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ABSTRACT
Introduction  The SARS-CoV-2 (COVID-19) pandemic has 
exposed health disparities throughout the USA, particularly 
among racial and ethnic minorities. As a result, there is a 
need for data-driven approaches to pinpoint the unique 
constellation of clinical and social determinants of health 
(SDOH) risk factors that give rise to poor patient outcomes 
following infection in US communities.
Methods  We combined county-level COVID-19 testing 
data, COVID-19 vaccination rates and SDOH information in 
Tennessee. Between February and May 2021, we trained 
machine learning models on a semimonthly basis using 
these datasets to predict COVID-19 incidence in Tennessee 
counties. We then analyzed SDOH data features at each 
time point to rank the impact of each feature on model 
performance.
Results  Our results indicate that COVID-19 vaccination 
rates play a crucial role in determining future COVID-19 
disease risk. Beginning in mid-March 2021, higher 
vaccination rates significantly correlated with lower 
COVID-19 case growth predictions. Further, as the relative 
importance of COVID-19 vaccination data features grew, 
demographic SDOH features such as age, race and 
ethnicity decreased while the impact of socioeconomic 
and environmental factors, including access to healthcare 
and transportation, increased.
Conclusion  Incorporating a data framework to track the 
evolving patterns of community-level SDOH risk factors 
could provide policy-makers with additional data resources 
to improve health equity and resilience to future public 
health emergencies.

INTRODUCTION
The SARS-CoV-2 (COVID-19) pandemic 
exacerbated health inequities throughout 
the USA, disproportionately affecting at-risk 
populations.1 Identifying social determi-
nants of health (SDOH) risk factors within 
US communities that contribute to poor 
outcomes following infection can improve 
health equity and strengthen community 
readiness for future public health emer-
gencies.2 3 Following vaccine roll-outs in 
2021, we predicted Tennessee COVID-19 

case growth using machine learning models 
and investigated the influence of SDOH 
factors on COVID-19 incidence to quantify 
and track opportunities to improve health 
equity.

METHODS
Our approach combined publicly available 
COVID-19 testing, vaccination, hospitaliza-
tion and death metrics with county-specific 
SDOH and demographic data.4 5 Data 
sources included the Tennessee Depart-
ment of Health, Johns Hopkins Coronavirus 
Research Center and the US Census data-
base. We employed feature engineering and 
feature selection to identify novel predictors 
such as offset case counts to best represent 
changes in Tennessee county COVID-19 
incidence between February and May 2021. 
We aggregated data from multiple sources 
to minimize implicit bias and removed or 
ignored missing values depending on the 
model type. An ensemble of generalized 
linear and tree-based machine learning 
models was built in parallel, each trained 
and tested with 4–6 weeks of historical 
COVID-19 case data to generate predictions 
from 40 to 50 models at 13 time points. 
Optimal models were selected using cross-
validation metrics (eg, mean absolute error, 
R2) and prediction accuracy for future 
relative case growth normalized to county 
population.6 We analyzed the impact of all 
features from top performing models to 
quantify and rank SDOH by their influence 
on COVID-19 incidence predictions. Finally, 
we calculated Pearson coefficients to quan-
tify associations between vaccination rates 
and county COVID-19 case growth over 
time.
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RESULTS
Machine learning models across all time points were more 
than 90% accurate when comparing model predictions to 
actual cases (online supplemental figure 1A and C). The 
top models demonstrated an average R2 value of 0.99, 
mean absolute error of 0.21 and 0.001 mean Tweedie 
deviance (online supplemental figure 1B).

Highly predictive SDOH features changed in impor-
tance over time. Categorically, demographic SDOH were 
most important in February 2021, but socioeconomic 
and environmental SDOH became increasingly more 
influential towards May. Health outcome SDOH features 
remained largely consistent during the study period. 
Individually, the female and under 18 age demographic 
features ranked highest in February and then declined 
while African American poverty and health infrastruc-
ture features, such as the number of hospital beds and 
community provider access statistics, increased in impor-
tance by mid-April. Lastly, COVID-19 vaccination data 
features grew in relative importance by May compared 
with the other SDOH factors (figure 1).

As Tennessee vaccination rates increased, counties 
with the lowest vaccination rates exhibited the highest 
COVID-19 case growth (online supplemental figure 
2A). Initially, vaccination rates were not correlated with 
COVID-19 risk, but by mid-March, a statistically signifi-
cant correlation with low risk of COVID-19 case growth 
emerged (online supplemental figure 2B).

DISCUSSION
Efforts to curtail the health and economic impact of the 
SARS-CoV-2 pandemic illuminate the need to define 
specific risk factors that catalyze future case growth, 
worsen health disparities and adversely impact the public 
health response across US communities.7 Addressing 
these challenges, we constructed a real-time predictive 
framework to discover and rank county-level SDOH risk 
factors that drive machine learning predictions of future 
COVID-19 incidence (figure 1).

In Tennessee, we found that communities with rapid 
vaccine roll-out were at lower risk for case growth (online 
supplemental figure 2). As vaccination levels began to 
rise, demographic SDOH features such as age, race and 
ethnicity declined in relative importance while socioeco-
nomic and environmental risk factors such as poverty, 
access to transportation and healthcare infrastructure 
increased significantly. Measures promoting health equity 
rely on constant assessment of risk mitigation effective-
ness. Real-time knowledge of community specific SDOH 
risk factors empowers healthcare organizations and local 
governments to improve policy and resource allocation 
to mitigate outbreaks, enhance resilience to future public 
health threats, and capture evolving risk profiles as novel 
virus variants emerge.8
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Figure 1  Social determinants of health (SDOH) linked to 
COVID-19 case growth in Tennessee dynamically shift in 
importance over time. SDOH include social, physical and 
environmental factors that impact community health such 
as age, race, gender, access to transportation, access to 
primary care and community vaccination rates. Twelve of 
these SDOH features demonstrated the highest feature 
importance across all predictive models during the study 
period. Size and color are used to emphasize SDOH feature 
importance at each time point. large, red ( ) bubbles 
connote the top ranked SDOH feature while small dark blue 
( ) bubbles signify least importance of a given feature at each 
time point. Black bubbles ( ) represent the least important 
feature at each time point compared with the other top 
ranked SDOH data elements.
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ABSTRACT
Objectives  To implement a unified non-emergency 
medical transportation (NEMT) service across a large 
integrated healthcare delivery network.
Methods  We assessed needs among key organisational 
stakeholders, then reviewed proposals. We selected a 
single NEMT vendor best aligned with organisational 
priorities and implemented this solution system-wide.
Results  Our vendor’s hybrid approach combined 
rideshares with contracted vehicles able to serve patients 
with equipment and other needs. After 6195 rides in the 
first year, we observed shorter wait times and lower costs 
compared with our prior state.
Discussion  Essential lessons included (1) understanding 
user and patient needs, (2) obtaining complete, accurate 
and comprehensive baseline data and (3) adapting existing 
workflows—rather than designing de novo—whenever 
possible.
Conclusions  Our implementation of a single-vendor 
NEMT solution validates the need for NEMT at large 
healthcare organisations, geographical challenges to 
establishing NEMT organisation-wide, and the importance 
of baseline data and stakeholder engagement.

INTRODUCTION
Non-emergency medical transportation 
(NEMT)—to medical appointments, to 
urgent care services or home from the 
hospital—represents a barrier to healthcare 
for almost 6 million individuals in the USA.1 
Obstacles include cost, accessibility (eg, 
wheelchair-accessible vehicles), local avail-
ability and reliability, which are associated 
with care delays, worse health outcomes and 
increased costs.2

NEMT is an important social determi-
nant of health.3 4 Unsurprisingly, transporta-
tion barriers are commonly experienced by 
low-income patients and racial and ethnic 
minority patients, propagating healthcare 
inequities.2 Additionally, NEMT causes subop-
timal patient and staff experiences through 
complex advanced scheduling procedures, 
long waits and missed appointments.5 Further, 
although Medicaid beneficiaries are entitled 
to NEMT in certain circumstances, options 

for other patients are limited and heteroge-
neous at the system level.

Recently, alternative strategies, such 
as rideshare-based NEMT systems, have 
improved outcomes including appoint-
ment show-rates, general wait times and 
cost.6 7 Here, we describe our development 
and implementation of a unified NEMT 
service across a large integrated healthcare 
delivery network.

METHODS
We conducted this work at BJC Health-
Care, an integrated network of 15 hospi-
tals including a 1300-bed urban quaternary 
hospital (Barnes Jewish Hospital, the teaching 
hospital of Washington University School of 
Medicine), several 500-bed community hospi-
tals and multiple smaller community hospi-
tals in Missouri and Illinois.

First, we conducted a needs assessment in 
early 2019 to (1) establish a shared under-
standing of our organisation’s NEMT needs, 
(2) prioritise vendor capabilities and (3) 
establish baseline measurements and define 
key results necessary for success. To align our 
understanding of the problem with that of our 
key stakeholders, we engaged front-line care 
managers and social workers to empathise 
with the patient and staff NEMT experience. 
We also involved organisational legal and 
compliance experts to frame potential solu-
tions, around anti-inducement regulations.8 
We proactively adopted the institutional 
stance that all NEMT would occur within the 
boundaries of safe harbours.

Second, we requested proposals through 
our centralised procurement division. Table 1 
lists our priorities. Our proposal-vetting team 
included the stakeholders named above.

Our implementation plan was sequen-
tial (ie, hospital by hospital) through an 
initial information security risk assessment, 
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contracting and a stepwise launch. Key success measures 
included complete system-wide ride availability regardless 
of patient locale, continuous scheduling platform avail-
ability, time spent scheduling rides, wait times and cost.

RESULTS
Needs assessment
Through a mix of expenditure data, voucher counts 
and unit reports, our needs assessment estimated over 
16 000 yearly rides within our organisation, mostly 
through taxicab vouchers, wheelchair-capable vans or 
idle ambulances. Most rides were hospital or emergency-
department discharges (n=4764, 65%). We identified 
multiple problems related to NEMT (online supple-
mental table 2), which collectively indicated the need 
for system-wide NEMT redesign. For example, taxi rides 
were organised and funded by individual units, without 
any system to support or track data on this need; this lack 
of data precluded comparisons between the new plat-
form and the prior system. Social workers—the main ride 
organisers—relied on foundation support or petty cash, 
which were inherently unstable. Financially, NEMT was 
deemed a system priority because of the potential for 
downstream cost savings (eg, through reducing no-show 
appointments). With the exception of Medicaid-funded 
hospital discharge rides, other NEMT resources were 
financed locally through grants.

Proposal evaluation
Six vendors submitted proposals; after initial review, the 
four vendors able to meet our system’s volume needs 
were given full consideration. Using a structured review 
template based on the priorities in table  1, our broad 
stakeholder group ultimately selected Kaizen Health 
(Chicago, Illinois, USA), a healthcare logistics entity 
focused on NEMT. Kaizen Health’s hybrid approach 
merges software-based rideshare integration with call 
centre-managed traditional transportation options. As 
compared with other finalists, Kaizen Health demon-
strated superior ability to provide a mix of rural and 
urban coverage and special needs rides, and to leverage 
utilisation data for organisational planning.

Implementation
Although rideshare services were immediately available, 
these incompletely met our need for specialised medical 
transport. We experienced delays initiating services such 
as wheelchair and bariatric support; Kaizen first needed to 
establish agreements with local transportation providers 
for these specialised rides. This barrier was particularly 
challenging in rural areas, where there is little rideshare 
availability and few companies able to cover the requisite 
geographic footprint. Addressing these barriers added 6 
weeks to the implementation timeline, but was a one-time 
effort.

Staff engaged with Kaizen’s platform through a web 
portal (online supplemental figure 1), through which 
they contacted a Kaizen broker to identify transportation 
options based on capacity, ability to serve the required 
service level and availability. The broker would finalise 
a ride via automatic software or manual confirmation 
(depending on the type of transportation), but the user 
experience remained the same regardless of transporta-
tion type.

Evaluation
Kaizen Health provided 6195 rides from 3633 patients in 
2020 (figure 1A). NEMT patients tended to be young, to 
self-identify as black, and to reside in zip codes with high 
Area Deprivation Indices (online supplemental table 3).

Most rides (5545, 88%) were rideshares and almost 
two-thirds (4188, 66%) were for hospital discharge 
(online supplemental table 4). In general, rides were 
short (median distance 5.4 miles (IQR 3.2–10.0 miles), 
although 142 rides (2.3%) exceeded 50 miles (figure 1B). 
For just-in-time calls, waits were typically under 10 min. 
By contrast, social workers reported waits of 30 min to 
several hours prior to our NEMT update. Compared with 
taxicab voucher outlay in 2019, the Kaizen Health NEMT 
programme incurred approximately US$114 000 lower 
costs in 2020.

We surveyed workers arranging transportation. Of 153 
workers approached, 44 (29%) responded. Respondents 
characterised the new platform as easier to use (n=34, 
77%), as fast or faster for scheduling (n=39, 91%) and 

Table 1  Organisational priorities for an NEMT vendor

Priority Comment

Single vendor Vendor capable of supporting current and future ride volume across entire organisation

Ride capabilities Vendor capable of transporting both ambulatory and special patient/equipment needs (eg, 
wheelchairs)

Scheduling Vendor capable of supporting both prearranged and on-demand single-way (eg, discharges) and 
round-trip transportation

Experience Vendor willing to commit to maximising the quality of patient and staff experience

Cost Vendor offers competitive price point

Data driven Vendor routinely provides data and insight at both system and unit level

Regulatory compliance HIPAA compliant

HIPAA, Health Insurance Portability and Accountability Act; NEMT, non-emergency medical transportation.
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as fast or faster for ride arrival (n=40, 93%) than prior 
NEMT experiences. Informal shadowing and patient 
anecdotes provided by staff suggested that patient expe-
rience was improved by decreased wait times and fewer 
cancellations.

DISCUSSION
We implemented a single-vendor NEMT solution across 
our system, identifying positive returns on the initial 
investment in terms of patient and staff experience, ride-
related delays and costs.

Limitations include confounding in ride numbers and 
patient mix due to COVID-19. However, this challenge 
also demonstrated the robustness and flexibility of our 
vendor’s platform, which allowed us to meet an imme-
diate need by organising dedicated COVID-19 NEMT 
rides. Additionally, because a key aspect of our interven-
tion involved systematic data collection, we were unable 
to generate an otherwise-equivalent control group for 
comparison. We partially mitigate this issue through 
historical comparisons.

Our work also has strengths. First, we evaluated, 
selected and implemented our solution rapidly, showing 

the effectiveness of an organised approach to innovation. 
Second, we demonstrated the feasibility and benefits 
of implementing a single-vendor system across a large 
healthcare system. Despite early challenges in rural avail-
ability, we met a diverse range of patients’ needs. Third, we 
captured previously unrecorded data—such as ride wait 
times—to allow quality control and future improvements.

We identified important lessons relevant for organi-
sations considering NEMT programmes. First, identi-
fying rural transportation was challenging. Our service 
could have launched earlier, and more smoothly, if we 
had better understood our patients’ needs up front. 
To create a local transportation network, the vendor 
needed accurate estimates of expected volume, patient 
needs and county-level origins and destinations. 
Advance preparation of this information could have 
allowed the vendor to curate a focused list of potential 
partners.

Second, we validated the importance of accurate and 
comprehensive baseline data. Our ability to demonstrate 
success was limited by unavailable baseline direct (eg, 
number of no-show taxicabs) and indirect (eg, time from 
discharge to hospital departure) measures of success.

Figure 1  (A) Shows cumulative ride use over time across different sites within our system. (B) Shows site-specific individual 
ride distances (grey points) and their overall distribution (violin plots). BJH, Barnes Jewish Hospital; SLCH, St. Louis Children’s 
Hospital; CH, Christian Hospital.
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Third, our solution was most successful in the units 
with existing taxicab-hailing workflows. Adapting work-
flows appears less burdensome than designing workflows 
de novo, which requires deliberate consideration of over-
sight, budgeting, patient eligibility, staff capabilities and 
‘ownership’ of day-to-day responsibilities. Tiered imple-
mentation with ‘soft’ launches allowed staff to become 
familiar with the new process, while allowing us to adapt 
best practices for implementation at the next site.

CONCLUSIONS
Our implementation of a single-vendor NEMT solution 
validates the need for NEMT at large healthcare organ-
isations, geographical risks to establishing a feasible and 
available NEMT solution organisation-wide, and the 
importance of baseline data and stakeholder engagement.
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ABSTRACT
Introduction In the current situation, clinical patient data 
are often siloed in multiple hospital information systems. 
Especially in the intensive care unit (ICU), large volumes 
of clinical data are routinely collected through continuous 
patient monitoring. Although these data often contain 
useful information for clinical decision making, they are 
not frequently used to improve quality of care. During, 
but also after, pressing times, data-driven methods can 
be used to mine treatment patterns from clinical data to 
determine the best treatment options from a hospitals own 
clinical data.
Methods In this implementer report, we describe how we 
implemented a data infrastructure that enabled us to learn 
in real time from consecutive COVID-19 ICU admissions. 
In addition, we explain our step-by-step multidisciplinary 
approach to establish such a data infrastructure.
Conclusion By sharing our steps and approach, we aim 
to inspire others, in and outside ICU walls, to make more 
efficient use of data at hand, now and in the future.

INTRODUCTION
The current pandemic demonstrated that 
healthcare was in uncharted territory. As 
such, the outbreak of the novel COVID-19 
could be a turning point for the initiation 
of advanced analytics, especially in intensive 
care medicine. The pandemic emphasized 
the importance of instant, or even real time, 
analysis of large volumes of intensive care unit 
(ICU) data in order to generate new insights 
to eventually improve quality of care.1

The ICU typically is an environment where 
clinicians are confronted with large amounts 
of clinical data siloed in multiple information 
systems and are often not optimally used to 
aid clinical decision making.2 Even more, 
data are often collected when dealing with 
complex diseases or conditions to improve 
understanding of the clinical course and to 
evaluate the effects of therapeutic interven-
tions at a later stage. However, especially in 
pressing times, advanced data analytics tools 

(eg, artificial intelligence) can be helpful by 
mining large volumes of data and discover 
clinical patterns and best treatment options 
from clinical data.3 4

Immediately after the outbreak, several 
initiatives such as the Dutch Data Ware-
house and the covidpredict initiative were 
announced aiming to collect large amounts 
of data on COVID-19 ICU patients to even-
tually optimise clinical care and improve 
outcome.5 However, the collection and organ-
isation of data from multiple ICUs is time 
consuming and is often obstructed by tech-
nical and privacy challenges.6 Furthermore, 
the agglomeration of data is unresponsive 
to local variations in population or disease-
specific patterns, and different local prac-
tices and clinical definitions impede proper 
comparison between cohorts.7

Given these considerations, we aimed to 
implement a local data infrastructure that 
would enable us to learn in real time from 
our own consecutive COVID-19 ICU admis-
sions by comparing patient characteristics, 
treatment regimens and clinical outcomes. 
Here, we present how a structured data 
approach can help to improve quality of care 
and can serve as a basis for advanced data 
analysis.

Implementing a real-time clinical data 
infrastructure
All consecutive patients with COVID-19 
admitted to the adult ICU of the Erasmus 
University Medical Center, a tertiary referral 
centre in Rotterdam, The Netherlands, were 
analysed. The need for written informed 
consent was waived by the regional medical 
research ethics committee. Figure 1 provides 
a week-by-week overview of the data infra-
structure development process along with the 
engaged stakeholders.
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From start, a weekly recurring meeting was scheduled 
with the local information technology (IT) department, 
the data and analytics department and a third software 
party (SAS Institute, Cary, North Carolina, USA). Clin-
ical questions and needs were formulated and deter-
mined in collaboration with a team of ICU physicians. 
Physicians were particularly interested in the treatment 
effect of several interventions, such as the effect of prone 
positioning, effect of high or low dose steroids, timing of 
steroids and the influence of body mass index on several 
outcome parameters, such as survival and mechanical 
ventilation days, in these critically ill patients. In our 
hospital, all patient data from the electronic health record 
(EHR), Healthcare Information eXchange (HIX), are 
routinely stored in a structured query language (SQL) 
server database (referred to as ‘database’). Since these 
data originate from a single source, it was already prop-
erly formatted (data engineering) and did need not 
require additional harmonisation. As such, the data and 
analytics department established a live connection to the 
database server (by using Microsoft SQL management 
studio) for qualified members of the ICU research team 
with restricted access to ICU patients. Subsequently, the 
IT department installed a data analytics platform (SAS 
Viya V.8.3) to ensure data extraction, data management, 
facilitate data visualisation and advanced analytics, and 
data and model governance.

In the second week, relevant data were identified in 
the database (figure  1), and SQL queries were written 
to extract these data, supervised by a senior data analyst. 
The data and analytics department provided support 
throughout the data identification and extraction process. 

Extracted data were continuously verified with the team 
of ICU physicians to ensure its completeness.

From the third to the fourth week tables containing, 
raw data were joined from separate queries and processed 
using SAS programming language. To be able to cope 
with the rapidly growing number of patients with COVID-
19, ICU capacity expanded from 45 to 102 beds in a 
matter of days, mostly towards other parts of the hospital. 
To oversee patient characteristics in multiple ICU loca-
tions, a real-time ‘COVID-19 clinical data dashboard’ was 
required and was developed in the fifth week. Since then, 
the data were further processed, and in the sixth week, a 
research database was constructed that could be used to 
perform in-depth advanced analysis.

Analysing clinical data in real time
A dashboard was successfully constructed containing 
information regarding patient demographics (such as 
gender, age and body mass index), treatment (such as 
prone positioning, optimal positive end-expiratory pres-
sure titration and steroids (yes/no)), complications 
(such as pulmonary aspergillosis) and outcome (such as 
ventilator-free days and ICU mortality). Real-time avail-
ability of these data via the dashboard provided us with 
the opportunity to quickly reflect on treatment regimens 
and clinical outcomes, without the need to await findings 
from national and international database studies. To opti-
mise its usefulness to continuously drive care improve-
ment, we implemented a plan–do–check–act procedure. 
Clinical outcomes of the different treatment proto-
cols were continuously analysed and discussed during 
a weekly meeting, and amended if necessary (‘plan’). 

Figure 1  Road towards a real-time clinical data infrastructure. Stakeholders were engaged early in the process and tasks were 
distributed (dark blue=ICU research team, light blue=ICU physicians, dark grey=data and analytics department and light grey=IT 
department). After 6 weeks, a data infrastructure was implemented that allows to extract data in real-time from the electronic 
health record (HIX). *Demographics, medication, lab tests, ventilator settings, vital signs and clinical notes were extracted from 
the database using structured query language (SQL) in Microsoft SQL management Studio. ¥The analytics platform, SAS Viya 
(V.8.3) was used to process and further analyse the data. Figure 1 was created by the lead author, and permission to reuse the 
image was obtained. HIX, Healthcare Information eXchange; ICU, intensive care unit; IT, information technology.
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Protocol adjustments (‘do’) were closely monitored 
using the data infrastructure and the dashboard with a 
continuous real time data feed (‘check’). Results were 
evaluated during the weekly meeting or earlier when 
needed, and outcomes and possible additional actions 
were discussed (‘act’). This infrastructure enabled us to 
detect the high incidence of pulmonary embolisms in 
patients with COVID-19, the first group in the Nether-
lands, and more recently, it contributed to adaptations 
in our local COVID-19 ICU treatment protocols leading 
to implementation of a pulse dose intravenous methyl-
prednisolone.8–10 As such, we believe that structuring and 
organizing these vast amounts of clinical data on a local 
level is fundamental to leverage data analytics to improve 
quality of care.

Currently, 19 August 2021, the research database 
contains information of 546 COVID-19 ICU patients 
and increasing, with an overall mortality of 22.9% (125 
patients), 69% were male (377 patients) and median age 
is 63 years (IQR 54–69). The data infrastructure is organ-
ised in such a way that it is automatically updated (by 
means of the scheduled SQL jobs in SAS Viya), facilitating 
continuous real-time data analysis in order to answer 
urgent clinical questions. To date, the data infrastructure 
is limited to EHR data and will therefore be enriched with 
data from multiple information systems (imaging, micro-
biology and bedside monitors) to warrant future use.

CONCLUSION
We demonstrate the successful development of a real-
time data infrastructure that enabled both data-driven 
care and decision making and rapid answering of crit-
ical clinical questions during pressing times, such as the 
COVID-19 pandemic. Although this data infrastructure 
was developed in the ICU, the underlying process could 
be extrapolated to other specialties to enable real-time 
data analysis to eventually improve quality of care.2 By 
sharing our steps and clinical use, we aim to inspire others 
to make more efficient use of the data at hand, now and 
in the future.
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ABSTRACT
Background  The COVID-19 pandemic has necessitated 
efficient and accurate triaging of patients for more 
effective allocation of resources and treatment.
Objectives  The objectives are to investigate parameters 
and risk stratification tools that can be applied to predict 
mortality within 90 days of hospital admission in patients 
with COVID-19.
Methods  A literature search of original studies assessing 
systems and parameters predicting mortality of patients 
with COVID-19 was conducted using MEDLINE and 
EMBASE.
Results  589 titles were screened, and 76 studies were 
found investigating the prognostic ability of 16 existing 
scoring systems (area under the receiving operator 
curve (AUROC) range: 0.550–0.966), 38 newly developed 
COVID-19-specific prognostic systems (AUROC range: 
0.6400–0.9940), 15 artificial intelligence (AI) models 
(AUROC range: 0.840–0.955) and 16 studies on novel 
blood parameters and imaging.
Discussion  Current scoring systems generally 
underestimate mortality, with the highest AUROC values 
found for APACHE II and the lowest for SMART-COP. 
Systems featuring heavier weighting on respiratory 
parameters were more predictive than those assessing 
other systems. Cardiac biomarkers and CT chest scans 
were the most commonly studied novel parameters and 
were independently associated with mortality, suggesting 
potential for implementation into model development. 
All types of AI modelling systems showed high abilities 
to predict mortality, although none had notably higher 
AUROC values than COVID-19-specific prediction models. 
All models were found to have bias, including lack of 
prospective studies, small sample sizes, single-centre data 
collection and lack of external validation.
Conclusion  The single parameters established within 
this review would be useful to look at in future prognostic 
models in terms of the predictive capacity their combined 
effect may harness.

INTRODUCTION
The SARS-CoV-2 outbreak has put enormous 
strain on healthcare systems around the world. 
According to the WHO, as of 12 January 
2021, there have been more than 91 million 
cases of COVID-19 reported worldwide, with 
almost 2 million deaths.1 To properly allocate 
resources and aid clinical decision-making, 

there is an urgent need for a simple, accurate 
system to rapidly identify patients who are at 
the highest risk of death.

Traditionally, scoring systems are used in 
healthcare to stratify risk, predict outcomes 
and appropriately manage patients.2 For 
example, the CRB-65 scoring system is effi-
ciently used to assess the mortality risk of 
pneumonia in primary care to determine the 
need for management escalation.3

Risk stratification methods have been effec-
tively used in previous viral outbreaks such 
as the Ebola epidemic in 2014 to reduce 
casualties.4 With COVID-19 being a novel 
disease, no pre-existing risk stratification 
methods were available, so traditional scoring 
systems were adapted in the early stages of 
the pandemic. As the pandemic progressed, 
COVID-19-specific tools were developed by 
studying patients’ characteristics relating 
strongly to mortality and incorporating them 
into scoring systems.

Although artificial intelligence (AI) algo-
rithm development varies depending on the 
number of possible outcomes, it is an ideal 
way of stratifying patients.5 It uses dynamic 
data and continual updating of its algorithm 
to increase the accuracy of its predictions.

This review aims to provide a summary of 
the literature available on risk stratification 
tools, including prediction models and single 
parameters used to predict the mortality 
of patients with COVID-19 to aid clinical 
decision-making. This review also aims to 
evaluate the applications of AI in mortality 
prediction models.

This study hopes to fill in the gaps in the 
current literature reviewing human and 
AI scoring tools. In addition, new studies 
investigating parameters associated with 
SARS-CoV-2 mortality are being published; 
therefore, constant evaluation of risk stratifi-
cation tools is imperative in a rapidly evolving 
pandemic.
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METHODS
A comprehensive search of MEDLINE and EMBASE 
between 1 January 2019 and 5 January 2021 was conducted 
to retrieve studies related to mortality risk prediction of 
patients with COVID-19. The search was done using the 
keywords and relevant MeSH terms displayed in table 1.

Inclusion criteria were the following: (1) primary 
studies carried out on adult patients who are COVID-19-
positive; (2) reporting of a model for predicting mortality 
with a reported area under the receiving operator curve 
(AUROC) value; and (3) routine blood or imaging param-
eters with mortality as the main outcome of interest. The 
established definition of AUROC applied to the context 
of a COVID-19 mortality prediction model was used; 
the accuracy of the model was used to discriminate the 
mortality risk levels in patients with COVID-19 .6

Exclusion criteria were non-English studies, sample 
size  <100 patients and non-peer-reviewed publications. 
Any disagreements during screening were resolved by 
consensus. Mortality, for this review, is defined as death 
within 90 days of hospital admission due to COVID-19.

A data extraction form was generated to synthesise the 
following information: study title, method of calculation 
of the model or examined parameters (eg, statistical 
modelling or analysis, AI), scoring system versus analysis 
of single parameters, ‘summary of included parameters 
and AUROC for scoring systems’, ‘name and category of 
parameter (eg, biomarker)’ for single parameters and 
any additional salient findings.

RESULTS
After deduplication of original search results, title and 
abstracts of 589 studies were screened for relevance, and 
subsequently full-text articles were obtained and further 

assessed for eligibility. In all, 76 studies were identified 
that would inform our review.

Adapted current scoring systems
The sudden arrival of the pandemic has necessitated 
the application of existing prognostic systems to triage 
the influx of patients with COVID-19 to optimise distri-
bution of limited resources and treatment. The accuracy 
of scoring systems adapted for COVID-19 mortality is 
detailed in online supplemental table 1 and then analysed 
to explore potential reasons for their differing predictive 
ability of mortality in patients with COVID-19 .

Scoring systems are listed in order of descending 
AUROC values, as methodical differences between studies 
deem it inappropriate to merge AUROC results. For 
example, the Quick Sequential Organ Function Assessment 
(qSOFA) AUROC values ranged from 0.6200 to 0.8860 
(online supplemental table 1), possibly due to different 
cut-off points. In addition, mortality was measured by 
72 hours in some studies and up to 90 days in others, 
and sample sizes ranged from 105 to 864 across studies 
(online supplemental table 1).

The Acute Physiology and Chronic Health Evaluation 
II (APACHE II) score was found to have the highest 
AUROC values, followed by Modified Elixhauser Index 
(mEI) and Sequential Organ Function Assessment (SOFA) 
systems. APACHE II presides over other scores in terms 
of mortality prediction possibly due to its consideration 
of both age and comorbidities, whereas scores such as 
CURB-65 only assesses age and SOFA involves neither. 
Notably, however, the cut-off value for APACHE II is 
much lower when applied to patients with COVID-19 than 
under normal intensive care unit (ICU) conditions; while 
Glasgow Coma Scale (GCS) is an important component of 
APACHE II, the nervous system is typically less impacted 
than the respiratory system in COVID-19 infection.7

COVID-19 scoring systems
Prediction scores play a vital role in guiding clinical 
decision-making for hospitalised patients with COVID-19. 
Online supplemental table 2 summarises recently devel-
oped scores and their AUROC values.

Different risk stratification tools use a variety of param-
eters to predict mortality. Online supplemental table 3 
summarises the most common parameters used in novel 
COVID-19 mortality prediction scores. The two parame-
ters associated with high predictive performance (higher 
AUROC) were lymphocyte count and D-dimer, with age 
being the most consistently used parameter. The most 
common parameter used in novel prediction models for 
mortality of patients with COVID-19 is age, followed by 
lymphocyte count, D-dimer, oxygen saturation, C reactive 
protein (CRP) and platelet count. Other less common 
parameters include respiratory rate (RR), lactate dehy-
drogenase, neutrophil-to-lymphocyte ratio (NLR), 
procalcitonin (PCT) and blood urea nitrogen.

The most common comorbidities for predicting 
mortality are hypertension (HTN), diabetes mellitus 

Table 1  Database search strategy of MEDLINE and 
EMBASE for the period January 2019 to 5 January 2021

COVID-19 (TI, AB, 
KW)

Risk stratification 
(TI, AB, KW)

Mortality (TI, 
AB, KW)

COVID-19 Prognos*4 adj2 
model/score/
algorithm /tool

Hospital Mortality 
(MeSH)

COVID-2019 Clinical decision tool Death*1

SARS-CoV-2 Predicti* adj2 model/
score/algorithm /tool

Mortality

Severe acute 
respiratory 
syndrome 
coronarvirus 2

Risk adj2 model /
predicti*/score/tool/ 
stratification

Fatal*5

2019-nCoV Scor*3 system*1

Mortality adj1 scor*3

The following search concepts were combined using Boolean 
operators: COVID-19 (TI, AB, KW) AND Risk stratification (TI, AB, 
KW) AND Mortality (TI, AB, KW)
AB, abstract; KW, keywords; TI, title, the '/' indicated a different 
variation.

https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389


3Chu K, et al. BMJ Health Care Inform 2021;28:e100389. doi:10.1136/bmjhci-2021-100389

Open access

(DM), obesity, cardiovascular disease, chronic kidney 
disease, smoking and malignancy.

Single parameters
COVID-19 has a different clinical picture to pneumonia 
and influenza, providing an avenue to explore what 
routinely available clinical information best predicts 
mortality. We explored blood parameters and imaging 
not currently extensively implemented into existing 
COVID-19 mortality prediction models, which are repre-
sented in online supplemental table 4.

Studies examining the associations of a range of labo-
ratory biochemical tests and imaging at admission with 
mortality for patients with COVID-19 are extensive in the 
literature. Continued rapid identification of biomarkers 
that can accurately predict the likelihood of mortality is 
essential and has been proposed, including inflammatory, 
coagulation, renal, liver and cardiac biomarkers (online 
supplemental table 4).

Imaging, particularly chest CT scans, has been studied, 
with all three studies reporting independent associations 
with mortality, shown in online supplemental table 5. 
Alongside prognostic scores developed to assess risk of 
death, these must be updated to reflect the identifica-
tion of imaging modalities that may need to be added or 
replace parameters in existing scores.

AI in predicting mortality
Machine learning (ML) is a subset of AI allowing systems 
to automatically improve based on new experiences.8 
Online supplemental table 6 illustrates an overview of 
studies that used ML to predict mortality in patients with 
COVID-19.

Papers that used ML models have an AUROC greater 
than 0.8, conveying good discrimination of patients with 
high mortality risk.6

Models with a greater number of incorporated param-
eters did not find improvements in AUROC score. One 
model by Yuan et al9 had a high AUROC of 0.9551 when 
looking at three parameters, while the model by Vaid et 
al10 had a lower AUROC of 0.8400 when looking at 73 
different parameters. This suggests that the total number 
of parameters was a less important factor than the interac-
tion between the parameters in predicting mortality.

Deep learning (DL) is a subset of ML which uses algo-
rithms to analyse multiple factors simultaneously11; there-
fore, it would be more appropriate to handle multiple 
parameters. Online supplemental table 7 illustrates an 
overview of the studies that used ML to predict mortality 
in patients with COVID-19.

There are fewer studies assessing DL models, but similar 
to ML, these studies possess an AUROC >0.8.

DISCUSSION
Adapted current scoring systems
The variables used within existing scoring systems 
featured in online supplemental table 1 were analysed 

to explore potential reasons for their differing predictive 
ability of mortality in patients with COVID-19.

The APACHE II score was found to have the highest 
AUROC values, followed by mEI and SOFA systems. 
APACHE II presides over other scores in terms of 
mortality prediction possibly due to its consideration 
of both age and comorbidities, whereas scores such as 
CURB-65 only assesses age and SOFA involves neither. 
Notably, however, the cut-off value for APACHE II is 
much lower when applied to patients with COVID-19 
than under normal ICU conditions; while GCS is an 
important component of APACHE II, the nervous system 
is typically less impacted than the respiratory system in 
COVID-19 infection.7

Considering the effects of COVID-19 on respira-
tory function are more marked than its cardiovascular 
impacts,12 it is unsurprising that most of the studies listed 
in online supplemental table 1 show respiratory param-
eters such as RR in CURB-65 to be independently more 
indicative of mortality than blood pressure and confu-
sion, which are more related to haemodynamics. qSOFA’s 
focus on blood pressure and mental state may explain 
its lower AUROC and poorer predictive performance. 
Cetinkal et al,13 however, argue that as previous studies 
reveal worse clinical outcomes in patients with cardiac 
injury, non-respiratory variables in the CHA2D2VASc 
system such as older age, DM, HTN and previous cardio-
vascular disease are valuable parameters for mortality 
risk stratification. However, AUROC values found for 
CHA2D2VASc remain at the low end compared with other 
existing scoring systems, despite modifications catered 
to COVID-19 added to form the m-CHA2D2VASc scale. 
Even this version, with an AUROC higher by 0.06, offers 
predictive ability similar to univariate NLR and inferior to 
troponin increase.

Ortiz et al12 demonstrated A-DROP, a modified version 
of CURB-65, to provide more accurate mortality predic-
tion than Pneumonia Severity Index (PSI), CURB-65, 
CRB-65, SMART-COP, qSOFA and National Early Warning 
Score 2 (NEWS2). Its superior discrimination may be 
due to its more accurate respiratory function evalua-
tion (oxygen saturation [SpO2 ] >90% / arterial oxygen 
tension [PaO2]  <60 mm Hg in A-DROP vs respiratory 
rate  ≥30/min in CURB-65). The modified age cut-off 
(male >70 / female >75 in A-DROP vs age >65 in CURB-
65) may also contribute to A-DROP’s advantage when 
applied to COVID-19, considering the median age of 
COVID-19 non-survivors is 69 years.14

Ultimately, although APACHE II, SOFA, PSI and 
CURB-65 are well-founded in clinical practice, their 
requirement for sophisticated patient information makes 
rapid assessment impossible, an important benefit for 
triaging patients with COVID-19 in often overrun hospi-
tals. Wang et al’s study7 on MEWS suggests this system 
can overcome the issue of efficiency as a simple and 
rapid assessment able to be performed within minutes 
of patient admission while maintaining equal predictive 
ability.

https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
https://dx.doi.org/10.1136/bmjhci-2021-100389
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Intriguingly, Gupta et al15 evaluated 22 prog-
nostic models (including aforementioned systems), 
concluding that they should not be recommended for 
routine clinical implementation because none of them 
offered incremental value compared with univariable 
predictors to risk stratify COVID-19 mortality, of which 
patient’s age is a strong predictor of mortality. Similarly, 
Bradley et al16 concluded that CURB-65, NEWS2 and 
qSOFA all underestimate the mortality of patients with 
COVID-19.

COVID-19 scoring systems
To maximise the accuracy and effectiveness of mortality 
prediction models, novel scores should focus on identi-
fying features that are COVID-19-specific. Examples of 
complications that are highly associated with COVID-19 
include hypercoagulability and inflammation.17 18 
However, only 27% of new prognostic scores included 
in this review incorporated CRP—an important inflam-
matory marker. Similarly, thrombopenia has been asso-
ciated with higher rates of mortality,19 which reflects 
the importance of including platelet count in prog-
nostic models, but only 16% of new scores took this into 
account.

Interestingly, the three prediction models with the 
highest AUROC values have all used D-dimer and lympho-
cyte count to predict mortality. This could reflect the 
importance of these two parameters in COVID-19 patho-
physiology. However, these are all single-centre studies 
tested on significantly smaller sample sizes compared with 
other models with lower AUROC values. Models tested 
on a larger population, for instance, Mancilla-Galindo et 
al’s18 national cohort study with a sample size of 83 779 
(AUROC=0.8000), could be more representative and 
generalisable.

The most common parameter used in novel prediction 
models for mortality of patients with COVID-19 is age, 
followed by lymphocyte count, D-dimer, oxygen satura-
tion, CRP and platelet count. Other less common param-
eters include RR, lactate dehydrogenase, NLR, PCT and 
blood urea nitrogen.

Fumagalli et al19 report age as the strongest predictor 
of severe outcomes and mortality. Similarly, Mei et al’s20 21 
prognostic model included age as one of five indicators 
of mortality and reports a strong association between 
advanced age and death from COVID-19.

There seems to be no association between the number 
of parameters and the prognostic power and accuracy of 
a scoring system. Several mortality prediction models with 
a small number of parameters have had higher AUROC 
values, for example, Liu et al22 had an AUROC value of 
0.9940 with only three variables compared with Mancilla-
Galindo et al18 (COVID-GRAM) with an AUROC value of 
0.7750 and 10 parameters.

The most common comorbidities for predicting 
mortality are HTN, DM, obesity, cardiovascular disease, 
chronic kidney disease, smoking and malignancy.

Single parameters
COVID-19 has a different clinical picture to pneumonia 
and influenza, providing an avenue to explore what 
routinely available clinical information best predicts 
mortality. We explored blood parameters not currently 
extensively implemented into existing COVID-19 
mortality prediction models, which are represented in 
online supplemental table 4.

We discuss the feasibility of introducing the below 
blood tests and imaging modalities into routine practice 
for risk stratification of patients with COVID-19.

Cardiac biomarkers
Cardiac biomarkers were the the most common param-
eters studied in our literature search. High-sensitivity 
cardiac troponins have been shown to be independently 
associated with all-cause mortality in patients with 
COVID-19 (p<0.05), after accounting for age, sex and 
comorbidities, shown in online supplemental table 4. 
High-sensitivity cardiac troponins (hs-cTnI and hs-TnT) 
are markers of myocardial injury that are currently 
primarily used in the prognostication of acute coronary 
syndrome. Despite evidence that 50% with confirmed 
COVID-19 have elevated cardiac biomarkers at the time 
of hospital admission, the patient sample sizes are limited 
in current studies to less than 500 patients and single 
centres.22 Cao et al23 retrospectively observed 244 patients 
and incorporated hs-cTnI into a model of empirical 
prognostic factors. A proposed cut-off (>20 ng/L serum 
hs-cTnI levels) yielded an AUROC increase from 0.65 to 
0.71 (p<0.01) and demonstrated feasibility of this param-
eter to increase predictive performance.24

Inflammatory biomarkers
Liu et al25 confirmed the independent association of PCT 
with mortality in a cohort of 1525 patients through retro-
spective analysis. Due to the large cohort and continued 
follow-up of PCT levels throughout hospital stay, this study 
provides stronger evidence for the inclusion of PCT into 
scoring systems, which has begun to be implemented but is 
still in the minority of included parameters. Fois et al26 used 
the same study design and identified the systemic inflamma-
tion index (SII) as an independent predictor of mortality. 
However, the study quality was poor—with only 119 patients 
and the large number of different inflammation indexes 
being studied in different combinations. It is unclear 
whether any clinical utility is offered by implementation 
of SSI, considering deranged lymphocyte count is already 
widely established as a useful predictor.20

Renal and hepatic function biomarkers
Esposito et al27 identified estimated glomerular filtration 
rate (using a baseline of 60 mL/min/1.73 m2), and Fu et al24 
identified cholestasis and hypoproteinaemia as indepen-
dent predictors of mortality. Interestingly, as with cardiac 
biomarkers, these were predictors even after accounting for 
pre-existing comorbidities. The obvious benefit to clinical 
practice of renal and hepatic function markers is that they 

https://dx.doi.org/10.1136/bmjhci-2021-100389
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are routinely done on hospital admission and straightfor-
ward to clinicians to score in a system. Replication of large-
scale multicentre studies is needed before determining the 
diagnostic validity of such parameters in the stratification of 
patients with COVID-19 in a statistical or AI model. It must 
be acknowledged that additional parameters must be exter-
nally validated to determine AUROC values and appropriate 
cut-offs for parameters.6

Lung imaging
Trabulus et al,28 Francone et al29 and Xu et al30 examined 
the relationship between chest CT findings and mortality, 
with all three studies reporting independent associations 
with mortality (p<0.05). Two studies31 32 used a method-
ology involving an overall severity score of each scan and 
proposed defined cut-offs above which there was yield of 
best predictive value. These cut-offs are of value for clini-
cians to allocate scans with a high/medium/low rating 
which can be used to triage patients with COVID-19. 
However, both these studies have limitations in their meth-
odology and design, which need to be addressed before 
implementation of CT severity into scoring systems. In 
the study by Gao et al,31 follow-up was limited to 24 days; 
a minimum of at least 28-day mortality is recommended 
to better reflect the clinical course of COVID-19 in most 
cases.7 In addition, both severity score studies were retro-
spective in nature, which is susceptible to incomplete 
clinical records and bias in the interpretation of CT by 
different radiologists. Chest CT while highly sensitive is 
not a first-line test due to limited resources to CT scan 
in all COVID-19-positive hospital admissions. Routine 
implementation of admission CT scans would also carry 
a radiation burden to patients, which is arguably unnec-
essary if alternative parameters conferring equal predic-
tive power without additional risk of iatrogenic effects 
could be used. Perhaps, chest CT is more appropriate in 
the discharge process of clinically stable, triaged patients 
with COVID-19 rather than as a first-line test as part of an 
admission scoring system.

AI in predicting mortality
Between ML and DL models, it is unclear which branch 
of AI modelling would be superior in predicting mortality 
due to the similar AUROC values. These similar values 
can be accounted for by limitations in the study methods.

Within all AI modelling papers, Meng et al33 and Vaid et 
al10 were the only studies that conducted external valida-
tion. External validation is an important step to verify the 
effectiveness of the model in patient population. Internal 
validation would use the same cohort to test the model, 
which can lead to overfitting and an inaccurately high 
AUROC. The models created by Bertsimas et al34 Gao 
et al31 and Meng et al35 gathered training set data from 
multiple centres, whereas the other models used single-
centre data. Therefore, these models would increase 
applicability to the general population.

As COVID-19 has only been prevalent for a year, not 
many models have had the chance to be prospectively 

tested. Vaid et al10 produced the only model that was 
prospectively tested. This is important as it demonstrates 
the model’s real-world performance. Many models with 
a large number of incorporated parameters included 
patients with missing values, leading to estimation. This 
may be useful in clinical practice as not all patients have 
every test carried out.

It is important to recognise that COVID-19 manage-
ment and treatment guidelines are constantly being 
updated, which influences mortality rates. As AI models 
use dynamic data,10 reporting of model AUROC in earlier 
stages of the pandemic may not have been as accurate.

Limitations
There are inherent limitations to this review. Most studies 
included were single centre and retrospective, whereas 
multicentre, prospective research may provide more insight. 
Although AUROC scores are universally accepted outcome 
measures of the accuracy of prediction models,6 they are 
limited in their clinical interpretability as they lack a direct 
link to individual patient outcomes. Thus, future reviews 
could use additional performance metrics in addition to 
AUROC to assess the accuracy of different models.

CONCLUSION
The above systems and parameters have been evaluated 
for their ability to stratify patients with COVID-19 by 
mortality risk, with predictive ability depicted as AUROC 
scores. New scoring systems developed specifically for 
the pandemic demonstrated higher AUROC scores than 
currently existing scoring systems adapted for COVID-19. 
However, the predictive strength of AI systems was not 
notably higher than pandemic-specific scoring systems, 
potentially due to time restraints of development and 
incomplete refining of algorithms. Single parameters 
extracted from scoring systems, novel biomarkers and 
imaging modalities were also explored for the ability to 
predict mortality and potential incorporation into novel 
risk stratification systems.

As most studies in the current literature were retro-
spective, we propose further prospective, multicentre 
studies to validate these variables’ diagnostic accuracy 
and multivariate relationships, which may impact their 
compounded efficacy for COVID-19 mortality predic-
tion. A meta-analysis would address the limitation of the 
current review of not being able to directly compare and 
statistically manipulate AUROC scores found in the litera-
ture due to differing cut-off points, study sample sizes and 
mortality periods used by different studies.

In all, refining strategies to triage patients with 
COVID-19 can bring immense value to healthcare profes-
sionals in their clinical decisions concerning optimal 
treatment for patients with varying mortality risks and 
allocating scarce resources effectively.
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Wealthy nations must do much more, 
much faster.

The United Nations General Assembly 
in September 2021 will bring countries 
together at a critical time for marshalling 
collective action to tackle the global envi-
ronmental crisis. They will meet again at 
the biodiversity summit in Kunming, China, 
and the climate conference (Conference 
of the Parties (COP)26) in Glasgow, UK. 
Ahead of these pivotal meetings, we—the 
editors of health journals worldwide—call 
for urgent action to keep average global 
temperature increases below 1.5°C, halt the 
destruction of nature and protect health.

Health is already being harmed by global 
temperature increases and the destruction 
of the natural world, a state of affairs health 
professionals have been bringing attention 
to for decades.1 The science is unequivocal; 
a global increase of 1.5°C above the prein-
dustrial average and the continued loss of 
biodiversity risk catastrophic harm to health 
that will be impossible to reverse.2 3 Despite 
the world’s necessary preoccupation with 
COVID-19, we cannot wait for the pandemic 
to pass to rapidly reduce emissions.

Reflecting the severity of the moment, 
this editorial appears in health journals 
across the world. We are united in recog-
nising that only fundamental and equitable 
changes to societies will reverse our current 
trajectory.

The risks to health of increases above 
1.5°C are now well established.2 Indeed, 
no temperature rise is ‘safe’. In the past 20 
years, heat-related mortality among people 
aged over 65 has increased by more than 
50%.4 Higher temperatures have brought 

increased dehydration and renal function 
loss, dermatological malignancies, tropical 
infections, adverse mental health outcomes, 
pregnancy complications, allergies, and 
cardiovascular and pulmonary morbidity 
and mortality.5 6 Harms disproportionately 
affect the most vulnerable, including chil-
dren, older populations, ethnic minorities, 
poorer communities and those with under-
lying health problems.2 4

Global heating is also contributing to the 
decline in global yield potential for major 
crops, falling by 1.8%–5.6% since 1981; 
this, together with the effects of extreme 
weather and soil depletion, is hampering 
efforts to reduce undernutrition.4 Thriving 
ecosystems are essential to human health, 
and the widespread destruction of nature, 
including habitats and species, is eroding 
water and food security and increasing the 
chance of pandemics.3 7 8

The consequences of the environmental 
crisis fall disproportionately on those coun-
tries and communities that have contrib-
uted least to the problem and are least 
able to mitigate the harms. Yet no country, 
no matter how wealthy, can shield itself 
from these impacts. Allowing the conse-
quences to fall disproportionately on the 
most vulnerable will breed more conflict, 
food insecurity, forced displacement and 
zoonotic disease, with severe implications 
for all countries and communities. As with 
the COVID-19 pandemic, we are globally as 
strong as our weakest member.

Rises above 1.5°C increase the chance 
of reaching tipping points in natural 
systems that could lock the world into an 
acutely unstable state. This would criti-
cally impair our ability to mitigate harms 
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and to prevent catastrophic, runaway environmental 
change.9 10

GLOBAL TARGETS ARE NOT ENOUGH
Encouragingly, many governments, financial institu-
tions and businesses are setting targets to reach net-
zero emissions, including targets for 2030. The cost of 
renewable energy is dropping rapidly. Many countries 
are aiming to protect at least 30% of the world’s land 
and oceans by 2030.11

These promises are not enough. Targets are easy to 
set and hard to achieve. They are yet to be matched 
with credible short-term and longer-term plans to accel-
erate cleaner technologies and transform societies. 
Emissions reduction plans do not adequately incorpo-
rate health considerations.12 Concern is growing that 
temperature rises above 1.5°C are beginning to be seen 
as inevitable, or even acceptable, to powerful members 
of the global community.13 Relatedly, current strategies 
for reducing emissions to net zero by the middle of the 
century implausibly assume that the world will acquire 
great capabilities to remove greenhouse gases from the 
atmosphere.14 15

This insufficient action means that temperature 
increases are likely to be well in excess of 2°C,16 a cata-
strophic outcome for health and environmental stability. 
Critically, the destruction of nature does not have parity 
of esteem with the climate element of the crisis, and every 
single global target to restore biodiversity loss by 2020 was 
missed.17 This is an overall environmental crisis.18

Health professionals are united with environmental 
scientists, businesses and many others in rejecting that 
this outcome is inevitable. More can and must be done 
now—in Glasgow and Kunming—and in the imme-
diate years that follow. We join health professionals 
worldwide who have already supported calls for rapid 
action.1 19

Equity must be at the centre of the global response. 
Contributing a fair share to the global effort means 
that reduction commitments must account for the 
cumulative, historical contribution each country has 
made to emissions, as well as its current emissions and 
capacity to respond. Wealthier countries will have to 
cut emissions more quickly, making reductions by 2030 
beyond those currently proposed20 21 and reaching net-
zero emissions before 2050. Similar targets and emer-
gency action are needed for biodiversity loss and the 
wider destruction of the natural world.

To achieve these targets, governments must make 
fundamental changes to how our societies and econ-
omies are organised and how we live. The current 
strategy of encouraging markets to swap dirty for 
cleaner technologies is not enough. Governments 
must intervene to support the redesign of transport 
systems, cities, production and distribution of food, 
markets for financial investments, health systems, and 
much more. Global coordination is needed to ensure 

that the rush for cleaner technologies does not come 
at the cost of more environmental destruction and 
human exploitation.

Many governments met the threat of the COVID-19 
pandemic with unprecedented funding. The environ-
mental crisis demands a similar emergency response. 
Huge investment will be needed, beyond what is being 
considered or delivered anywhere in the world. But 
such investments will produce huge positive health 
and economic outcomes. These include high-quality 
jobs, reduced air pollution, increased physical activity, 
and improved housing and diet. Better air quality 
alone would realise health benefits that easily offset 
the global costs of emissions reductions.22

These measures will also improve the social and 
economic determinants of health, the poor state of 
which may have made populations more vulnerable 
to the COVID-19 pandemic.23 But the changes cannot 
be achieved through a return to damaging austerity 
policies or the continuation of the large inequalities of 
wealth and power within and between countries.

COOPERATION HINGES ON WEALTHY NATIONS DOING MORE
In particular, countries that have disproportionately 
created the environmental crisis must do more to 
support low-income and middle-income countries to 
build cleaner, healthier and more resilient societies. 
High-income countries must meet and go beyond their 
outstanding commitment to provide $100 billion a 
year, making up for any shortfall in 2020 and increasing 
contributions to and beyond 2025. Funding must 
be equally split between mitigation and adaptation, 
including improving the resilience of health systems.

Financing should be through grants rather than 
loans, building local capabilities and truly empowering 
communities, and should come alongside forgiving 
large debts, which constrain the agency of so many 
low-income countries. Additional funding must be 
marshalled to compensate for inevitable loss and 
damage caused by the consequences of the environ-
mental crisis.

As health professionals, we must do all we can to 
aid the transition to a sustainable, fairer, resilient and 
healthier world. Alongside acting to reduce the harm 
from the environmental crisis, we should proactively 
contribute to global prevention of further damage and 
action on the root causes of the crisis. We must hold 
global leaders to account and continue to educate 
others about the health risks of the crisis. We must join 
in the work to achieve environmentally sustainable 
health systems before 2040, recognising that this will 
mean changing clinical practice. Health institutions 
have already divested more than $42 billion of assets 
from fossil fuels; others should join them.4

The greatest threat to global public health is the 
continued failure of world leaders to keep the global 
temperature rise below 1.5°C and to restore nature. 



3Atwoli L, et al. BMJ Health Care Inform 2021;28:e100473. doi:10.1136/bmjhci-2021-100473

Open access

Urgent, society-wide changes must be made and will 
lead to a fairer and healthier world. We, as editors of 
health journals, call for governments and other leaders 
to act, marking 2021 as the year that the world finally 
changes course.
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