaluation services. 
One approach is to develop a system similar to the nutri-
tion or drug label currently in place for most US foods 
and beverages and medications.15 It would list many of 
the ‘ingredients’ that have been used to generate each 
algorithm or digital service, including how the dataset was 
derived and tested and what kind of clinical studies were 
conducted to demonstrate that it has value in routine 
patient care. It would also list the type of methodology 
used to develop the model, for example, convolutional 
neural network, random forest analysis, gradient boosting, 
the types of statistical tests and performance metrics that 
were used on the training and test sets and bias assess-
ment tools employed. A second approach would be a 
Consumer Reports-like system. It would take a closer look 
at commercially available AI-enhanced services, outlining 
and comparing them much the way Consumer Reports 
compares appliances, automobiles and the like. This 
second approach would be facilitated by an across-health 
systems data and algorithm platform or federation where 
internal and external models can be tested, improved 
and selected. That would allow potential users to separate 

the wheat from the chaff, providing them with a reliable 
resource as they decide how to make investments. A 
third approach would be a hybrid evaluation system that 
combined elements of the first two systems.

Applying these types of evaluation tools to existing 
diagnostic and screening algorithms might avert the 
poor model performances that have been reported in 
the medical literature. For example, an analysis of the 
Epic Deterioration Index, which was designed to iden-
tify subgroups of hospitalised patients with COVID-19 at 
risk for complications and alert clinicians to the onset 
of sepsis, fell short of expectations.16 The system had to 
be deactivated ‘because of spurious alerting owing to 
changes in patients’ demographic characteristics associ-
ated with the COVID-19 pandemic’.17

For any of these approaches to be successful, it is neces-
sary to develop an AI evaluation system with specific eval-
uation criteria and testing environments to judge model 
performance and impact on health equity. The best place 
to start is by taking a critical look at the input data being 
collected for each dataset. Any algorithm developer inter-
ested in demonstrating that they have a representative 
service will want to present statistics on the percentages 
of white, black, Asian, Hispanic and other groups in 
their dataset, as illustrated in box 1 and table 1. Similarly, 
they will attest to its male/female balance, as well as its 
socioeconomic and geographic breakdowns. It is also 
important to keep in mind that an equitable algorithm 
must be derived from a dataset that is representative of 
the entire population to be served. The AI evaluation 
system described here would create standards by which a 
product can be evaluated. There would then be multiple 
testing labs available, as well as several certification enti-
ties that use the results of these labs.

This form of algorithmic hygiene is a bare minimum 
standard, however. There are numerous types of bias that 
require attention, including statistical overestimation and 
underestimation, confirmation bias and anchoring bias. 
In addition, developers also need to be realistic about how 
data are entered into their training set. Electronic and 
human data entry can inadvertently insert biased infor-
mation into a dataset’s raw data. Many types of healthcare 
require humans to enter descriptors and tags that may 
be influenced by their own prejudices and stereotypes. 
And even devices like rulers, cameras and voice recogni-
tion software used to generate data can enter biased data. 
Alegion, a company that does ground truth training for 
machine learning initiative, points out ‘For example, a 
camera with a chromatic filter will generate images with 
a consistent colour bias. An 11-7/8 inch long “foot ruler” 
will always over-represent lengths’.18

Vendors will also want to take the next step and demon-
strate that the composition of their data scientist team 
is diverse and represents all the segments of society 
that have often been under-represented in healthcare. 
Without such a diverse team, subtle choices made during 
the data collection process will produce unbalanced data-
sets. Additional credentialling documents that will allow 
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the best solutions providers to stand out would include 
bias impact statements, inclusive design principles, algo-
rithm auditing process and cross-functional work teams. 
Algorithm developers can also use several analytical tools 
designed to detect such problems, including Google’s 
TCAV, Audit-AI and IBM’s AI Fairness 360, discussed in 
box 2.

The history of medicine is filled with ‘near misses’, tech-
nologies that had the potential to improve patient care 
but that failed to hit their intended target and did not live 
up to that potential once rigorously tested. The evidence 
suggests that machine learning-enhanced algorithms as 
a group do not fall into that category; instead, they are 
poised to profoundly transform the diagnosis, treatment 

and prognosis of disease. As we have documented in 
earlier publications,10 there are a small number of RCTs 
and non-RCT prospective studies to support the use of 
these digital tools in several medical specialties, including 
oncology, radiology, ophthalmology and dermatology. But 
for clinicians and healthcare executives to make decisions 
regarding commercially available algorithmic services, 
we propose an evaluation platform that dispassionately 
reports on the basic features of each product. Such a plat-
form would allow providers to compare competing prod-
ucts and choose those that are equitable and accurate.
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Machine learning (ML) is a branch of arti-
ficial intelligence (AI) that performs a 
classification, prediction and/or optimisa-
tion task. Similar to brain neurons, neural 
networks output a label after multiple infor-
mation layers connection, resembling human 
thinking.1

AI is already influencing care in many areas, 
such as radiology, pathology, dermatology and 
ophthalmology. In ophthalmology, a variety of 
multimodal imaging examinations are funda-
mental in the screening, diagnosis and moni-
toring of diseases and provide data input for 
AI development.2 Some applications, such as 
the IDx Technologies (Coralville, USA) which 
was approved by the Food and Drug Adminis-
tration 3 years ago, are already used in clinical 
practice as a screening tool.2 3 Surprisingly, 
algorithms can even predict gender, age and 
cardiovascular risk through retinal images.2 4 5 
AI may reduce subjectivity and interobserver 
disagreement in clinical practice.1

Especially in low-income (LIC) and low-
to-medium-income countries (LMIC), 
preventable blindness causes such as diabetic 
retinopathy (DR) and age-related macular 
degeneration could be prevented with 
screening programmes, home monitoring 
systems or telemedicine. AI-based screening 
could systematise screening and improve eye 
care in remote areas.6

ML requires high-quality, well-labelled, 
representative and large datasets, but at 
present, ophthalmological ML-ready data-
sets are only available in a few countries. One 
hundred seventy-two countries do not have 
representation in training and validation 
cohorts.7

Although data from all world countries 
are a distant goal, equivalent representa-
tion of all continents, ethnicities and the 
maximum number of countries is desired 
to reduce ML bias. Demographic informa-
tion and other social determinants of health 

are typically not contained in these datasets, 
making it challenging to interrogate algo-
rithms for bias.7 8 High-quality data are also 
fundamental for environmental-specific algo-
rithm validation, which is essential before AI 
implementation.

Available automated DR algorithm perfor-
mance varies considerably in performance in 
the real world due to limited training data, 
including heterogeneity in disease presenta-
tions and suboptimal image quality.9 In addi-
tion, diverse sociodemographic and ethnic 
representation are necessary if generalis-
ability is a goal.8

In LICs and LMICs, there is a growing gap 
between the ophthalmologist workforce and 
the population size. Two-thirds of ophthal-
mologists live in only 17 countries and in 
those countries, most practice in the urban 
centres.10 AI applications can expand access 
to eye care and may reduce preventable 
blindness, which is currently 80% of cases.

In addition to diversifying datasets to build 
AI technology in healthcare, we must invest 
in building capacity for health informatics 
and data science across countries. Interna-
tional collaboration between research groups 
should be incentivised to narrow dispari-
ties in AI research in order to reduce world 
blindness.
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