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ABSTRACT
Objectives  Early identification of inpatients at risk 
of developing delirium and implementing preventive 
measures could avoid up to 40% of delirium cases. 
Machine learning (ML)-based prediction models may 
enable risk stratification and targeted intervention, but 
establishing their current evolutionary status requires a 
scoping review of recent literature.
Methods  We searched ten databases up to June 2022 for 
studies of ML-based delirium prediction models. Eligible 
criteria comprised: use of at least one ML prediction 
method in an adult hospital inpatient population; published 
in English; reporting at least one performance measure 
(area under receiver-operator curve (AUROC), sensitivity, 
specificity, positive or negative predictive value). Included 
models were categorised by their stage of maturation and 
assessed for performance, utility and user acceptance in 
clinical practice.
Results  Among 921 screened studies, 39 met eligibility 
criteria. In-silico performance was consistently high 
(median AUROC: 0.85); however, only six articles 
(15.4%) reported external validation, revealing degraded 
performance (median AUROC: 0.75). Three studies (7.7%) 
of models deployed within clinical workflows reported high 
accuracy (median AUROC: 0.92) and high user acceptance.
Discussion  ML models have potential to identify 
inpatients at risk of developing delirium before symptom 
onset. However, few models were externally validated and 
even fewer underwent prospective evaluation in clinical 
settings.
Conclusion  This review confirms a rapidly growing body 
of research into using ML for predicting delirium risk 
in hospital settings. Our findings offer insights for both 
developers and clinicians into strengths and limitations 
of current ML delirium prediction applications aiming to 
support but not usurp clinician decision-making.

INTRODUCTION
Delirium is a common but underdiagnosed 
state of disturbed attention and cognition that 
afflicts one in four older hospital inpatients.1 
It is independently associated with a longer 
length of hospital stay, mortality, accelerated 
cognitive decline2 and new-onset dementia.1 
Since older people are particularly vulner-
able to severe illness from COVID-19 infec-
tion, delirium emerged as a frequent acute 

geriatric syndrome during the pandemic.3 
Predicting who is likely to develop delirium 
before symptom onset may facilitate the 
targeted implementation of preventive strate-
gies that can avoid up to 40% of cases.4

Risk stratification models enable clinicians 
to identify patients at high risk of an adverse 
event and intervene where appropriate.5 The 
advent of wearables, genomics, and dynamic 
datasets within electronic health records 
(EHRs) provides big data to which machine 
learning (ML) can be applied to individu-
alise clinical risk prediction.6 ML is a subset 
of artificial intelligence that uses advanced 
computer programmes to learn patterns and 
associations within large datasets and develop 
models (or algorithms), which can then be 
applied to new data in rapidly producing 
predictions or classifications, including diag-
noses.7 Across developed nations, more than 
150 ML applications are approved for use in 
routine clinical practice, and this number 
is projected to rise exponentially over the 
coming years.6 8

The key stages of the ML pipeline that 
models must traverse, from initial in-silico 
(computer-based) development to real-
world deployment, comprise the following6 
(figure  1): (1) data collection; (2) data 
preparation; (3) feature selection and engi-
neering; (4) model training; (5) model 
validation, both internal and external; (6) 
deployment of the model within a working 
application; and (7) post-deployment moni-
toring and optimisation of the application. 
During the development phase (stages 1–3), 
researchers collect, clean and transform data 
into computable formats and select relevant 
features as model inputs. The model is then 
iteratively improved through several training 
cycles against static, retrospective datasets 
(stage 4). In stage 5, the model undergoes 
two processes of validation: internal valida-
tion for accuracy and reproducibility against 
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a random sample from the original training dataset 
(‘hold out’ sample); and external validation, whereby 
researchers validate the model on a new external dataset 
set derived from previously unencountered patients using 
the same performance metrics. In stage 6, the model is 
subject to prospective validation using live (or near-live) 
dynamic data in a form reflecting its future real-world 
deployment, integrated into a prototype application, and 
evaluated for its feasibility in clinical workflows. Then, it 
is assessed for its clinical utility within clinical trials, which 
compares application-guided patient care and outcomes 
with the current standard of care. Finally, stage 7 entails 
monitoring the effectiveness and safety of the model over 
its life cycle using surveillance data.

ML models have enormous potential in facilitating 
more accurate risk stratification, preventive intervention 
and avoidance of incident delirium, but external valida-
tion, prospective evaluation and clinical adoption remain 
limited,6 and analysis of the clinical impact of deployed 
models on patient care is rarely performed.9 10 Previous 
systematic reviews of delirium prediction models have 
been limited to in-silico models focusing on performance 
metrics using static retrospective data,11 12 and the studies 
within these reviews are limited to those published before 
2019. The objectives of this review were to: (1) provide 
a more contemporary overview of research on all ML 
delirium prediction models designed for use in the inpa-
tient setting; (2) characterise them according to their 
stage of development, validation and deployment; and 
(3) assess the extent to which their performance and 
utility in clinical practice have been evaluated.

METHODS
This review follows the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses extension for 
Scoping Reviews guidelines13 and is registered within the 

Open Science Framework (OSF) database (​osf.​io/​8​r5cd). 
A scoping review methodology was selected as it allows us 
to map the broad and emerging ML evidence base in a 
flexible but systematic manner.14

Literature search
The search strategy was developed by two authors 
(TS, LSH) and reviewed by a third author (IAS) and a 
librarian. We searched PubMed, EMBASE, IEEE Xplore, 
Scopus, Web of Science, CINAHL, PsycInfo, Cochrane, 
OSF pre-prints and the ​aiforhealth.​app machine learning 
research dashboard between inception and 14 June 2022, 
using a mixture of medical subject headings (MeSH) 
and keywords related to delirium and ML (for the exact 
search terms, see online supplemental appendix 1). Addi-
tional studies were identified by perusing the reference 
lists of retrieved articles.

Study selection
Retrieved studies were imported into EndNote 20 and 
screened for relevance and duplicates in Covidence. 
Two reviewers (TS, IT) independently screened the 
titles and abstracts, and two authors (TS, LSH) reviewed 
the full-text articles. Disagreements between screening 
authors were resolved by discussion or settled by a third 
reviewer (IAS). We considered full-length original studies 
published in peer-reviewed journals, pre-prints and 
conference proceedings. Eligible studies had to fulfil all 
the following criteria: use of at least one ML method that 
predicts delirium; applied to an adult hospital inpatient 
population; published in English; and reporting at least 
one of the following performance measures (area under 
the receiver-operator curve (AUROC), sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive 
value (NPV). Studies were excluded if they were: edito-
rials, position statements, letters to the editor, conference 
abstracts or press releases; conducted in non-hospital 

Figure 1  Machine learning pipeline.
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settings; or did not report any model performance 
metrics.

Data extraction and synthesis
One reviewer (TS) independently performed data 
extraction using a preagreed form designed in Covidence. 
The following data items were extracted: title; author; 
publication year; country (where data were collected); 
study aim and design; clinical setting; population char-
acteristics; ML modelling method(s); reference stan-
dard used to diagnose delirium; frequency of delirium; 
data source and type; evolutionary stage and respective 
sample size; model performance measures (comprising, 
where reported, AUROC, sensitivity, specificity, PPV and 
NPV, Brier score, calibration plot concordance), primary 
outcome measures; comparison to standard care; prin-
cipal discharge diagnosis; and length of stay. Qualitative 
information on user acceptance of deployed models was 
also recorded where reported.

We defined a model as being in the ‘development and 
internal validation’ stage if the dataset used for validating 
the model came from the same patient population as the 
training dataset. An ‘external validation’ study was where 
the model was validated using a dataset from a population 
temporally or geographically separate from that used to 
provide the original training data. Finally, we labelled a 
study as having a ‘deployment’-level study was where the 
was evaluated in a routine clinical setting.

Corresponding authors were contacted for studies that 
did not report the reference standard used to define 
delirium in their dataset. Two authors (LSH, IT) cross-
checked the data extracted for a random sample of 
25% (n=10) of studies, and disagreement was managed 
through discussion.

A narrative approach was taken to synthesise the data 
extracted from the selected studies, including tabular 
and graphical representations, summarising the number 
of studies in each stage, year and country published, 
performance metrics, algorithm type, data type and stage 
of development. Descriptive statistics for continuous vari-
ables comprised mean and SD and median and IQR for 
normally and non-normally distributed data, respectively. 
All analyses and visualisations were done within R.15 As 
this was a scoping review, no attempt was made to assess 
the quality of individual study design or methods.

RESULTS
The search strategy identified a total of 921 records; 
after duplicate removal and title and abstract screening, 
114 full-text studies were retrieved, of which 3916–54 met 
the selection criteria for inclusion in the final analysis 
(figure 2).

Study characteristics
Study characteristics are summarised in online supple-
mental table 1. Studies originated from the USA 
(n=12),17 19–23 25 41 43 50 51 54 Austria (n=9),24 28–31 33 39 47 48 

China (n=6),26 32 35 49 52 53 Germany (n=3),37 45 46 South 
Korea (n=3),27 40 44 Canada (n=3),30 36 38 Brazil (n=1),16 
Japan (n=1),34 Spain (n=1)18 and one study was labelled 
as international.42 Over the 6-year distribution of publi-
cations to June 2022, most studies were published in 
2021 (n=10) and the first half of 2022 (n=12), indicating 
considerable growth in research in this area since the 
publication of previous reviews of studies published 
up to 2019.11 12 Study design comprised retrospective 
cohort study (n=25), prospective cohort studies (n=9); 
secondary analyses of trial data (n=2), prospective pilot 
study (n=2) and a retrospective case-control study (n=1). 
Studies mostly used data from EHRs alone to develop 
their models (n=21), with the remainder including 
specified clinical assessments (eg, nursing assessment, 
n=8), compiled clinical databases (eg, data repository or 
open-access database, n=6), data from a clinical quality 
improvement registry (n=1), data from both EHRs and 
clinical assessments (n=1), data from EHRs and a clinical 
database (n=1) and data solely from electrocardiographs 
(n=1).

The median (IQR) sample size of training datasets 
was 2389 (IQR: 371–27,377) participants, of whom, 
when reported as a percentage, a median of 20% (IQR: 
20%–25%) was used as a ‘hold-out’ sample for internal 
validation. External validation and deployment studies 
had a median of 4765 (IQR: 2429–11 355) and 5887 
(IQR: 3456–10 975) participants, respectively. The age 
of participants ranged from a mean of 54.4–84.4 years. 
Hospital inpatients were treated in surgical wards (n=14), 

Figure 2  Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses flow chart.
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medical wards (n=10), intensive care units (ICU) (n=7) 
or a combination of all three settings (n=8). The reported 
reference standards for verifying delirium cases in the 
training dataset comprised the confusion assessment 
method for the Intensive Care Unit (CAM-ICU) (n=10), 
International Classification of Diseases codes (n=14), the 
CAM (n=7) and the Diagnostic Statistical Manual (n=3). 
Several alternative screening methods, such as the 4 A’s 
Test (n=2), were used infrequently, and three studies 
reported no information as to what reference standard 
was used. The prevalence of delirium in training and 
internal validation datasets ranged from 2.0% to 53.6%, 
and from 10% to 39% in external validation studies. 
Delirium prevalence was 1.5%28 and 31.2%31 for the two 
deployment studies that reported data on this outcome. 
Length of stay ranged from an average of 1.9–13.6 days, 
but was not reported in 27 (69%) of studies.

Model characteristics
Thirty of thirty-nine publications described the 
training and internal validation of a delirium 
model,17 18 21–26 30 32–41 43 44 46–54 with investigators of 6 of 
these studies (20%) externally validating their model in 
a subsequent paper.16 19 20 27 29 42 Investigators of three 

studies (10%) implemented and evaluated their model 
in real-time clinical workflows,2 8 31 45 but no publications 
described monitoring or optimising a deployed model.

Figure  3 depicts the numbers of publications that 
used each type of model across each stage of application 
maturity. In total, random forest models were the most 
common (n=11), followed by logistic regression (n=6), 
gradient boosting (n=5) and artificial neural networks 
(n=4). Two other papers each described using a deci-
sion tree, L1-penalised regression, or natural language 
processing models, with another seven papers describing 
different models unique to the study.

Performance metrics of each model at their different 
stages of validation, when reported, are listed in online 
supplemental table 2. In the absence of any universal task-
agnostic standard, we regarded values of AUROC>0.7, of 
sensitivity and specificity ≥80%, of PPV ≥30% and NPV 
≥90%, of Brier scores <0.20 and calibration plots showing 
high concordance as being acceptable accuracy thresh-
olds for clinical application. For internal validation, 
omitting two studies for which the AUROC statistic was 
not reported,40 44 the median AUROC for the remaining 
models was 0.85 (IQR: 0.78–0.90). For external validation 

Figure 3  Number of publications by machine learning method. If a study describes multiple models, only the best-performing 
(area under receiver-operator curve) model is shown. LEM, learning from examples module 2; LR, logistic regression; RBF, 
radial basis function; RF, random forest; SAINTENS, self-attention and intersample attention transformer; SVM, support vector 
machine.
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and deployment studies, the reported median AUROC 
scores were 0.75 (IQR: 0.74–0.81) and 0.92 (IQR: 0.89–
0.93), respectively.

Stratified by algorithm type, the median AUROC 
(models with >1 publication) for training and internal 
validation studies was highest for random forest models 
(0.91, IQR: 0.88–0.91). In order of decreasing perfor-
mance were natural language processing (AUROC: 0.85, 
IQR: 0.83–0.91); decision trees (AUROC: 0.83, IQR: 
0.78–0.89); artificial neural networks (AUROC: 0.81, 
IQR: 0.76–0.86); gradient boosting (AUROC: 0.81, IQR: 
0.77–0.85); artificial neural networks (AUROC: 0.81, 
IQR: 0.75–0.87) and logistic regression models (AUROC: 
0.80, IQR: 0.78–0.82).

In regards to external validation, a gradient boosting 
algorithm performed best (AUROC: 0.86), followed by 
random forest models (AUROC: 0.78, IQR: 0.75–0.80) 
and L1-penalised regression (AUROC: 0.75, IQR: 0.75–
0.75). For prospective studies of deployed models, the 
best performance was observed in one study using natural 
language processing, with an AUROC score of 0.94,45 with 
random forest models achieving a median AUROC score 
of 0.89 (IQR: 0.87–0.90). The AUROC performance 
metrics for all models, stratified by stage of maturity, is 
presented graphically in figure 4.

The median sensitivity and specificity for training 
studies were 75% (IQR: 64.1%–82.3%) and 82.2% 
(73.3%–90.4%), respectively. For external validation 
studies, median sensitivity and specificity dropped to 73% 
(IQR: 67.5%–81.7%) and 69% (IQR: 48%–72%), respec-
tively. However, in deployment-level studies, median sensi-
tivity and specificity were 87.1% (IQR: 80.6%–93.5%) and 
86.4% (IQR: 84.3%–88.5%), respectively. The PPV and 
NPVs of included ML models were only reported for 10 
of 39 studies (26%), which ranged respectively from 5.8% 
to 91.6% and from 90.6% to 99.5%.

Of the total, only 14 studies (35.9%) reported calibra-
tion metrics which showed considerable variation. Using 
calibration plots, four studies reported poor calibration, 
an equal number reported reasonable calibration, while 
the remainder employed alternative calibration methods 
with variable results (see online supplemental table 1). 
The Brier score was reported for only five studies (13%) 
and ranged from 0.14 to 0.22.

Clinical application
Three articles from two investigators subjected their 
prototype model to prospective validation using live data 
in a form reflecting its future application to clinical work-
flows.28 31 45 Sun et al45 trained three separate models to 

Figure 4  Graphical representation of AUROC performance metrics stratified by stage of development. Son et al44 andOh et 
al40 did not report AUROC but are included in the analysis as they reported other performance metrics. AUROC, area under 
receiver-operator curve.
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predict delirium, acute kidney injury and sepsis. They 
found their delirium model performed slightly worse 
using live data from three hospitals at admission (AUROC 
decreased by 3.6%) and when deployed in another partic-
ipating hospital with data separate to that of the training 
set, performance dropped by another 0.8% at discharge. 
Sun et al reported user feedback only for the acute kidney 
injury model.

Jauk et al28 implemented their delirium prediction 
model in an Austrian hospital system for 7 months and 
thereafter for an additional month in the trauma surgery 
department of another affiliated hospital.31 The predic-
tion model performed somewhat worse on prospective 
data (AUROC: 0.86) as it did on retrospective data used 
in the training and internal validation study33 (AUROC: 
0.91). In addition, predictions of the random forest model 
used in this study correlated strongly with nurses' ratings 
of delirium risk in a sample of internal medicine patients 
(correlation coefficient (r)=0.81 for blinded and r=0.62 
for non-blinded comparison). In the external validation 
study, the model achieved an AUROC value above 0.85 
across three prediction times (on admission: 0.863; first 
evening: 0.851; second evening: 0.857). However, when 
the model was re-trained using local data, the AUROC 
value exceeded 0.92 for all three prediction times, and 
correctly predicted all 29 patients who were deemed high 
risk for delirium by a senior physician (sensitivity=100%, 
specificity=90.6%). In a qualitative survey, the 13 health 
professionals involved in the project perceived the ML 
application as useful and easy to use.

DISCUSSION
This scoping review examined contemporary research 
around ML models for predicting delirium in adult 
inpatient settings and identified an additional 22 studies 
published since late 2019 which was the finish date for 
previous reviews.11 12 We have mapped the development 
and implementation stage and associated performance 
metrics of these new models according to a six-stage 
evolutionary ML pipeline. Importantly, we included three 
novel implementation studies which demonstrated good 
predictive accuracy and user acceptance, underscoring 
the potential clinical utility of ML models for delirium 
prediction.

However, our review reveals several limitations in the 
existing research that future studies need to address. 
First, training data in most studies comprised routinely 
collected data obtained retrospectively from EHRs 
which, while providing vast quantities of data for training 
complex models, suffer from inaccuracies and omis-
sions relating to key predictor variables. Only a quarter 
of studies18 26 28 29 31 32 35 37 40 44 45 in this review sourced 
prespecified and prospectively collected data, such that 
missing or incomplete data relevant to model optimis-
ation, and which could not be remedied using imputa-
tion methods, emerged as a critical limitation for many 
studies. For instance, the EHR-derived models of Zhao et 

al53 lacked microbiological, radiological and biomarker 
data relevant to delirium, limiting their predictive accu-
racy. Similarly, missing information about medication use 
and frailty indices posed a limiting factor in several other 
studies.17 22 49–51 Many studies also did not have access 
to demographic data of their study population, such as 
socioeconomic status, gender and race.26 53 Reliance on 
data sources with missing data and unrepresentative of 
target populations weakens model performance and 
introduces biases, generating models that may exacerbate 
healthcare inequities.7

Second, similar to the findings of previous reviews,11 12 
most models described in our scoping review did not mature 
past the stage of internal validation. Only six studies vali-
dated their model on an external dataset16 19 20 27 29 42 
despite evidence that models that perform well on ‘hold 
out’ training data usually have lower performance when 
applied to more noisy datasets from different institutions 
due to model overfitting.5

Third, of all 39 included studies, only those of Jauk et al28 31 
and Sun et al45 subjected their models to a prospective evalu-
ation using live data in clinical practice. The extent to which 
clinicians will adopt a model depends on their trust in its 
predictive accuracy and utility and the ease with which it can 
be integrated into clinical workflows.7 Sun and colleagues45 
demonstrated their deep learning model performed equally 
well in training and prospective validation studies.29 In a 
subsequent case study, the authors demonstrated an instance 
where their application correctly predicted postoperative 
delirium in a patient with a negative preoperative CAM-
ICU, demonstrating its clinical utility in a surgical ward.55 In 
addition, they found ML applications could be particularly 
useful for the early detection of delirium in wards where 
delirium screening is often not performed and delirium is 
underdiagnosed.1

Similarly, Jauk and colleagues28 analysed 5530 predic-
tions over 7 months of deployment, finding their model 
performance was reliable and attracted high satisfaction 
ratings by a senior physician. In a later qualitative study, the 
47 nurses and physicians associated with the project rated 
the delirium prediction model as useful, easy to use and 
interpretable without increasing workload.56 These favour-
able findings were replicated in a follow-up study where 
the random forest model was implemented in a separate 
hospital network.31 However, cross-hospital evaluations 
underscored the need to re-train the model with local data 
to mitigate declines in performance when applied to new 
clinical settings.31 45 However, neither of these models has 
been subjected to clinical trials to establish impacts on 
patient care or outcomes.

Our review has some limitations. As our study was a 
scoping exercise, and in the absence of an agreed risk 
of bias assessment tool for ML prediction studies, we 
chose not to critically appraise the quality of individual 
studies. For similar reasons, and given the heterogeneity 
of the data source, model type and performance metrics 
reported in included studies, quantitative meta-analysis 
was not performed.



7Strating T, et al. BMJ Health Care Inform 2023;30:e100767. doi:10.1136/bmjhci-2023-100767

Open access

CONCLUSION
Prediction models derived using ML methods can poten-
tially identify individuals at risk of developing delirium 
before symptom onset to whom preventive strategies can 
be targeted, which may, in turn, reduce incident delirium 
and improve patient outcomes. This scoping review identi-
fied all publications describing ML-based delirium predic-
tion models over the last 5 years, evaluated their stage in 
the ML evolution pipeline, and assessed their perfor-
mance and utility. Relatively few were subject to external 
validation, which, when performed, showed degraded 
model performance. In addition, while few studies under-
went prospective evaluation in real-world clinical settings, 
performance and user acceptance seemed promising in 
those that did. However, given the limitations of current 
delirium prediction models, they should not be seen as 
substitutes for expert clinician judgement.
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ABSTRACT
Purpose  Many efforts have been made to explore the 
potential of deep learning and artificial intelligence (AI) in 
disciplines such as medicine, including ophthalmology. 
This systematic review aims to evaluate the reporting 
quality of randomised controlled trials (RCTs) that evaluate 
AI technologies applied to ophthalmology.
Methods  A comprehensive search of three relevant 
databases (EMBASE, Medline, Cochrane) from 1 January 
2010 to 5 February 2022 was conducted. The reporting 
quality of these papers was scored using the Consolidated 
Standards of Reporting Trials-Artificial Intelligence 
(CONSORT-AI) checklist and further risk of bias was 
assessed using the RoB-2 tool.
Results  The initial search yielded 2973 citations from 
which 5 articles satisfied the inclusion/exclusion criteria. 
These articles featured AI technologies applied to diabetic 
retinopathy screening, ophthalmologic education, fungal 
keratitis detection and paediatric cataract diagnosis. 
None of the articles reported all items in the CONSORT-
AI checklist. The overall mean CONSORT-AI score of the 
included RCTs was 53% (range 37%–78%). The individual 
scores of the articles were 37% (19/51), 39% (20), 49% 
(25), 61% (31) and 78% (40). All articles were scored 
as being moderate risk, or ‘some concerns present’, 
regarding potential risk of bias according to the RoB-2 tool.
Conclusion  A small number of RCTs have been published 
to date on the applications of AI in ophthalmology and 
vision science. Adherence to the 2020 CONSORT-AI 
reporting guidelines is suboptimal with notable reporting 
items often missed. Greater adherence will help facilitate 
reproducibility of AI research which can be a stimulus 
for more AI-based RCTs and clinical applications in 
ophthalmology.

INTRODUCTION
The growing advent of artificial intelligence 
(AI) has sparked interest globally across all 
fields of medicine and healthcare.1 Within 
ophthalmology, AI has been used in the 
analysis of fundus photographs, visual field 
testing, optical coherence tomography 

and surgical skill assessment.1 It has also 
been applied to improve the efficiency 
and robustness of detection of conditions 
including diabetic retinopathy,2 retinop-
athy of prematurity,3 glaucoma,4 macular 
oedema5 and age-related macular degen-
eration.6 However, further expansion of 
AI into clinical practice requires extensive 
research and development.

Randomised controlled trials (RCTs) 
are considered the gold standard experi-
mental design for researchers seeking to 
provide evidence to support the safety and 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Within the field of ophthalmology, there is a growing 
interest in exploring the potential of deep learning 
and artificial intelligence (AI), however, the level of 
quality of the randomised controlled trials (RCTs) 
currently published on the efficacy of AI-driven in-
terventions is not known.

WHAT THIS STUDY ADDS
	⇒ This systematic review aimed to characterise the 
RCTs using AI within the field of ophthalmology and 
vision science, and to critically appraise the adher-
ence of each included study to the Consolidated 
Standards of Reporting Trials-Artificial Intelligence 
(CONSORT-AI) reporting guideline.

	⇒ A small number of RCTs have been published to date 
on the applications of AI in ophthalmology and vision 
science, and adherence to the 2020 CONSORT-AI 
reporting guidelines is suboptimal with notable re-
porting items often missed.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Further studies should aim for greater adherence to 
reporting standards to help facilitate reproducibility 
and generalisability of AI research and clinical appli-
cations in ophthalmology.
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efficacy of a new intervention.7 However, deficien-
cies in reporting clarity can interfere with accurate 
assessment of sources of potential bias arising from 
inadequacies in methodologies. The Consolidated 
Standards of Reporting Trials (CONSORT) state-
ment provides the minimum guidelines for reporting 
randomised trials, and its use has been key in ensuring 
transparency in the assessment of new interven-
tions. It was originally published in 1996,8 revised in 
2001,9 and most recently updated in 2010.10 A 2001 
review of 24 RCTs in ophthalmology found that on 
average, only 33.4 out of 57 descriptors were reported 
adequately according to the 1996 CONSORT guide-
lines.11 A 2014 review that assessed the compliance of 
65 ophthalmological RCTs published in 2011 with the 
2008 CONSORT extension for non-pharmacological 
treatment interventions reported a mean CONSORT 
score of 8.9 out 23 criteria, or 39%.12

The Consolidated Standards of Reporting Trials - 
Artificial Intelligence (CONSORT-AI) extension is the 
reporting guideline for clinical trials evaluating interven-
tions with an AI component, published in 2020.13 The 
extension includes 14 new items considered sufficiently 
relevant with regard to evaluation of reporting require-
ments for methodologies in RCTs involving assessment of 
AI as the intervention.13 With the recent rise in new initia-
tives using AI, adherence to reporting guidelines such 
as CONSORT-AI plays a critical role in guiding and stan-
dardising the conduct and reporting of AI-related trials.

This systematic review aimed to characterise the RCTs 
using AI within the field of ophthalmology and vision 
science, and to critically appraise the adherence of each 
included study to the CONSORT-AI reporting guideline.

METHODS
Search strategy
This systematic review was conducted in accordance 
to the Preferred Reporting Items for a Systematic 
Reviews and Meta-analyses guidelines. The protocol 
was prospectively registered in PROSPERO (registra-
tion number: CRD42022304021). A comprehensive 
search of the relevant databases MEDLINE, EMBASE, 
Cochrane Central Register of Controlled Trials and 
Cochrane Database of Systematic Reviews was done 
in consultation with an experienced librarian. All 
English-language RCTs using AI within the field of 
ophthalmology and vision science from 1 January 
2010 to 5 February 2022 were identified. This restric-
tion in publication date was put in place to capture 
the most relevant and recent publications in light of 
the increasing interest in research on AI following the 
advent and popularisation of the computing technique 
‘deep learning’, especially with regard to image anal-
ysis.14 A combination of keywords and Medical Subject 
Headings related to concepts of RCTs, ophthalmology 
and AI were used to build the search strategy (online 
supplemental appendix 1).

Study selection and data extraction
Two authors (NP and JZLZ) independently conducted 
an initial title-abstract screening followed by full-text 
screening of all articles. All conflicts were resolved by 
consensus and in consultation with a third reviewer 
(TF or OS). The inclusion criteria were: articles that 
were (1) RCTs, (2) using AI as their main interven-
tion and (3) evaluating the AI for application within 
any aspects in the field of ophthalmology. Articles 
were excluded if they were (1) not specific to ophthal-
mology and/or (2) were not available in English. The 
authors of articles whose full-text was not available 
were contacted to request full-text versions directly. 
Data from the final set of articles included in the 
review were extracted and recorded in a predeter-
mined datasheet by two authors (NP and JZLZ).

Risk of bias assessment
Risk of bias assessment was completed for each study 
by two independent reviewers (NP and JZLZ) using the 
RoB-2 tool.15 Any conflicts were resolved in consultation 
with a third reviewer (TF or OS). For each domain, the 
risk of bias was reported as ‘high’, ‘low’ or ‘some concerns 
present’.

CONSORT-AI checklist
The final articles were scored independently by two 
authors (NP and JZLZ) using the CONSORT-AI check-
list.13 Based on previously published methods, articles 
were scored 1 for an item if all of the components iden-
tified in the respective criterion were reported, and 0 if 
any portions were missing.12 16–18 There are 51 criteria in 
the CONSORT-AI checklist. Each item was given equal 
weight, scoring 1 point each. The resulting mark was 
termed the ‘CONSORT-AI score.’ The criterion regarding 
providing an explanation of any interim analyses and/or 
stopping guidelines if applicable (7b) was not applicable 
to any of the articles and was therefore scored as ‘0’ for 
all. After initial scoring, any discrepancies were resolved 
by consensus. If an agreement could not be reached, a 
third author (TF or OS) was consulted to make the final 
decision.

RESULTS
The search strategy yielded a total of 2973 citations 
(figure  1). Following deduplication and screening, five 
articles met the inclusion and exclusion criteria. The 
characteristics of the included articles are summarised in 
online supplemental table 1. The final articles included 
in this review looked at the utility of AI in diabetic reti-
nopathy screening,19 20 ophthalmologic education,21 
detecting fungal keratitis22 and diagnosing childhood 
cataracts.23 Three out of the five included articles were 
studies conducted in China, and the remaining two were 
conducted in Mexico and Rwanda. The majority (3/5) of 
the articles were published in 2021 or 2022,19 20 22 and the 
remaining two were published in 2019 and 2020.21 23
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The overall mean CONSORT-AI score of the included 
RCTs was 53% (range 37%–78%), and the median score 
was 49%. The individual scores of the articles were 19/51 
(37%), 20/51 (39%), 25/51 (49%), 31/51 (61%) and 
40/51 (78%). Following the initial round of scoring, 
there was conflict on 14 items (5.49%). The inter-rater 
concordance for the CONSORT-AI scoring had a kappa 
score of 0.89.

The compliance of the included articles to each 
of the individual CONSORT-AI criteria is shown in 
online supplemental table 2. None of the articles 
addressed the following criteria: important changes to 
methods after trial commencement with reasons (3b), 
changes to trial outcomes after trial commenced with 
reasons (6b), information on why the trial ended or 
was stopped (14b), important harms or unintended 
effects in each group,19 analysis of performance errors 
and how errors were identified (19-i), and where the 
full trial protocol can be accessed.24 Only one of the 
articles addressed the following criteria: informa-
tion on which version of the AI algorithm was used 
(5-i), whether there was human–AI interaction in the 
handling of the input data and what level of expertise 
was required of users (5-iv), mechanism used to imple-
ment random allocation sequence,9 who generated 
random allocation sequence, who enrolled partici-
pants and who assigned participants to interventions,10 
methods for additional analyses (12b), presentation 
of both absolute and relative effect sizes (17b), and 

where and how AI intervention and/or its code can 
be accessed (25-i). None of the articles reported all of 
the items in the CONSORT-AI checklist.

Quality of evidence
The results of the RoB-2 scoring are shown in figure 2. 
All included articles had an overall moderate risk of bias, 
with all articles having a score of ‘some concerns present’. 
All articles scored moderate risk for the domains of ‘selec-
tion of the reported result’ and ‘deviations from intended 
interventions’. All articles were scored as low risk for the 
domains of ‘measurement of the outcome’ and ‘missing 
outcome data’. For the domain of ‘randomisation 
process’, 80% of the articles were moderate risk and the 
remaining 20% were low risk. None of the articles scored 
high risk in any domains. The inter-rater concordance for 
RoB-2 scoring had a kappa score of 0.86.

DISCUSSION
Here, we aimed to evaluate the adherence of RCTs 
investigating the use of AI within ophthalmology to the 
guidelines set by CONSORT-AI checklist for reporting 
standards for RCTs. Our study found a total of five RCTs 
that evaluated AI applications in ophthalmology. These 
articles looked at the utility of AI in diabetic retinopathy 
screening,19 20 ophthalmologic education,21 detecting 
fungal keratitis22 and diagnosing childhood cataracts.23 
The mean CONSORT-AI score of the articles was 53% 
(range 37%–78%). None of the articles reported all items 
in the CONSORT-AI checklist, and all articles were rated 
as moderate risk, or ‘some concerns present’, through 
the RoB-2 tool assessment. All articles had moderate 
risk of bias for the ‘selection of the reported result’ and 
‘deviations from intended interventions’ domains, and 
low risk of bias for ‘measurement of the outcome’ and 
‘missing outcome data’ domains. Only one article had 
low risk of bias for their ‘randomisation process’, with the 
remainder having moderate risk in this domain.

The mean CONSORT score for our included studies 
(53%) is higher than mean score of 39% reported in 
the previous work by Yao et al in 2014 which reviewed 
the quality of reporting guidelines in 64 RCTs focused 
on ophthalmic surgery.12 Aside from the difference in 
the number of reviewed articles, a potential reason for 
this difference in reported CONSORT-AI scores is that 
the articles found in our study are relatively new. The 
CONSORT-AI guidelines were published in 2020, and 3/5 
of our articles were published in 2021 or later,19 20 22which 
suggests that awareness of and adherence to reporting 
guidelines may have increased over time. Many of the 
items that the identified articles in our review failed to 
report on were also missed in studies identified by Yao 
et al.12 These include determining adequate sample size 
(item 7), concern random allocation sequence gener-
ation (item 8) and its implementation (item 10).13 The 
low reporting rate of sample size calculation is a crit-
ical concern as this information is essential for protocol 

Figure 1  PRISMA, Preferred Reporting Items for a 
Systematic Reviews and Meta-analyses flow chart diagram 
for study identification and selection.30

https://dx.doi.org/10.1136/bmjhci-2023-100757


4 Pattathil N, et al. BMJ Health Care Inform 2023;30:e100757. doi:10.1136/bmjhci-2023-100757

Open access�

development in all RCTs. There were some items that 
were commonly missed in Yao et al that were not missed in 
our reviewed articles, such as mentioning the term RCT 
in title or abstract (item 1),12 which demonstrates the 
value in establishment of expected reporting standards 
by journals and publishing editors.

We observed some common trends in CONSORT-AI 
and RoB2 assessments in our study. For AI-based RCTs, it 
is difficult to blind both the physicians and participants to 
the intervention received, if the participants are humans 
and not images. For instance, if an RCT is comparing 
AI-based screening versus human-based screening, the 
participant may know whether they have been assigned 
to the AI or to a human at the time the intervention is 
given. One strategy to blind the participants, as seen in 
Noriega et al19 and Xu et al,22 is to replace human partic-
ipants with human-derived data. Additionally, blinding 
the outcome assessors to the prescribed intervention is 
an important feature of the study design in RCTs, but in 

three of the included studies in this review, Noriega et al,19 
Xu et al22 and Wu et al,21 did not outline these steps in 
their methods.

None of our included articles described where to find 
their initial trial protocol. Only one of the articles, by Lin 
et al, was registered on ​ClinicalTrials.​gov.23 This is a crit-
ical limitation as it could indicate a potential source of 
bias if analysis decisions were made after outcomes were 
measured which undermines the credibility of the RCT 
findings. Although outcome measurements were stan-
dard choices (eg, sensitivity and specificity for binary clas-
sification model performance), the role of an initial trial 
protocol cannot be overlooked as it is a key component 
of pretrial planning and study integrity. Furthermore, 
no articles other than Mathenge et al reported where 
the AI algorithm codes could be found.20 This reduces 
transparency and may impede the reproducibility of the 
results as well as the progress of applying AI technologies. 
Siontis et al have found that AI RCTs across all healthcare 

Figure 2  Risk of bias assessment using RoB2 tool for included studies displayed by means of a weighted plot for the 
distribution of the overall risk of bias within each bias domain (A) and traffic light plot of the risk of bias of each included clinical 
study (B).
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applications, not just ophthalmology, fail to provide the 
algorithm code for their AI tools.24

Criteria 4b (settings and locations where data were 
collected), 15 (baseline demographics) and 21 (gener-
alisability of trial findings) of the CONSORT-AI check-
list were not perfectly adhered to in our five articles. 
Only three articles reported items 4b,20 22 23 three arti-
cles reported item 1520 21 23 and two articles reported 
item 21.20 22 Although these criteria were not the most 
frequently missed items, they are of utmost importance 
clinically, as they concern whether the results of the trial 
can be reasonably applied to a clinician’s patient popula-
tion. In a 2021 review of the development and validation 
pathways of AI RCTs, Siontis et al found that most AIs are 
not tested on datasets collected from patient populations 
outside of where the AI was developed and thus, it may 
be unsafe to apply these AIs to such populations.24 In 
fact, using limited or imbalanced datasets both in devel-
opment and validation stages may lead to discriminatory 
AI.25 Therefore, special attention should be paid to these 
criteria.

In our review, we also found that the criterion for 
providing an explanation of any interim analyses and/or 
stopping guidelines if applicable (7b) was not reported 
across all articles. It could be argued that all RCTs 
should at least comment that an interim analysis was not 
planned, even if it was not applicable to the specific study 
design. Shahzad et al conducted a systematic review that 
also used CONSORT-AI to review the reporting quality 
of AI RCTs across all healthcare applications published 
between January 2015 and December 2021. They also 
found that item 7b was not reported in more than 85% 
of the included studies, and scored these items as non-
applicable in their grading using CONSORT-AI.16

When analysing the appropriateness of analyses and 
the clarity of the performance assessments for each 
article, we found that each article chose suitable methods 
for their individual trials. Noriega et al, Xu et al and Lin et 
al evaluated the performance of their different compara-
tors by calculating sensitivity and specificity among other 
metrics.19 22 23 Xu et al and Lin et al presented this informa-
tion in the form of a table.22 23 Noriega et al and Xu et al 
also presented these results visually by plotting sensitivity 
and specificity of different comparators on a receiver oper-
ating curve which represented the performance of the AI 
alone.19 22 In Wu et al’s investigation of the effectiveness of 
AI-assisted problem based learning, ophthalmology clerks 
did a pre-lecture test and post-lecture test after either a 
traditional lecture or AI-assisted lecture.21 Improvement 
in test performance was assessed and compared between 
the two groups by analysing differences in the pre-lecture 
and post-lecture test scores using paired t-tests. A main 
source of bias in their study, not captured in the risk of 
bias assessment, is the quality of the test questions which 
were not made available to the readers. It is important to 
note that all AI-based RCTs identified in this study had 
no drop-outs, as all participants that enrolled in the RCT 
yielded valid data for analysis. This is due to the fact that 

in some cases, images were subjects, in pre-collected data-
bases and registries.

Despite the comprehensive search of the literature, a 
limited number of RCTs on AI were retrieved in the current 
study. The small number of RCTs identified prevented 
our study from conducting any temporal analyses or strat-
ifying our analyses. In comparison, a literature review on 
the reporting guidelines of RCTs in ophthalmic surgery 
overall yielded 65 RCTs.12 There are a couple of reasons 
that may explain the small number of RCTs investigating 
the efficacy of AI for ophthalmological applications. First, 
this small number may be an indication of the novelty of 
AI within the field of ophthalmology. Another reason may 
be the high costs and resources associated with RCTs. It 
is not feasible to conduct an RCT for all of the various 
AI tools developed for ophthalmology. Siontis et al found 
that the development and validation stages that different 
AI models go through before being evaluated in RCTs 
vary widely between papers.24 The increasing number of 
standard guidelines for the reporting and quality assess-
ment of AI, including DECIDE-AI,26 PROBAST-AI,27 
QUADAS-AI,28 STARD-AI29 and TRIPOD-AI27 are sugges-
tive of the shift towards standardised assessment of AI 
tools. Another step that may aid in better assessment 
of AI tools in RCTs is determining performance metric 
thresholds that must be met at each stage of development 
and validation, although justifying these cutoffs may be 
difficult and subjective, and does not automatically imply 
high reliability for the RCT results.

CONCLUSIONS
AI is a growing field within ophthalmology that holds 
great promise for its applications in wide-reaching areas. 
Our findings suggest that there are a limited number of 
RCTs on applications of AI in ophthalmology, and adher-
ence to some aspects of the 2020 CONSORT-AI reporting 
guidelines is suboptimal. It is essential that future trials 
provide information on protocol registration, a clear 
explanation for sample size calculations and details on 
the method of randomisation (i.e. type of randomisation, 
how it was implemented, who it was implemented by). 
Open access to the AI algorithm codes as well as further 
details about the software and version number used will 
enhance reproducibility of research efforts. Attention 
should be paid to blinding participants, physicians and 
the outcome assessors whenever possible. Finally, it is crit-
ical to report information that allows the readers to assess 
the generalisability of the trial results, such as baseline 
demographics of patients and settings where the trial data 
are collected.

It is recommended that future authors, funding 
organisations, peer-reviewers and others involved in 
the ophthalmological research process collaborate and 
place emphasis on adherence and integration of the 
CONSORT-AI checklist within the RCT development 
and publication process. This may facilitate the repro-
ducibility of AI research which can in turn be a stimulus 
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for more AI-based RCTs and its clinical application in 
ophthalmology.
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ABSTRACT
Background and objectives  Turnover time (TOT), defined 
as the time between surgical cases in the same operating 
room (OR), is often perceived to be lengthy without clear 
cause. With the aim of optimising and standardising OR 
turnover processes and decreasing TOT, we developed an 
innovative and staff-interactive TOT measurement method.
Methods  We divided TOT into task-based segments and 
created buttons on the electronic health record (EHR) 
default prelogin screen for appropriate staff workflows 
to collect more granular data. We created submeasures, 
including ‘clean-up start’, ‘clean-up complete’, ‘set-
up start’ and ‘room ready for patient’, to calculate 
environmental services (EVS) response time, EVS cleaning 
time, room set-up response time, room set-up time and 
time to room accordingly.
Results  Since developing and implementing these 
workflows, measures have demonstrated excellent staff 
adoption. Median times of EVS response and cleaning 
have decreased significantly at our main hospital ORs and 
ambulatory surgery centre.
Conclusion  OR delays are costly to hospital systems. TOT, 
in particular, has been recognised as a potential dissatisfier 
and cause of delay in the perioperative environment. 
Viewing TOT as one finite entity and not a series of 
necessary tasks by a variety of team members limits the 
possibility of critical assessment and improvement. By 
dividing the measurement of TOT into respective segments 
necessary to transition the room at the completion of one 
case to the onset of another, valuable insight was gained 
into the causes associated with turnover delays, which 
increased awareness and improved accountability of staff 
members to complete assigned tasks efficiently.

INTRODUCTION
Turnover time, or the time between surgical 
cases in the same operating room (OR), can 
often give the impression of being too long 
without clear reason. Delay in turnover time 
can cause meaningful disruption to perioper-
ative operations, and as such, turnover time 
serves as a key quality process measure at 
countless institutions.1–4 In addition, turnover 
delays impact case-start times, which can be a 
source of patient distrust and dissatisfaction, 

as additional wait time can create additional 
stress to patients who are already anxious.5 
Ideally, it is an institutional goal to minimise 
the time between surgical cases in order to 
support surgical demand and growth, as well 
as to improve revenue and profits.

In attempts to shorten turnover time, 
others have tried implementing mobile appli-
cations,6 designated specialised OR teams,7 
turnover task cards,8 remote video auditing 
with real-time feedback,9 and other published 
process improvement initiatives.10–14 
However, despite these and other attempts, 
turnover time continues to be a frustratingly 
difficult problem to solve at many if not most 
institutions. To our knowledge, this is the 
first study at a multisite quaternary academic 
medical centre to describe a novel method 
for measuring OR turnover.

The processes that occur during turnover 
can be complex, variable and at times seem-
ingly nebulous and/or chaotic; however, they 
all come down to what needs to get accom-
plished in order to complete and clean up 
after the previous case (primary process 
owners: environmental services (EVS)), and 
then to setup and prepare for the case to 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Delay in turnover time (TOT) can cause meaning-
ful disruption to perioperative operations, and TOT 
serves many as a key quality process measure.

WHAT THIS STUDY ADDS
	⇒ By dividing TOT into process-based components, we 
created a more reliable model for staff accountabil-
ity and process efficiency.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study describes an innovative method for mea-
suring TOT. Using this system, we hope to reduce 
operating room TOT.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-3847-3634
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follow in the same OR (primary process owners: surgery 
technicians and nurses). At many institutions, including 
the study institution, turnover is measured as one block 
of time—with therefore little specific insight into which 
process or processes are responsible for turnover delays. 
As a result, it becomes difficult to hold teams account-
able without measurable, granular data to elucidate the 
specific causes of increased time.

With the aim of optimising and standardising OR turn-
over processes and potentially improving perioperative 
efficiency by reducing turnover time, we developed an 
innovative and staff-interactive method for measuring 
the time in between surgical cases. By dividing overall 
turnover time into parts based on processes or work-
flows, we hypothesised that we could achieve more 
accurate measurements of turnover time components, 
hold-specific teams accountable for their processes within 
each component, and ultimately decrease turnover time 
delays.

METHODS
This study was conducted at a suburban regional academic 
health system, which is composed of two acute care hospi-
tals housing 51 ORs. The EHR used at this institution is 
Epic (Verona, Wisconsin, USA). A process improvement 
workshop was held to address the topic of OR turnover 
time, which was attended by end-users from multiple 
perioperative teams involved in turnover processes.

For our intervention, we divided OR turnover into task-
based segments and created clickable buttons on the EHR 
default prelogin screen for appropriate staff workflows to 
collect more granular data. We defined ‘turnover time’ 
as the time between ‘wheels out’ of the previous case to 
‘wheels in’ of the case to follow (figure 1)--case tracking 
events that are usually recorded in the EHR by the circu-
lating nurse in the OR. We created new case tracking 
events in between these that include ‘clean-up start’, 
‘clean-up complete’, and ‘set-up start’, to allow the calcu-
lation of EVS response time, EVS cleaning time, room 
setup response time and room setup time accordingly.

Given not all staff members (including EVS) have 
access to log into the EHR at our institution, we made 
the new buttons readily available on the room-specific 

;prelogin status board’ located on the home screen of 
all computers in the ORs to be clicked by appropriate 
staff members at the time of initiation and completion of 
clean-up and setup processes. Education was provided on 
the location of the buttons and other fields (for those with 
EHR access) as well as best practices for standard work for 
utilisation of the buttons within existing staff workflows.

Timestamp measurements are stored within the EHR 
for each case, and are extracted on a weekly and/or 
monthly basis to be displayed on team-based dashboards 
created in Microsoft Excel, using data from the EHR 
timestamp measurements, and sent to team managers 
via email for accountability and to keep track of progress 
over time. Overall and location-specific data are displayed 
on the dashboards in the same presentation as the results 
figures below. Descriptive statistics, including median 
time and utilisation percentages, were performed using 
these data to assess the impact of our intervention. This 
manuscript was structured based on the Standard QUality 
Improvement Reporting Excellence (SQUIRE) guide-
lines for quality improvement (QI) studies.

RESULTS
Since developing and implementing these workflow 
interventions (table  1), the study institution has seen 
excellent adoption by staff members (figure 2A–C). EVS 
utilisation of the ‘clean-up start’ speed button is stable at 
90% of cases with subsequent cases to follow at all main 
OR locations. Utilisation of the ‘set-up start’ speed button 
is stable >80% of cases with subsequent cases to follow at 
all main OR locations. Utilisation of the ‘room ready for 
patient’ speed button is stable >85% of cases. Of note, 
‘room ready for patient’ is a speed button that was not 
newly created for this project, as it existed previously to 
help designate to the preoperative and anaesthesia teams 
that the room is ready for the patient to be brought back.

We have also seen the median duration of EVS 
response times (‘wheels out’ → ‘clean-up start’) and 
cleaning times (‘clean-up start’ → ‘clean-up complete’) 
decrease substantially over time at our main hospital ORs 
(figure  3A,B). Median response time remains consis-
tently under 4 min (previously greater than 5 min) and 
cleaning time remains consistently below 10 minutes 

Figure 1  Operating room turnover time measurement timeline. EVS, environmental services.



3Goldhaber NH, et al. BMJ Health Care Inform 2023;30:e100741. doi:10.1136/bmjhci-2023-100741

Open access

(previously greater than 15 min). These trends appear to 
correlate with greater adoption of the EHR functionality 
intervention.

Median setup response time (‘clean-up complete’ 
→ ‘set-up start’), set-up time (‘set-up start’ → ‘setup 
complete’), and time to room (‘set-up complete’ 
→ ‘wheels in’) have not significantly decreased and 
display variability across locations as well as over time 
(figure  4A–C). Overall, turnover time has not signifi-
cantly decreased over time and remains consistently 
above target at all locations (figure 5).

DISCUSSION
Delays in the OR can be costly to hospital systems, and 
one area where known delays occur is during room turn-
over. One study describes each minute of time running an 
OR in California hospitals costing approximately US$37 
for inpatient settings and US$36 for ambulatory settings.15 
Another study describes a methodology for surgical centres 

to calculate potential reduction in staffing costs as a result 
of decreases in OR turnover times.16 OR turnover can be 
a seemingly nebulous time between surgical cases. There 
are certain tasks that need to be accomplished once the 
previous patient’s case was completed to prepare for the 
case to follow in the same OR. Much like a motor racing 
pit crew, many different personnel are involved in many 
distinct, yet potentially overlapping processes during this 
OR turnover time. While traditionally the measurement 
of these tasks has been lumped together into one turn-
over time metric, this study demonstrates an alternative 
method to help guide efficiency and accountability for the 
individual tasks that occur during OR turnover.

There can be some variability in tasks during turnover 
based on the type of operation to be performed, indi-
vidual staff preferences, patient factors and more.17 18 
Among this variability arises one constant universal theme 
when discussing OR turnover time: ‘Why did it take so 
long?’ Turnover time, in particular, has been recognised 
as a potential dissatisfier and cause of delay in the periop-
erative environment.13 It also has the potential to erode 
the goals of efficiency and safety within the perioperative 
environment. A previous study has shown that percep-
tions of turnover time may be skewed by staff member 
role and factors perceived as contributing to the time, and 
suggest for OR managers to reference timestamp data on 
turnover time length rather than relying on surgeon or 
anaesthesiologist ‘expert judgement’.19 While there is 
access to EHR data of the overall length of OR turnover 
time, the data were not sufficient to answer this universal 
question, a question that plagues hospitals and surgical 
centres across the globe.

Table 1  Workshop and intervention timeline

Project milestone Date

Perioperative efficiency project (PEP) 
workshop

9 November 
2020–16 
November 2020

Turnover time (TOT) case tracking event 
go-live

15 December 
2020

PEP dashboard go-live 7 June 2021

TOT workshop 25 October 2021

Figure 2  (A) EVS utilisation (percentage of cases) of clean-up start button in the OR over time, (B) utilisation (percentage of 
cases) of set-up start button in the OR over time, (C) utilisation (percentage of cases) of room ready for patient button in the OR 
over time. EVS, environmental services’ OR, operating room.
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Viewing turnover time as one finite value or entity 
and not a series of necessary tasks by a variety of team 
members limits the possibility of critical assessment and 
improvement. In this study, in order to provide a more 
reliable and detailed measurement system to answer this 
question, OR turnover time was divided into three main 
phases or components based on the staff and processes 
that occur accordingly—the respective segments neces-
sary to transition the room at the completion of one case 
to the onset of another. While that sounds simple, like the 
flip of a switch, to use to shorten turnover time, in this 
study we demonstrate this is not so simple and that turn-
over is comprised of several interconnected and often-
times interdependent components of a larger whole.

This project demonstrated the successful implemen-
tation of a new staff-interactive timestamping system, as 

demonstrated by the high utilisation rates of the buttons 
created in the EHR. Both staff engagement and the 
sharing of performance metrics have been shown to be 
key to enhancing OR efficiency.20 With this new process 
in place at the study institution, staff are now leaving 
more accurate, room-specific and case-specific, time-
stamps in the system in order to more precisely pinpoint 
when components of turnover are being initiated and 
completed. The time being spent on each of these 
components can be accurately quantified, assessed and 
addressed accordingly.

A notable decrease in time for the EVS workflow 
was observed in this study. It was confirmed with team 
management that there were no additional significant 
process changes (eg, new faster drying cleaning solution) 
that took place during this time that would account for 

Figure 3  Median (minutes) EVS response time (A) and cleaning time (B) over time. EVS, environmental services.

Figure 4  Median (minutes) set-up response time (A), set-up time (B) and time to room (C).
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the time decrease otherwise. In conjunction with high 
utilisation rates by EVS, this tells us that our interven-
tion has provided an accurate measurement tool for our 
EVS teams’ efficiency that is successfully holding times 
below target, an achievement we continue to sustain and 
celebrate.

While we have not yet seen similar notable decreases 
in set-up and overall turnover time, significant progress 
toward this goal has been made now that a more accurate 
and detailed measurement system is in place. We acknowl-
edge and are limited by the fact that there will always 
be significant variability in set-up time given different 
services or different cases require a greater amount and/
or greater complexity of equipment that requires set-up 
time accordingly.

Another limitation identified based on these results 
is that technology changes alone are not sufficient for 
process improvement. Focused staff-based and process-
based education is required for successful implementa-
tion of a new system, as well as for sustainable change 
to occur. An added benefit of this project is that a trans-
parent system of accountability for staff teams was imple-
mented, providing more awareness of each team or staff 
member’s contribution.

Future directions include further service line-specific 
analysis of case set-up time to identify potential areas of 
improvement while accounting for service line-specific 
variability (eg, amount of case equipment). Additionally, 
standard work for the teams responsible for bringing the 
patient to the room once the room is set up or ready will 
be developed and implemented. This will include a stan-
dardised messaging system to the anaesthesia providers 
assigned to the case so they do not have to wait and multi-
task while attempting to predict when the room might be 
ready for the patient to come back. Lastly, this system is 
reliant on individual human entry of case tracking event 
data, which could be improved by automation such as 
through wireless sensors and radio frequency identifica-
tion device technology.21 22

Efficiency-based QI initiatives have been cited to poten-
tially include feelings of pressure to produce a fast result, 
which may in turn compromise a high-quality result. Other 

investigations have found no negative impact on patient 
safety and quality of care resulting from gradual imple-
mentation of a methodologically structured efficiency-
based QI initiative in a perioperative environment.23 24 
While it is not possible to attribute specific patient safety 
and outcomes data directly to this particular QI initiative, 
to our knowledge, there was no significant change in the 
number of complications since the implementation of 
this system.

CONCLUSION
By dividing our measurement of turnover time into 
the processes that need to be completed: ‘clean-up’ 
and ‘set-up’, we were able to gain valuable insight into 
the components of turnover and turnover delays and 
increase awareness and accountability of staff members to 
complete assigned tasks efficiently without compromising 
quality and patient safety.
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ABSTRACT
Objectives  The US Center for Disease Control and 
Prevention’s National Death Index (NDI) is a gold standard 
for mortality data, yet matching patients to the database 
depends on accurate and available key identifiers. Our 
objective was to evaluate NDI data for future healthcare 
research studies with mortality outcomes.
Methods  We used a Kaiser Permanente Mid-Atlantic 
States’ Virtual Data Warehouse (KPMAS-VDW) sourced 
from the Social Security Administration and electronic 
health records on members enrolled between 1 January 
2005 to 31 December 2017. We submitted data to NDI on 
1 036 449 members. We compared results from the NDI 
best match algorithm to the KPMAS-VDW for vital status 
and death date. We compared probabilistic scores by sex 
and race and ethnicity.
Results  NDI returned 372 865 (36%) unique possible 
matches, 663 061 (64%) records not matched to the 
NDI database and 522 (<1%) rejected records. The NDI 
algorithm resulted in 38 862 records, presumed dead, 
with a lower percentage of women, and Asian/Pacific 
Islander and Hispanic people than presumed alive. There 
were 27 306 presumed dead members whose death dates 
matched exactly between the NDI results and VDW, but 
1539 did not have an exact match. There were 10 017 
additional deaths from NDI results that were not present in 
the VDW death data.
Conclusions  NDI data can substantially improve the 
overall capture of deaths. However, further quality control 
measures were needed to ensure the accuracy of the NDI 
best match algorithm.

INTRODUCTION
The National Death Index (NDI), managed 
by the National Center for Health Statistics 
(Hyattsville, Maryland, USA) of the Center for 
Disease Control and Prevention (CDC; Atlanta, 
Georgia, USA), is a database of death certifi-
cate data from the state vital statistics offices 
in the USA and territories. NDI is frequently 
used to ascertain deaths and cause of death 
in studies where participants may be lost to 
follow-up.1 Kaiser Permanente Mid-Atlantic 
States (KPMAS) is a large multisite healthcare 
system, which derives death data from databases 
sourced from the medical record, select state 

registries, and quarterly updates from the Social 
Security Administration (SSA) Death Master 
File. However, more complete information on 
vital status for members without a valid social 
security number (SSN) and cause of death on 
all deceased members was needed for medical 
research studies.

NDI provides a detailed user’s guide to 
submission and analysis of returned results.1 
However, quality control and testing matching 
algorithm validity is the responsibility of the 
submitter. NDI returns a probabilistic score 
(PS) based on a matching algorithm that 
evaluates the likelihood of a match over nine 
demographic variables and their compo-
nents.2 Researchers have reported different 
methods for identifying and verifying a true 
match to the NDI dataset given varying avail-
able data, by comparing it to their large 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ While prior literature describes quality control meth-
ods, and enhancements to the National Death Index 
(NDI) death registry algorithm for identifying true 
deaths, our study highlighted how race and ethnicity 
and sex were associated with the ability to match 
with this death registry for over one million people.

WHAT THIS STUDY ADDS
	⇒ An evaluation of the NDI matching algorithm at a 
large integrated healthcare system highlighted the 
algorithm strengths and pitfalls. The NDI can pro-
vide significantly more mortality data than other US 
death registry sources, but the matching algorithm 
missed some deaths determined with other sources. 
Women, Hispanic and Asian/Pacific Islander popula-
tions were more frequent in poorly matched records 
compared to those well matched to NDI.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Large studies with mortality outcomes and incom-
plete follow-up should use multiple mortality data-
bases and will benefit from a similar quality control 
of data from death registry sources.
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institutional databases.3–6 Most report that submitting 
SSN is the best identifier with high sensitivity and spec-
ificity.4 Where SSN is not available or partially matched, 
researchers have developed algorithms to enhance NDI 
results or use alternative matching results.

Race and ethnicity may be differentially linked with the 
availability of SSN, affecting matching with the NDI data-
base, potentially biasing mortality estimates.7 Hispanic 
people’s records appear to have higher missing SSN and 
other NDI fields compared with white and black people, 
possibly leading to inappropriate inferences about 
survival differences by ethnicity.7

Our objective was to produce a comprehensive dece-
dents dataset for KPMAS that could be used for research 
queries on vital status and cause of death for over 1 million 
members. We evaluated the NDI PS matching algorithm 
and developed quality control steps for our racially 
diverse population.

METHODS
Study population selection
The primary objective of our NDI submission was to find 
current vital status (by 31 December 2017) and the cause 
of death of a cohort of KPMAS members that were lost 
to follow-up, disenrolled or died without record in our 
electronic health record (EHR) system. We submitted 
members’ data naïve to death status on over one million 
members enrolled at KPMAS who had a date of last 
contact (identified by an outpatient encounter or blood 
pressure measurement) between 1 January 2005 and 31 
December 2017. We calculated follow-up time from the 
year of last contact to 2018, equivalent to the number of 
years searched per person by NDI.

Patient data were obtained from the Virtual Data 
Warehouse (VDW) which is a database derived from 
the KPMAS EHR. We submitted fields required by NDI 
including first, middle and last names, SSN, birth month, 
day and year, sex, and state of residence and marital 
status. We did not submit race, state of birth or father’s 
surname (for women).

To account for significant missing self-reported race and 
ethnicity data, we used the Bayesian Improved Surname 
and Geocoding algorithm8 9 probabilities available in 
a Kaiser Permanente data repository. We combined the 
Asian and Pacific Islander (A/PI) populations into one 
group and combined the American Indian and Alaskan 
Native (AI/AN) populations with the multiracial popu-
lation into an other group due to small sample sizes. 
We tested the association of missing SSN with race and 
ethnicity using a χ2 test and by adjusting for sex in a 
logistic regression analysis.

Evaluation of returned results and additional quality control
NDI returned record level data and summary statistics 
on people for our submission that matched records in 
their database. For the matched records, NDI provided 
information on which fields matched and an overall PS 

based on weighted matching. KPMAS members with 
scores above the cut-off were presumed dead because 
they matched well with someone with a death certificate 
in the NDI database. KPMAS members with scores below 
the cut-off were not considered a good match and so 
presumed alive. However, there is the possibility that some 
were actually a true match and should not be presumed 
alive, especially if the PS was borderline and a rerun with 
additional variables could increase the score. For people 
with multiple matching records, the PS provided a way 
to determine the best match. We evaluated each field for 
percent matched.

Quality assurance
NDI stratified groups of matching fields into classes. In 
brief, Class 1 requires matching at least eight digits of 
the 9-digit SSN, and the fields: first name, middle initial, 
last name, sex, state of birth, birth month, and birth year. 
Class 2 requires matching at least 7 digits of the SSN and 
one or more of the fields may not match. For Classes 3 
and 4, SSN is unknown but for Class 3, eight or more 
items match (first name, middle initial, last name, father’s 
surname (for women), birthday, birth month, birth year, 
sex, race, marital status or state of birth) and for Class 
4, fewer than eight of the items match. For Class 5, the 
SSN exists but does not match and all are considered 
false matches. The recommended cut-off values for the 
PS are 44.5, 37.5 and 32.5 for Classes 2, 3 and 4, respec-
tively. The NDI User guide1 stated that evaluations of 
the PS algorithm revealed biases in the classification of 
NDI match status for women and non-white persons, due 
to changing surnames for women and ‘lower reporting 
of SSNs and incorrect spelling or recording of ethnic 
names’, particularly for Class 4 matches.1 We compared 

Table 1  Characteristics of the population submitted to NDI 
(n=1 036 449) and the population with scores above the cut-
off (presumed dead) (n=38 862) and scores below the cut-off 
(presumed alive) (n=334 003)

Characteristics
Submitted, 
n (%)

Above cut-
off, n (%)

Below cut-
off, n (%)

Sex

 � F 527 330 (50.9) 17 213 (44.3) 160 460 (48.0)

 � M 509 119 (49.1) 21 649 (55.7) 173 543 (52.0)

Population*

 � A/PI 93 859 (9.1) 1699 (4.4) 30 384 (9.1)

 � Black 315 472 (30.5) 15 521 (39.9) 116 749 (35.0)

 � Hispanic 132 160 (12.8) 2021 (5.2) 43 199 (12.9)

 � Other 21 546 (2.1) 736 (1.9) 6419 (1.9)

 � White 470 440 (45.5) 18 767 (48.3) 136 188 (40.8)

 � Missing/not 
reported

2972 (0.3) 118 (0.3) 1145 (0.3)

*Imputed; A/PI=Asian or Pacific Islander; Other included 
American Indian/Alaskan Native and multiple race.
NDI, National Death Index.
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percent differences in all above and below cut-off PSs for 
sex and for imputed race and ethnicity using a χ2 test. For 
Class 4 within above and within below cut-off group, we 
used linear regression analyses to test the associations of 
PS with imputed race and ethnicity and sex, age at submis-
sion to NDI, state of residence and matched birthday, and 
matched birth year (everyone in Class 4 matched on birth 
month, so this variable was not included). For compar-
ison, we did the same analyses with self-reported race 
instead of imputed race.

To determine additional deaths identified by NDI and 
potential mismatches, we stratified by above and below PS 
cut-off records and compared NDI results to the KPMAS 
VDW on vital status, and differences or no difference in 
death dates. We calculated validation metrics of sensitivity 
and specificity for the VDW compared with NDI as the 
gold standard.10 We used SAS V.9.4 for analyses, where 

statistical tests were two-sided with a significance level of 
0.05.

RESULTS
We submitted 1 036 449 people to NDI. Follow-up time 
from the date of last contact was 1–13 years with a median 
of 6 years and average of 6.3 years. However, since we 
had 69% missing self-reported race and ethnicity (online 
supplemental table 1), we imputed race and ethnicity 
resulting in populations that were 9% A/PI, 31% black, 
13% Hispanic, 2% AI/AN/multiracial, 45% white and 
0.3% not reported due to a missing address (table 1).

Of the 1 033 477 people, with imputed race information, 
we found 143 452 (13.8%) were missing SSN. Percent 
missing SSN significantly differed among race and 
ethnicity (χ2, p<0.001), and a race–sex-adjusted logistic 

Figure 1  KPMAS submission matches the National Death Index and the process of inclusion. KPMAS, Kaiser Permanente 
Mid-Atlantic States.

https://dx.doi.org/10.1136/bmjhci-2023-100737
https://dx.doi.org/10.1136/bmjhci-2023-100737
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regression analysis showed all race and ethnicity catego-
ries were significant compared with the white population 
as a reference group, with Other having the largest OR 
(OR=14.3 (11.9, 17.1)) followed by the Hispanic popula-
tion (OR=2.34 (2.30, 2.39)) and by the A/PI population 
(OR=1.56 (1.53, 1.60)). An analysis of self-reported data 
showed similar results, except that the Other group had a 
smaller OR (online supplemental tables 2 and 3).

We obtained summary statistics on 372 865 people that 
matched records in the NDI (figure 1). We found 663 061 
people did not match the NDI database and 522 people 
were rejected for inclusion of special characters in the 
fields and one duplicate record was removed. Therefore, 
we classified 663 583 as alive according to NDI. However, 

there were 1188 deaths among these patients according 
to the VDW sources by 31 December 2017.

Above PS cut-off (presumed dead)
Of the 372 865 people that matched records in NDI, we 
found 38 862 unique people had PSs above the class cut-
off threshold (tables 2 and 3, figure 1).

There were no records in Class 1 because state of birth 
was not submitted. Class 3 had very few matches because 
father’s surname and race were not submitted and very 
few people submitted had marital status information. 
Table 2 shows that there was a high percentage of exact 
matches between the data submitted and the NDI data-
base for each field within each class. Only middle initial 

Table 2  Exact match on submitted variables for records with scores above the cut-off (presumed dead)

Variable Class 2 (n=35 441) Class 3 (n=9) Class 4 (n=3412)

First name 34 088 (96.2%) 9 (100%) 3337 (97.8%)

 � Only the first initials and names match NYSIIS 416 (1.2%) 0 31 (0.9%)

Middle initial 21 193 (59.8%) 9 (100%) 1893 (55.5%)

Last name 34 550 (97.5%) 9 (100%) 3385 (99.2%)

 � Names match only NYSIIS phonetic codes 188 (0.5%) 0 27 (0.8%)

Birth month 35 249 (99.5%) 9 (100%) 3412 (100%)

Birth year 34 859 (98.4%) 9 (100%) 3361 (98.5%)

 � Within 1 year before or after 316 (0.9%) 0 24 (0.7%)

Sex 35 344 (99.7%) 9 (100%) 3400 (99.6%)

Marital status 73 (0.2%) 9 (100%) 0

State of residence 30 605 (86.4%) 8 (88.9%) 3015 (88.4%)

SSN digit count

 � 0 or no SSN 0 7 (77.8%) 3403 (99.7%)

 � 7 190 (0.5%) 0 0

 � 8 711 (2.0%) 0 0

 � 9 34 540 (97.5%) 0 0

All data items exactly with the related items on the NDI Records 23 396 (66.0%) 5 (55.6%) 2290 (67.1%)

NDI, National Death Index; NYSIIS, New York State Identification and Intelligence System; SSN, social security number.

Table 3  NDI matches (n=372 865) stratified by class and probabilistic score, with death dates compared with the VDW

Above cut-off (KPMAS member presumed dead) Class 2 Class 3 Class 4 Class 5 Sum

NDI and VDW match on exact death date 25 327 7 1972 0 27 306

NDI and VDW death dates do not match exactly 1430 0 109 0 1539

NDI death date but no death date in VDW 8684 2 1331 0 10 017

Sum 35 441 9 3412 0 38 862

Below cut-off (KPMAS member presumed alive) Class 2 Class 3 Class 4 Class 5 Sum

NDI and VDW match on exact death date 527 0 121 222 870

NDI and VDW death dates do not match exactly 23 0 194 771 988

NDI (below cut-off) and no death date in the VDW 1022 0 55 942 275 181 332 145

Total 1572 56 257 276 174 334 003

KPMAS, Kaiser Permanente Mid-Atlantic States; NDI, National Death Index; VDW, Virtual Data Warehouse.

https://dx.doi.org/10.1136/bmjhci-2023-100737
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and state of residence had less than 95% matching for 
all classes. A high percentage of above PS cut-off records 
(89%) were matched exactly by their 9-digit SSN.

Below PS cut-off (presumed alive)
Of the 372 865 people that matched records in NDI, we 
found 334 003 had PSs that were below the threshold for 
class, therefore considered poor matches and the KPMAS 
member was presumed alive (table  3). Most, (82.7%) 
were in Class 5 (people who had an SSN that did not 
match any SSN in NDI).

Comparison between NDI and the KPMAS VDW on death date
Comparing death dates more closely, we analysed the 
number of NDI records above the PS cut-off, where the 
death dates matched exactly with the VDW, were missing 
in the VDW or did not match the VDW (table 3, figure 1).

Of the 38 862 above PS cut-off records, there were 
1539 (4.0%) records where NDI and VDW matched in 
deceased vital status but had non-matching death dates. 
The death dates differed with a median of 2 days, IQR 
(1–9 days), maximum of 10 212 days. Of these, there were 
1421 that also matched exactly on first and last names, 
and birth month, and birth year and sex and 1021 that 
matched on all variables.

For the below PS cut-off records (table  3), we anal-
ysed possible matching on 1858 death dates between the 
VDW and NDI, due to the possibility that some of these 
NDI records were true matches and therefore could be 
linked to identifiable deaths and cause of death could 
be obtained. We found 870 records where death dates 
matched exactly to our VDW. Of these, 300 also matched 
exactly on first and last names, and birth month, and birth 
year and sex; there were only 17 that mismatched on day 
of birth but 139 had mismatches on state of residence.

Sensitivity and specificity
The submission to NDI provided an additional 10 017 
records presumed dead compared with using our VDW 
alone at the time of submission (tables 3 and 4). Table 4 
shows a comparison of deaths found with the NDI best 
score algorithm to the deaths found in the VDW for all 
records submitted. We had 74.2% sensitivity and 99.7% 
specificity on death matches, with NDI as the gold 
standard.

PSs stratified by sex and race and ethnicity
The above cut-off scores had a higher percentage of men 
(55.7%) compared with below cut-off scores (52.0%), 
p<0.0001. Imputed race and ethnicity were signifi-
cantly different between above and below cut-off scores, 
p<0.0001: above scores had lower percentages of A/PI 
and Hispanic people and had higher percentages of white 
and black people (table 1). Similar results were seen for 
self-reported race (online supplemental table 1).

Class 4 matches are independent of SSN and depen-
dent on name matching. In multivariate linear regres-
sion analyses of Class 4 scores for above and below the 
PS cut-off, we found sex and imputed race and ethnicity 

were significantly associated with PS in each group. In 
the above cut-off-score group, women had slightly higher 
scores compared with men (online supplemental table 
4). Compared with the reference white population, the 
imputed A/PI populations group had 4.8 times higher 
PS, while scores for Hispanic people were not signifi-
cantly different; similar results were seen for self-reported 
race (online supplemental table 4). In the below cut-off-
score group, women had lower PS compared with men. 
The imputed Hispanic and black populations had higher 
PS while the A/PI group and the other group had lower 
PS compared with the reference white population, both 
statistically significant; similar results were seen for self-
reported race, except that the black and other group did 
not have statistically different PS scores compared with 
the white population (online supplemental table 4).

DISCUSSION
Data from the NDI can substantially improve the overall 
capture of deaths over other nationally available sources. 
We obtained information on an additional 10 017 deaths 
compared with the KPMAS VDW (sourced from the SSA 
Death Master File, some state registries and the local 
KPMAS EHR). However, there were deaths in the KPMAS 
VDW that were classified as presumed alive by the NDI 
algorithm. We observed variation in PSs with sex and 
race and ethnicity. The above cut-off scores had lower 
percentages of women, A/PI and Hispanic populations 
compared with the scores below the cut-off. For records 
not matched on SSN (in Class 4), NDI scores also varied 
by sex and by race and ethnicity.

The primary source of VDW data is the SSA death master 
file (SSA-DMF) which, while economic and refreshed 
quarterly, has been reported to have limitations in the 
capture of deaths, particularly for younger people and by 
state.11 12 The SSA-DMF became more limited when on 1 
November 2011, the SSA removed 4.2 million protected 
state death records and continues to add 1 million fewer 
annually, as a result of changes in the Social Security Act 

Table 4  NDI matches compared with VDW deaths by 31 
December 2017 for complete submission

NDI*

Total submittedDeceased Alive

VDW

 � Deceased 28 845 3027† 31 872

 � Alive 10 017 994 560 1 003 638

38 862 997 587 1 036 449

*NDI=patients considered deceased if matching algorithm 
probabilistic score was above the threshold (best score); matches 
below the PS and no matches to the database were presumed 
alive.
†1188 did not match the NDI database.
NDI, National Death Index; PS, probabilistic score; VDW, Virtual 
Data Warehouse.

https://dx.doi.org/10.1136/bmjhci-2023-100737
https://dx.doi.org/10.1136/bmjhci-2023-100737
https://dx.doi.org/10.1136/bmjhci-2023-100737
https://dx.doi.org/10.1136/bmjhci-2023-100737
https://dx.doi.org/10.1136/bmjhci-2023-100737
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(section 205(r)).12 13 Authors comparing NDI and the SSA 
Master File emphasise the importance of using multiple 
sources to ascertain death status for mortality studies and 
noted the more complete capture of death by NDI even 
prior to 2011.6 12 14

Deaths that appear in our local database but not in NDI 
could be explained by missing or mismatched fields in the 
submission which could result in a non-match or lower than 
expected PS. Geisinger notes that the NDI algorithm did 
not capture some known deaths in the World Trade Center 
Health Registry, with higher discrepancies among those 
missing SSN and non-white populations.15 Sayer16 showed 
that the NDI algorithm is sensitive to mismatch on exact 
first names when SSN is missing. In multiple matches to the 
database, the top scoring match may not be the true match. 
When we also examined ‘presumed alive’ matches, we 
found there were over 300 matched people who had exact 
matching on death date, first name, last name and birth 
month and year. State of residence appeared to be the most 
frequently mismatched field for these people. Additional 
cause of death on these probable matches could be obtained 
by resubmitting data to NDI.

The A/PI and Hispanic populations were smaller 
compared with the white and black populations at our 
institution and had a higher percent missing SSN. Arias et 
al (2016)17 studied misclassification of race and ethnicity 
on death certificates used in the National Longitudinal 
Mortality Study and reported there was accurate race and 
ethnicity reporting for white and black populations during 
the 1999–2011 period, but there was 40% misclassification 
for the AI/AN population and 3% misclassification for A/PI 
and for Hispanic populations. When we focused on the Class 
4 population which were missing SSN, we also found differ-
ences in the scores by sex and by race and ethnicity, particu-
larly for the A/PI and Hispanic populations compared with 
white population. In the above-cut-off Class 4 group, the A/PI 
had much higher PSs compared with the white population, 
but the reasons for the higher scores are unclear, possibly 
due to less variability or missingness for other matching vari-
ables. While matches for below the cut-off may be discarded, 
slight changes in information available on race, sex and state 
of residence may be influential in accepting a match for 
borderline cases.

There were some limitations to this study. Several variables 
that could have improved matching to NDI were not used or 
were unavailable or were very limited at the time of submis-
sion including: self-reported race and ethnicity, father’s 
surname, state of birth and marital status. There may have 
also been deaths missed due to a reporting lag by the states 
to NDI. Further, a review of death certificates would have 
been more definitive for the questionable matches. The 
primary strengths of this study were the large sample size, a 
diverse population and the ability to identify key identifiers 
for high scoring matches to NDI. We also demonstrated that 
imputed (and self-reported) race and ethnicity is correlated 
with missing SSN and that both race and ethnicity and sex 
(directly or indirectly through surname) impact matching 
to NDI.

CONCLUSION
In conclusion, NDI complements other sources of death 
data and provides increased information on vital status 
and cause of death. Other researchers using NDI data 
may benefit from a comparison group of known deaths 
either from SSA or a manual validation of internal data. 
At our institution, for records with a deceased vital status 
that had scores above the cut-off, over 90% matched on 
at least 7 digits of the SSN. However, it is important to 
investigate quality control measures by NDI class and 
matching variables, particularly for people missing SSN 
or with specific ethnic backgrounds. This validation step 
is essential to ensure the accuracy of the NDI best match 
algorithm and to obtain the maximum return on data 
submitted to NDI.
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ABSTRACT
Background and objectives  More than 93 million 
COVID-19 cases and more than 1 million COVID-19 deaths 
have been reported in the USA by August 2022. The 
disproportionate effect of the pandemic and its severe 
impact on vulnerable communities raised concerns. This 
research aimed to identify and rank Social Vulnerability 
Index (SVI) factors highly predictive of the spread of 
COVID-19 in the US South at the beginning of the 
pandemic.
Methods  We used Extreme Gradient Boosting (XGBoost) 
machine learning methodology and SVI data, and the 
number of COVID-19 cases across all counties in the US 
South to predict the number of positive cases within 30 
days of a county’s first case.
Results  Our results showed that the percentage of 
mobile homes is the most important feature in predicting 
the increase in COVID-19. Also, population density per 
square mile, per capita income, percentage of housing 
in structures with 10+ units, percentage of people below 
poverty and percentage of people with no high school 
diploma are important predictors of COVID-19 community 
spread, respectively.
Conclusions  SVI can help assess the vulnerability or 
resilience of communities to the spread of COVID-19 and 
can help identify communities at high risk of COVID-19 
spread.

INTRODUCTION
More than 93 million COVID-19 cases and 
more than 1 million COVID-19 deaths 
have been reported in the USA by August 
2022.1 The pandemic has disproportion-
ally affected minority communities at 
the local level.2 Even at the early stages 
of the pandemic, the severe impact of 
COVID-19 on vulnerable communities 
raised concerns.3 Historically, poverty, 
inequalities and social determinants of 
health facilitate the spread of infectious 
diseases.4 There is evidence that socioeco-
nomic factors may influence the spatial 
spread of COVID-19 at the county level.5 
Past pandemics also have shown that social 
and economic factors influence vulnera-
bility to infection and health outcomes.6 
Further, individuals residing in deprived 

neighbourhoods (ie, neighbourhoods 
with higher poverty, lower education, low 
housing quality and low employment rates) 
had a higher risk of COVID-19 infection.7 
Also, a recent study analysed the associa-
tion of social, economic and demographic 
factors in the initial spread of COVID-19 
and reported that social and economic 
factors are strongly and positively associ-
ated with COVID-19.8

Many communities in the US South have 
substantial social vulnerabilities that may 
worsen the impact of COVID-19. In recent 
weeks, the US South has become a major 
region of community spread, ranging from 
Florida to Texas (figure  1). While studies 
suggest effective policies, including lock-
downs and mandatory mask use, that are 
effective for controlling the spread of 
COVID-19 in communities,9 10 in several of 
these states, lack of consistent and effec-
tive public policies to mitigate infection 
spread has been a source of debate. In 
Georgia, for example, the governor filed a 
lawsuit (later dropped) against the mayor 
of Atlanta in order to prevent the latter’s 
enforcement of a mask mandate.11 The city 
of Atlanta is racially diverse and minority 
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communities have experienced both high rates of 
poverty and other socioeconomic vulnerabilities as 
well as COVID-19 community spread.

Social vulnerability is the resilience of commu-
nities against disease outbreaks and natural or 
human-caused disasters.12 It is applicable to identify 
communities most at risk when faced with adverse 
events that may impact health (eg, disease outbreaks). 
Social vulnerability refers to socioeconomic and 
demographic factors that affect a community’s ability 
and power to prevent human suffering in the event 
of disaster or outbreaks. The Centers for Disease 
Control and Prevention (CDC) categorises these 
socioeconomic and demographic factors into four 
overall vulnerability domains: socioeconomic status, 
household composition, and disability, minority status 
and language, and housing type and transportation.13 
The Social Vulnerability Index (SVI) provides social 
and spatial information to help public health officials 
and local emergency response planners to identify 
communities at high risk of being adversely affected 
during a crisis.13 This information helps communities 
to prepare for a better response to emergency events 
especially disease outbreaks.12 13 SVI was associated 
with increased rates of COVID-19.14 Also, counties 
with the highest SVI had a greater risk of COVID-19 
infection and death,3 and most vulnerable counties 
had higher death rates, especially at the beginning of 
the pandemic.15

Although race/ethnic minority communities 
have been disproportionately impacted by COVID-
19,3 6 16 17 the role of specific social vulnerabilities such 
as poverty, housing insecurity and other issues faced 
in these communities that contribute to the spread 

of infection at the beginning of the pandemic and 
spread of the COVID-19 virus is unclear. To address 
this gap in knowledge, we use machine learning-
based analyses of the SVI data to identify and rank 
SVI factors that are highly predictive of the spread of 
COVID-19 cases at the county level across 11 states in 
the US South.

METHODS
Study setting and design
This machine learning-based study included COVID-19 
cases and 16 social vulnerability features for all coun-
ties across 11 US states located in the South, including: 
Alabama, Arkansas, Florida, Georgia, Louisiana, Missis-
sippi, North Carolina, Oklahoma, South Carolina, 
Tennessee and Texas (online supplemental figures 
A1,A2). To investigate the association of social vulnera-
bility factors and the spread of COVID-19 at the county 
level, we use an effective prediction algorithm regression 
method. We regress the number of COVID-19 cases 30 
days after the first confirmed COVID-19 case in each 
county against social vulnerability features (detailed 
below). We chose to examine the US South because of 
the number of major COVID-19 ‘hot spots’ located in 
that region as well as the region’s long-standing histor-
ical socioeconomic inequities across minority and non-
minority communities.18

Study sample and data
We used daily COVID-19 cases from January 2020 to 
August 2020 from the official website of Johns Hopkins 
University’s Coronavirus Resource Center.1 For each 
county in the US South (1086 counties), we identified 

Figure 1  County-level distribution of COVID-19 cases in the US South (August 2020). US South region includes the states of 
Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee and Texas.
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the number of COVID-19 cases 30 days after their first 
COVID-19 case was confirmed.

We also used the latest SVI data available from the 
CDC released in 2018.13 We used 16 social vulnerability 
features as independent variables: percentage of people 
below poverty, unemployment rate, per capita income, 
percentage of people with no high school diploma, 
percentage of people aged 65 and older, percentage 
of people aged 17 and younger, percentage of non-
institutionalised people with a disability, percentage 
of single-parent households with children, percentage 
of minority people (except white, non-Hispanic), 
percentage of people aged 5+ who speak limited English, 
percentage of housing in structures with 10+ units, 
percentage of mobile homes, percentage of overoccupied 
housing units, percentage of households with no vehicle 
available, percentage of institutionalised group quarters 
(eg, correctional institutions, nursing homes) and popu-
lation density per square mile (see online supplemental 
table A1 for definitions). All data used in the manuscript 
are publicly available.

Statistical analysis
We used Extreme Gradient Boosting (XGBoost) to predict 
the number of positive cases within 30 days of a county’s 
first case. XGBoost is a scalable machine learning system 
using gradient tree boosting which is available as an open 
source software package.19 Chen and Guestrin presented 
the XGBoost algorithm in 2016.20 XGBoost is a highly 
effective and widely used machine learning method that 
can be used for regression, classification and predic-
tion.20 Gradient boosted decision trees (GBDT) are an 
ensemble learning method (ie, a method that aggregates 
the predictions of a group of predictors) which uses deci-
sion trees as their base predictor and sequentially adds 
decision trees to the ensemble, while each added tree 
improves the fit of its predecessor to the data.21 XGBoost 
benefits from several innovations and optimisation tech-
niques to add scalability to GBDT, making it faster and 
yielding better performance. In this study, the XGBoost 
algorithm is used to predict COVID-19 cases as the sum of 
predictions from thousands of individual decision trees, 
with each trained on the residual of all previous trees 
and making marginal improvements to the overall model 
prediction.19 21

While XGBoost learns from the training data and 
makes predictions with the testing data, it also uses 
different importance metrics to produce an importance 
matrix that contains the information gain, cover and 
frequency of features that have been actually used in the 
boosted trees. The interpretation of prediction results 
and how features contribute to the prediction is based 
on these three importance metrics. Gain is the most rele-
vant attribute to interpret the relative importance of each 
feature and denotes the relative contribution of a feature 
in explaining variation in outcomes within the model, 
that is, a higher feature gain implies that the feature is 
more important for generating the prediction. Cover 

denotes the average coverage (the relative number of 
counties affected) of splits which use a specific feature. 
It simply corresponds to the percentage of the counties 
which the feature is used to decide the leaf node for 
them. Frequency is the percentage representing the rela-
tive number of times a specific feature occurs across all 
the trees estimated within the model.22 All measures are 
reported as relative amounts and hence all sum up to 1.

A subset of 869 counties (80% of the total 1086 coun-
ties) were used as our training data set, and 217 counties 
(20% of all counties) were used for our testing data set. 
We used 10-fold cross-validation, which is a commonly 
used statistical method in applied machine learning 
methods, to tune the model’s hyperparameters. Cross-
validation assesses how the results of a statistical analysis 
will generalise to an independent data set and tests the 
model’s ability to predict with a new data set. It also points 
out problems like overfitting or selection bias.23 Tenfold 
cross-validation divided the training sample into 10 parts; 
the model is trained on nine parts (90% of the 869 coun-
ties), and performance is measured by the ability to accu-
rately predict COVID-19 cases by the remaining part (the 
other 10% of 869 counties). When the hyperparameters 
of the XGBoost model are tuned, the XGBoost is trained 
using the tuned parameters on all the 869 counties. 
Finally, the model is used to predict the outcomes (ie, 
number of positive COVID-19 cases after 30 days of the 
county’s first confirmed case) for the test data (ie, the 217 
counties). We also conducted a SHapley Additive exPla-
nations (SHAP) analysis to explain the predictions of 
machine learning models. A positive SHAP value means 
a positive impact of the features on prediction. Finally, 
for the sensitivity analysis the model was used to predict 
the outcomes that was number of positive COVID-19 
cases after 60 days of the county’s first confirmed case. We 
used the RStudio V.4.0.2 (R Core Team, 2020) statistical 
package for all analyses.

RESULTS
Table 1 provides sample characteristics of the 16 SVIs and 
COVID-19 cases and COVID-19 rates per 100 000 popu-
lation after 30 days of the first COVID-19-positive cases in 
all counties in the 11 states of the US South (1086 coun-
ties). On average, 85.3 COVID-19 cases were reported 
after 30 days of the first reported case in a county, and 
a maximum of 6119 COVID-19 cases after 30 days of the 
first case in a county. Also, on average, 139.5 COVID-19 
cases per 100 000 population were reported after 30 
days of the first reported case, and a maximum of 4026.8 
COVID-19 cases per 100 000 population after 30 days of 
the first case in a county.

To evaluate the accuracy of our model, we tested the 
reliability of our predictions on 217 counties in the 
test data set. Goodness of fit and prediction evalua-
tion (adjusted R-squared=0.59, root mean square error 
(RMSE)=92.36) indicates that the model was robust 
(online supplemental table A2). Online supplemental 
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figure A5 also shows calibration plot of the predicted 
versus observed COVID-19 rates. Figure 2 shows the result 
of XGBoost gain relative importance. The percentage of 
mobile homes in counties is the most important feature, 
followed by population density per square mile and per 
capita income, in predicting the growth of COVID-19 
within 30 days of the first case. The relative contri-
butions of percentage of mobile homes, population 

density per square mile and per capita income to the 
model for generating predictions are 0.35, 0.12 and 
0.12, respectively. Percentage of housing in structures 
with 10+ units, percentage of people below poverty and 
percentage of people with no high school diploma have 
relative contributions of 0.10, 0.08 and 0.04, respectively. 
The percentage of overoccupied housing units and the 
percentage of institutionalised group quarters are the 

Figure 2  Extreme Gradient Boosting (XGBoost) gain relative importance. The measures are all reported as relative amounts 
and all sum up to 1.0.

Table 1  Descriptive statistics of the 16 SVIs and COVID-19 cases and COVID-19 rates per 100 000 population after 30 days 
of the first COVID-19-positive cases in all counties in the US South (1086 counties)

Feature Min Median Mean Max SD

Below poverty, % 2.6 17.9 18.8 49.7 6.4

Unemployment rate, % 0 6.4 6.8 25.8 2.8

Per capita income 12 292 23 540 24 183 50 931 5078

No high school diploma, % 4.4 16.9 17.5 66.3 6.1

Aged 17 and younger, % 7.3 22.9 22.8 36.6 3.2

Non-institutionalised with a disability, % 5.3 17.2 17.3 31 4.1

Single-parent households with children, % 0 9.1 9.3 22.7 2.8

Minority (except white, non-Hispanic), % 1.1 34.1 35.4 99.3 19.7

Aged 5+ who speak limited English, % 0 1.1 2.2 30.4 3.4

Housing in structures with 10+ units, % 0 1.8 3.5 38.5 4.7

Mobile homes, % 0.5 18.0 18.9 59.3 9.9

Overoccupied housing units, % 0 2.4 2.8 21.2 1.8

Households with no vehicle available, % 0 5.9 6.4 20.3 2.9

Institutionalised group quarters, % 0 1.8 3.9 36.5 5.3

Population density per square mile 0.2 49.2 147.1 3499.1 318.9

COVID-19 cases after 30 days 0 23 85.3 6119 317.7

COVID-19 cases per 100 000 population after 30 days 0 63.6 139.5 4026.8 250.9

SVI, Social Vulnerability Index.
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least important features in the model with relative gains 
of 0.003 and 0.002, respectively.

The relative cover for percentage of mobile homes, 
population density per square mile and per capita income 
is 0.09, 0.12 and 0.07, respectively, which shows the rela-
tive proportion of counties in our sample that include 
these features across all the decision trees (online supple-
mental figure A3). Also, the relative cover for percentage 
of housing in structures with 10+ units, percentage of 
people below poverty and percentage of people with no 
high school diploma is 0.7, 0.06 and 0.06, respectively. 
Relative frequency is calculated as the proportion of deci-
sion tree nodes that include a specific feature. The result 
of relative frequency shows that percentage of mobile 
homes, population density per square mile and per capita 
income occurred in 0.069, 0.093 and 0.079 of nodes within 
the trees of the model, respectively (online supplemental 
table A4). In addition, percentage of housing in struc-
tures with 10+ units, percentage of people below poverty 
and percentage of people with no high school diploma 
accounted for 0.059, 0.085 and 0.061 of nodes in the trees 
of the model, respectively. Additional XGBoost feature 
importance matrix details can be found in online supple-
mental table A3. Figure 3 shows the results of the SHAP 
analysis. Population density per square mile, percentage 
of housing in structures with 10+ units and percentage of 
people below poverty had the most positive impact on the 
number of COVID-19 cases in a county. Also, per capita 
income and aged 17 and younger features had the most 
negative impact on the number of COVID-19 cases in a 
county.

Online supplemental table A4 shows the result of 
XGBoost gain relative importance after 60 days of the 

county’s first COVID-19 case. The population density per 
square mile in counties is the most important feature in 
predicting the growth of COVID-19 within 60 days of the 
first case with a relative gain of 31.8%. This is followed 
by percentage of housing in structures with 10+ units and 
percentage of mobile homes, with relative gains of 30.4% 
and 11.2%, respectively. Also, percentage of people aged 
65 and older, per capita income and percentage of people 
aged 5+ who speak limited English have relative contri-
butions of 5.5%, 4.9% and 2.6%, respectively. Additional 
XGBoost feature importance matrix details can be found 
in online supplemental table A4.

DISCUSSION
Our machine learning study used SVI data and number 
of COVID-19 cases across all counties in the US South to 
analyse the association of social vulnerability features in 
predicting the community spread of infection. Our anal-
ysis suggests that the percentage of mobile homes within 
a county is the most important feature in predicting the 
increase in COVID-19. This was followed by population 
density per square mile and per capita income. Percentage 
of housing in structures with 10+ units, percentage of 
people below poverty and percentage of people with no 
high school diploma were also important predictors of 
community spread. However, the percentage of large, 
multifamily housing units and the percentage of insti-
tutionalised group quarters were the least important 
features in predicting COVID-19 spread at the county 
level.

Our findings are consistent with the results from 
prior studies that investigated COVID-19 cases and 

Figure 3  Shapley additive explanations (SHAP) analysis results.
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socioeconomic factors and considered the impact of 
the pandemic on racial and ethnic minorities.2 3 16 24 25 
Studies report a disproportionate rate of infections and 
deaths among non-Hispanic Blacks and Hispanics.2 25 
For example, a recent study found that minority status 
and language, household composition and transpor-
tation, and housing and disability were associated with 
the number of COVID-19 cases in the USA.25 Poverty, 
crowded housing and lack of vehicle ownership were 
reported to be associated with increased COVID-19 cases 
and deaths in urban areas. Also, high population densi-
ties catalyse the spread of COVID-19; therefore, avoiding 
situations with higher population densities will limit the 
spread of COVID-19.26 In addition, in rural communities, 
minority status and language are associated with increases 
in COVID-19 cases.3 Another study reported that coun-
ties with a higher percentage of minority, high-density 
housing structures and crowded housing units were at 
higher risk of becoming a COVID-19 hot spot.27 A study 
of urban-rural differences in COVID-19 exposures and 
outcomes in South Carolina has shown a positive correla-
tion between the case rates, mortality rates and pre-
existing social vulnerability. Also, a negative correlation 
between mortality rates and county resilience patterns 
suggests that counties with higher levels of inherent resil-
ience had lower death rates.28

Although the US South has numerous hot spots of 
community spread of COVID-19, there are a few prior 
studies that have systematically investigated the initial 
spread of COVID-19 in relation to social vulnerabilities 
across counties in the region. A recent study investi-
gated the spatial association of social vulnerability with 
COVID-19 prevalence and reported a spatially varying 
relationship between SVI and COVID-19 cases and 
deaths.29 Further, our use of a machine learning approach 
helped determine the specific community vulnerabilities 
that are most salient in determining the rapid spread of 
COVID-19. One study reported that mobility habits (eg, 
number of citizens who make at least one trip per day; 
transport accessibility; distance from the main city clus-
ters) have a positive association for the spread of COVID-
19.30 A recent study also forecasted the geographic spread 
of COVID-19 as a communicable disease by using social 
structure of networks.31 Aggregated data from Facebook 
also showed that COVID-19 cases were more likely to 
spread between regions that had stronger social network 
connections.32 Google COVID-19 Community Mobility 
Reports also provide a new tool to assess the role of poli-
cies to mitigate community spread (eg, to work from 
home, shelter in place and other recommendations) in 
flattening the curve of the COVID-19 pandemic.33

This study is subject to limitations. The results of this study 
should not be interpreted in a causality context. There are 
various state and local policies (eg, lockdown, business closure 
and facial mask mandate) that may have impacted our find-
ings. Hence, residual confounding should be considered 
due to omission of important covariates. Also, the number 
of COVID-19 cases in a county might affect the number of 

cases in neighbouring counties through the connection 
between counties. Finally, our results are regional and may 
not generalise to other regions of the USA. With the avail-
ability of various free COVID-19 vaccines, the USA still strug-
gles to fight the pandemic, and new waves of COVID-19 are 
an ongoing threat to public health in the USA. More studies 
are needed to investigate the resilience of vulnerable coun-
ties against COVID-19.

CONCLUSIONS
Our findings showed that SVI can help assess the vulner-
ability or resilience of communities to the spread of 
COVID-19. Thus, our results can help identify communi-
ties at high risk of spread and aid in policy efforts tailored 
to addressing these communities’ specific vulnerabilities 
to COVID-19. An understanding of the role social vulner-
abilities have in determining the spread of COVID-19 
is critical for forecasting the trajectory of this disease 
and designing effective mitigation interventions at the 
community level.
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