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a b s t r a c t

Introduction: Driving under the influence (DUI) increases the probability of motor-vehicle collisions, espe-
cially for motorcycles with less protections. This study aimed to identify commonalities and differences
between criminally DUI offenses (i.e., with a blood alcohol concentration (BAC) of 80 mg/dL or higher)
committed by motorcyclists and car drivers. Methods: A total of 10,457 motorcycle DUIs and 8,402 car
DUIs were compared using a series of logistic regression models, using data extracted from the docu-
ments of adjudication decisions by the courts of Jiangsu, China. Results: The results revealed that offend-
ers from the high-BAC group (i.e., 200 mg/dL or higher) accounted for more than 20% of the total DUI
offenses, and were more likely to be involved in a crash and punished with a longer detention.
Motorcyclists had a higher likelihood of crash involvement, and were also more likely to be responsible
for single-vehicle crashes associated with higher odds of injury sustained, compared to alcohol-impaired
car drivers. In the verdict, motorcycle offenders were more likely to receive a less severe penalty.
Conclusions: Interventions are clearly required to focus on reducing in the high-BAC group of offenders.
For alcohol-impaired motorcyclists, their risks of crash and injury against BAC climb more steeply than
the risks for car drivers. The factors including frequent occurrences, uncertainty of detection, and
short-term sentences may weaken the deterrence effect of the criminalization of motorcycle DUI.
Practical Applications: The traffic-related adjudication data support traffic safety analysis. Strategies such
as combating motorcycle violations (e.g., unlicensed operators or driving unsafe vehicles), undertaking
education and awareness campaigns, are expected for DUI prevention.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Alcohol-impaired driving has been recognized as a major con-
tributor to fatal road crashes. A report released by the World
Health Organization (WHO) shows that 5% to 35% of all road deaths
around the world are reported as alcohol related (WHO, 2018). A
host of effective strategies has been used to address this problem,
including enhancing law enforcement against impaired driving
(Chang et al., 2012), education and awareness campaigns (Beck,
2009; Chao et al., 2009), and the use of technology (e.g., ignition
interlocks; Shulman-Laniel et al., 2017). Among them, enacting
and enforcing legislation on driving under the influence (DUI) is
wildly adopted. Overall, 174 countries have national drink-

driving laws in place, and 136 of them have blood alcohol concen-
tration (BAC) threshold limits (WHO, 2018).

In mainland China, there is a rapid increase in both motor trans-
port and alcohol consumption; laws against DUI mirror those
found in other nations. Driving or riding any motor vehicle after
drunkenness (i.e., BAC � 80 mg/dL), regardless of causing a crash
or not, is recognized as a dangerous driving crime. According to
the Eighth Amendment to the Criminal Law of China, which was
put into effect on 1st May 2011, the crime of dangerous driving
is a misdemeanor punishable by penalties of up to six months
detention with a fine. Additionally, drivers’ licenses are disquali-
fied, and offenders are banned from reapplying for five years. The
lesser offense of ‘‘driving after drinking” (i.e., BAC ranged from 20
to 80 mg/dL) is also illegal but is not deemed as a criminal offense.
That is, offenders are imposed on administrative sanctions includ-
ing license suspension and fining. Non-motor vehicle DUI offenses,
including drunk driving of bicycles, tricycles, and electric bicycles
with a BAC above 80 mg/dL, are also banned by the Road Traffic
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Safety Law of China. These non-motor vehicle offenders suffer
administrative penalties as well.

The criminalization of alcohol-impaired driving is a contentious
issue, although it has a deterrent effect that allows for a reduction
in deaths and injuries caused by DUI (Asbridge et al., 2004; Chang
et al., 2020). Evidence has been found that after the criminalization
of drunk driving from 2011, there is a weak downward trend of
road-traffic injuries in China (Zhao et al., 2016; Fei et al., 2020).
It is different from that in the United States where some states
do not classify impaired driving offenses as crimes, while others
consider DUI a misdemeanor criminal offense (NCSL, 2019). In
China, drivers are arrested and charged with dangerous driving if
their BACs surpass 80 mg/dL. Once convicted, offenders’ criminal
records will not be eliminated for life. As the punishment in crim-
inal procedure is much more severe than in administrative proce-
dure (i.e., a criminal conviction has serious adverse effects upon
one’s career or education options; Ewald, 2019), criminalizing
DUI results in some punishments seen as overly strict. For exam-
ple, once Chinese government officials are convicted of dangerous
driving, they are removed from public office.

The criminal charge of DUI occurs with great frequency result-
ing in a high cost of adjudication and sanctioning (Miller et al.,
2006), which is another issue of criminalizing DUI that is a concern.
In addition to DUI, three other types of behaviors (i.e., speeding,
overweight overloading, and illegal transportation of dangerous
chemicals) are charged with the crime of dangerous driving in
China. According to the data released by Supreme People’s Procu-
ratorate (SPP) of China, the crime of dangerous driving is the most
frequently prosecuted, with a total of 322,041 offenders in 2019,
accounting for 17.7% of all prosecutions (SPP, 2020). Among all
the offenders convicted of dangerous driving, the data extracted
from the document of adjudication decisions (DADs) by Supreme
People’s Court of China (SPC) indicated that 99% involved DUI
(SPC, 2016). A large amount of government funds have been spent
on legal and adjudication services, and corrections programs (in-
cluding incarceration; Wang, 2020). In light of these events, policy-
makers are seeking appropriate approaches for controlling DUI
crime effectively, without further restraining budgets and worsen-
ing prison conditions.

Compared to car drivers, motorcyclists are not protected by a
vehicle body, which makes them a particularly vulnerable group
of road users. The report from the National Highway Traffic Safety
Administration (NHTSA) revealed that in the United States, 27% of
the motorcyclists involved in fatal crashes had BACs of 80 mg/dL or
higher (NHTSA, 2018). Additionally, motorcycle riding requires
more skills and coordination. Riding motorcycles under the influ-
ence of any amount of alcohol significantly decreases operators’
ability of safe driving (Ahmed et al., 2020). The operators may
experience a loss of balance and coordination, which makes it hard
to maneuver around obstacles without falling. Evidence has been
found that alcohol-impaired motorcyclists are almost twice more
likely to be involved in single-vehicle crashes than in multiple-
vehicle crashes (Shankar, 2003; Sarmiento et al., 2020;
Thompson et al., 2020). The motive of criminalizing DUI is to main-
tain public safety and protect people from harm by other people
engaged in illegal activity. However, according to the law of China,
alcohol-impaired motorcyclists who are at-fault in non-collision
crashes are charged with the crime of dangerous driving as well.
This ‘‘tough on crime” policy not only leads to considerable DUI
convictions but also raises the debate on the rationality of crimi-
nalizing motorcycle DUI that is less dangerous to the general
public.

Each DUI criminal offense is associated with an adjudication
describing judgment or decision by a judge after all of the evidence
is reviewed. All Chinese criminal judgments (except those involv-
ing state secrets and juvenile crimes) are disclosed on the official

website (it’s mandatory). The published judgments (i.e. DADs) on
DUI offenses contain a lot of information, such as offenders’ demo-
graphics, measured BAC, vehicle type, collision damage, traffic vio-
lations associated with DUI, and sentencing outcomes (i.e.,
detention time, fines amount, and probation). Therefore, it pro-
vides a new perspective for assessing the severity of crash and
punishment of alcohol-impaired driving and riding respectively.

Focusing on 18,859 offenses of DUI convicted of dangerous driv-
ing, which are recorded in DADs by the courts of Jiangsu, China, the
present research aims to investigate factors that affect crash
involvement and legal consequence of DUI offenses committed
by motorcyclists and car drivers. Additionally, it aims to identify
and analyze differences between motorcycle DUI and car DUI with
respect to BAC levels, offenders’ demographics, environment-
related factors (i.e., season, time of day), and the aggravating and
mitigating circumstances considered in sentencing. The term ‘‘car”
used in this study refers to an automobile that has door beams and
a roof to provide protection from impact or rollover, including a
sedan, truck, van and so forth. The term ‘‘motorcycle” refers to a
two-wheeled or three-wheeled vehicle that is powered by a motor
and has no pedals.

After the introduction, the rest of this paper is organized as fol-
lows. Section 2 summarizes related work and Section 3 presents
the data sources and the hypotheses. In Section 4, the procedure
of analysis is explained. Results on the descriptive statistics and
factors influencing crash involvement and legal consequence of
DUI offenses are reported in Section 5. Discussions and implica-
tions are presented in Section 6. The study is concluded in Section 7
with remarks on future research.

2. Literature review

Traditional economic models of criminal behavior have
straightforward predictions that raising the expected cost of crime
via increasing apprehension probabilities or punishments deter the
crime (Becker, 1968). Thus, government agencies commonly use
deterrence-centered penalties to prevent the occurrence of
alcohol-related crashes and fatalities (e.g., driving prohibition,
incarceration, and fines; Chan et al., 2017). Some research supports
the idea that punishment curbs offending. For example, Asbridge
et al. (2004) found that Canada’s first per se law that criminalized
DUI had a specific deterrent effect that resulted in a reduction of
drinking-driver fatalities. Based on the daily aggregate road-
traffic injury (RTI) data provided by the First-Aid Service Command
Center in Guangzhou from 2009 to 2012, Zhao et al. (2016) con-
firmed that the criminalization of drunk driving in China since
2011 had led to moderate reductions in RTIs. By tracking felony-
level DUI probationers in Texas, USA for a period of 8 years, results
from a series of event history analyses indicated that the severity
of punishment had a significant effect on the success of probation
for DUI probationers (Lee & Teske, 2015).

However, not all DUI studies report consistent findings about
the deterrence doctrine (Cavanaugh & Franklin, 2012; Bouffard
et al., 2017). William et al. (1991) reported the evidence that puni-
tive legislation aimed at general deterrence was less effective at
reducing drunk driving fatalities than mandatory seat belt use laws
and beer taxes. By comparing rehabilitation and punishment
strategies with data from a sample of DUI offenders, Taxman and
Piquero (1998) found that rehabilitation sentences appeared to
reduce the likelihood of recidivism more than punishment sen-
tences. Similarly, following a sample of 514 incarcerated drunk dri-
vers for 24–45 months in Alberta, Canada, Weinrath and Gartrell
(2001) observed that shorter sentences were less effective in dis-
couraging drunk driving recidivism, while sentences longer than
6 months did not produce additional benefits.
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BAC level is generally used as the prima facie evidence for
objectively defining criminally DUI. The study by Stringer (2018)
unveiled that alcohol was not the primary causal agent in low
BAC crashes (i.e., BAC between 10 and 70 mg/dL). But as BAC
increased, drivers were more likely to be responsible for the
crashes they were involved in. Many countries such as China, Uni-
ted States, and Canada have set 80 mg/dL as the legal BAC limit for
DUI. This is supported by the evidence that once BAC is above
80 mg/dL, drivers are more likely to be involved in fatal crashes
(del Rı́o & Alvarez, 1999; NHTSA, 2018). BAC levels not only have
influence on the risk of crash involvement (Fell et al., 2010; Yao
et al., 2018; Ahmed et al., 2020) but also affect punishments and
sanctions on DUI offenses. The findings of Hansen (2015), consis-
tent with deterrence theory, revealed that increasing the severity
of punishment along BAC distribution was helpful to deter drunk
drivers involved in fatal crashes.

Alcohol consumption is a very common factor associated with
motorcycle crash involvement (Jou et al., 2012) in that it impairs
riders’ abilities to maintain balance while riding (Seiniger et al.,
2012). By measuring basic riding skills considered important to
motorcyclist safety, Creaser et al. (2009) found that the alcohol
effects leading to more task performance errors were evident at
BAC levels ranged from 20 to 80 mg/dL. Motorcycle riders have less
protection in crashes. When a crash occurs, the threat of injury or
death to motorcyclists is magnified by physical exposure compared
to that of car drivers (Robertson et al., 2002; Hsieh et al., 2016;
Medeiros & Nadanovsky, 2016; Thompson et al., 2020). Using a
case-control study designed with New Zealand data, Keall et al.
(2013) found that the rate of increase in fatal injury risk with
increasing BAC was similar between motorcyclists and car drivers,
but because of the nature of the vehicle, motorcyclists at BAC of
80 mg/dL had 20 times the fatality risk compared to car drivers.

The traffic-related information collected by the adjudication
data system support the traffic safety analysis. For example,
Costich and Slavova (2015) used the data from judicial system
administrative agency in Kentucky, USA to evaluate the effect of
the primary safety belt law implementation. By analyzing the dif-
ference in court dispositions and sentence outcomes between
monitored and non-monitored DUI cases, Shinar (1992) found that
the court monitoring was an effective tool in affecting the adjudi-
cation process, which had potential benefits for reducing DUI.
However, to our knowledge, the adjudication data has not been
previously attempted for analyzing the difference between motor-
cycle and car DUI offenses.

The objective of this study is to: (1) distinguish the criminally
DUI outcomes in terms of crash involvement and judicial punish-
ment for alcohol-impaired motorcyclists and car drivers, respec-
tively, using the data extracted from DADs; (2) identify
commonalities and differences between motorcycle and car DUI
offenses associated with BAC levels; and (3) discuss current chal-
lenges and gaps in the criminalization of motorcycle DUI.

3. Data sources and hypotheses

3.1. Data sources

This study uses a rich DAD database of criminally DUI offenses
provided by Jiangsu High People’s Court of China. The analysis is
administered by the judicial administrative authority of Jiangsu.
Offenders’ personal identification information is removed for pri-
vacy protection.

The database contains almost complete groups of documents
issued in 2014 and 2015, and a part of the groups issued in 2012,
2013, and 2016. The five-year data are aggregately analyzed con-
sidering that no change occurs in the implementation of DUI law

from 2012 to 2016, and assuming the temporal effect across the
year is minimal. In order to process the unstructured texts in DADs,
the method of text mining is applied to derive critical information
from those texts. Keywords and key phrases are extracted to iden-
tify the terms that describe offenders’ demographics, BAC values,
vehicle type, collision damage, sentencing outcomes, and so forth.
After removing the duplicate files and the files missing the infor-
mation of vehicle type, BAC values and sentencing outcomes,
18,859 of DUI cases convicted of dangerous driving crime are stud-
ied, including 10,457 motorcycle DUI cases and 8,402 car DUI
cases. There is no bias in the analysis since both car drivers and
motorcyclists are evaluated for the same range of DUI (i.e., BAC
� 80 mg/dL).

3.2. Hypotheses

This study makes use of DAD dataset to unveil how crash
involvement and judicial outcomes are influenced by BAC levels,
vehicle type, and other risk factors. First, although Stringer
(2018) found that low BAC (i.e., BAC between 10 and 70 mg/dL)
was a largely inconsequential contributor to crashes, we expect
that, for the criminally DUI offenses with BACs of 80 mg/dL or
higher:

H1: the occurrence of crash involvement is positively associated
with BAC levels.

Second, a number of case-specific factors will be considered in
DUI sentencing, including offenders’ DUI record and criminal his-
tory, impact of the DUI on any victims, regret or remorse expressed
by offenders, and so on, while we believe that:

H2: BAC level plays a dominant role in DUI sentencing.
Third, vehicle type has effect on crashes and sentencing out-

comes as well as BAC level. On one hand, as mentioned earlier,
alcohol-impaired motorcyclists are more likely to be involved in
crashes and responsible for single-vehicle crashes (Shankar,
2003; Sarmiento et al., 2020; Thompson et al., 2020). This yields
the following hypothesis:

H3: offenders of motorcycle DUI are more likely to endanger
their own safety for the same BAC level.

On the other hand, judges who handle motorcycle DUI cases are
accordingly subject to the balance between the enforcement of law
and the protection of motorcyclists’ interests. They may give the
motorcycle offenders more lenient sentences instead of following
the principle of impartiality. We thus expect:

H4: judges are lenient with motorcyclists who are convicted of
the crime of dangerous driving.

In the following sections, we will test the above four hypotheses
using quantitative analyses.

4. Method

The differences between criminally DUI offenses committed by
motorcyclists and car drivers are quantified using a series of logis-
tic regression models, by which the effects of explanatory variables
on crash involvement and legal consequences are estimated.

4.1. Measures

4.1.1. Outcome variable
Two sets of dependent variables are used to measure the out-

comes of DUI offenses, namely, crash and punishment. The first
set includes a dummy variable, CRASH INVOLVEMENT, which is
denoted by Yc and assigned a value of 1 if DUI offenders are
involved in a crash that causes injury, death, or property losses
to themselves or other people, and 0 if impaired drivers or riders
are apprehended before a collision occurs. The collision pattern
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information such as whether offenders are involved in single or
multiple vehicle crashes is also extracted.

The other set includes two discrete variables and one dummy
variable characterizing the LEGAL CONSEQUENCE. Two kinds of
legal penalties (i.e., criminal detention and fine punishment) are
imposed on DUI offenders in China. According to the Handbook on
Convictions and Sentencing of DUI Cases in Jiangsu (short for Hand-
book, released jointly by Jiangsu Higher People’s Court, Jiangsu Peo-
ple’s Procuratorate, and Jiangsu Public Security Department in
2013), thefinepunishment should correspond to thedetention time,
that is, a detention of one month corresponds to a fine of ¥1,000. A
maximum six-month detention is stipulated for dangerous driving
crime, while fine amounts exceeding ¥6,000 are observed in 86
cases. Since only 6.6% of offenders are sentenced to a detention of
four months or higher, the detention time denoted by Yd is set as a
discrete variable with 4 levels representing 0–1 months, 2 months,
3 months, and 4 months or higher. Accordingly, the outcomes of
the fine penalty Yf are classified into 4 levels representing the fines
of ¥1,000 or less, ¥2,000, ¥3,000, and ¥4,000 or higher. A dummy
variable Yp is used to show whether offenders are put under proba-
tion. It is assigned a valueof 1 if it is an aggravatedDUI andprobation
is not applicable, and 0 otherwise.

4.1.2. Exposure variable
Both BAC level and vehicle type are regarded as exposure vari-

ables that measure the changes in DUI outcomes. According to the
Handbook, for each 50 mg/dL increase in BAC, a one-month deten-
tion can be added to determine the benchmark sentence. Specifi-
cally, for offenders with BACs between 80–130 mg/dL the
benchmark detention is one month, for offenders with BACs
between 130–180 mg/dL it is two months, and so on. Since only
11.5% cases are observed with a BAC above 230 mg/dL, the mea-
sured BACs are grouped into four categories: 80–130, 130–180,
180–230, and >230 mg/dL, which is in line with the number of cat-
egories for criminal detention and fine punishment. The BAC level
is accordingly characterized by a discrete variable XBAC . A dummy
variable Xv is used to define vehicle type, and is assigned a value
of 1 for motorcycles, and 0 for cars.

4.1.3. Confounding factors
The following factors are regarded as confounders that influ-

ence both the dependent and independent variables.

� Demographics. Not all of the DADs reported offenders’ socio-
economic status (e.g., gender, age, educational background)
because such information is not a mandatory requirement for
adjudication documents. However, it is provided by some DADs.
Three variables characterizing gender (xm;1), educational back-
ground (xm;2), and age (xm;3) are measured.

� Time-related factors. Most DADs record the date and the time of
offenses, thereby extracting confounders in terms of season (xm;4)
and time of day (xm;5). The variables describing seasons are
defined according to the Bureau of Meteorology Category, China.

� Aggravating circumstances for DUI sentencing. The aggravat-
ing factors resulting in harsher punishments are mandatory to
be recorded. Variables lead to a long-term detention including
offenders with illegal and criminal records (xn;1), DUI repeat
offenses (xn;2), unlicensed operators (including driving without
a license, driving with an inappropriate license, and driving
with a suspended license) (xn;3), unsafe vehicles which do not
comply with the safety standards (xn;4), operating for commer-
cial purposes (xn;5), driving in safety enhancement zones (e.g.,
a limited access highway, express way, or downtown area)
(xn;6), driving with the intent of avoiding checks (xn;7), and crash
involvement (Yc).

� Mitigating circumstances. These include no crash involvement,
good behavior after being pulled over by police, showing
remorse and desire to avoid a repeat DUI, and so forth. These
circumstances are described by a single composite variable,
which is denoted as xn;8, indicating whether any of the mitigat-
ing circumstances occurs.

4.2. Statistical analysis

The effect of the exposure variable XBAC is first estimated by a
univariate regression model. The model is then modified by adding
potential confounders separately to control confounding in the
analyses. That is, the variation in DUI outcomes is explained by a
set of regression models with two variables (i.e., XBAC) and one of
the confounders. The confounder, which owns a 95% level of confi-
dence, is then selected as the explanatory variable for regressions
with more than two independent variables (i.e., XBAC and other con-
founders owing 95% level of confidence). For the model with crash
involvement Yc as the dependent variable, the potential con-
founders include gender, educational background, age, season,
time of day, prior illegal and criminal records, DUI repeat offenses,
unlicensed operator, unsafe vehicles, and driving in safety
enhancement zones. Owing to the principle of equality in law,
the offenders’ demographics and time-related factors are not con-
sidered in the models that predict legal consequences. The con-
founding effects of the aggravating and mitigating factors on
sentencing are examined. Remarkably, crash involvement is
regarded as a confounder for the regression of legal consequences.

After justifying the decisive role of XBAC on the outcomes of
motorcycle and car DUIs, respectively, the exposure Xv , which indi-
cates vehicle type is then added to the regression models with con-
trols for BAC levels. The variation in damage facts is analyzed in
terms of crash involvement (Yc), single-vehicle crashes (denoted
as Y1

c ), and single-vehicle crashes that cause injuries and death (de-

noted as Y2
c ). As detention Yd and fines Yf have multiple ordered

categories, the effect of Xv is estimated by ordered logistic regres-
sions. A binary logistic regression is established to compare the
probation rate between motorcyclists and car drivers.

The multicollinearity issues are addressed by performing pair-
wise correlation analyses for the exposure variables and con-
founders as well as calculating the variance inflation factors for
each regression model. A likelihood ratio test is performed to eval-
uate the regression performance, which compares the likelihood of
the data under the full model against the likelihood of the data
under a model with no predictors. The results of the logistic regres-
sion analyses are presented as odds ratios (OR) with 95% confi-
dence intervals (CI).

5. Results

5.1. Descriptive statistics

5.1.1. Number of motorcycle DUI
55.4% of DADs provided by Jiangsu High People’s Court are

motorcycle DUI cases. The percentage is higher than the data
released by SPC (i.e., the frequency of motorcycle DUI cases
accounts for 37.7% across the country from January 2014 to
September 2016; SPC, 2016). The province of Jiangsu is located in
eastern China, with mild climate and flat terrain, which is suitable
for riding motorcycles. Fig. 1 presents the number of private-
owned vehicles in Jiangsu from 2000 to 2017, which is recorded
by Jiangsu Statistical Yearbook. Motorcycles accounted for 95.80%
of private-owned vehicles in 2000, which decreased to 14.92% in
2017. This is partly because of the rapid growth of private cars
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and partly because of the motorcycle restriction policies. Aimed at
preventing adverse effects caused by motorcycles (i.e., motorcycle-
related accidents, pollution, and congestion), motorcycle restric-
tion policies were introduced to the cities of Nanjing, Changzhou,
Suzhou, Nantong, Huai’an and other cities in Jiangsu; these restric-
tions included at least one of the following: stopping issuing
motorcycle licenses to drivers who do not possessed a local hukou
(‘‘household registration”), banning motorcycles from downtown
areas or main streets, compulsory scrapping of motorcycles in
10 years, and more.

Owing to the tough restrictions, cities in Jiangsu are facing a
grim situation in that there are a large number of motorcyclists
driving with an expired license or riding unlicensed motors that
do not comply with safety standards. According to the statistics
of traffic violations extracted from the DAD database, 37% of
motorcyclists are unlicensed operators compared to a 5.2% propor-
tion of car drivers. 23.7% DADs report unlicensed vehicles or with-
out inspections, of which motorcycles account for 95%. It is
accordingly inferred that actual motorcycle ownership is much lar-
ger than the official record. Unlicensed rider is one of risk factors
resulting in alcohol-related crashes (Jou et al., 2012; Shaker et al.,
2014), thereby exposing Jiangsu to a serious problem of motorcycle
DUI.

5.1.2. BAC levels
A descriptive analysis of BAC levels is carried out to provide

insight on the alcohol consumed by offenders (Table 1). Owing to
the legal BAC limit, no cases are observed with a BAC less than
80 mg/dL. The percentages of slightly drunk offenses (i.e., with a
BAC between 80 and 130 mg/dL) are 36.6% among motorcycle
DUI cases and 31.7 % among car DUI cases. As to the categories

of BAC between 130–180, 180–230, and >230 mg/dL, lower propor-
tion of motorcycle DUI cases occur compared to car DUIs. The data
grouped by vehicle type are analyzed using the Kolmogorov-
Smirnov test (BAC is used as a continuous variable). The test results
reject the null hypothesis that BAC distributions of motorcyclists
and car drivers are similar (D = 0.056, p < 0.001). On average,
alcohol-impaired motorcyclists have a slightly lower BAC than
car drivers.

5.1.3. Crash involvement and legal consequences
Table 2 summarizes the outcomes of crash involvement and

legal consequences across vehicle types. 72.4% of DUIs report crash
involvement. The occurrence of crash involvement for motorcy-
clists is higher than that of car drivers (77.0% vs. 66.8%). The
offenders without crash involvement are mostly apprehended by
the police at various times, for example, at sobriety checkpoints,
when they fall asleep on the road, when they pick a quarrel or trou-
ble after drinking, and so forth.

As shown in Table 2, a majority of the offenders are sentenced
to a detention of two months or shorter, namely 85.2% among
motorcyclists and 79.8% among car drivers. The amount of the fines
has a distribution trend similar to that of detention time. The high-
est percentage of fines is observed at ¥2,000 and ¥1,000 or less
(45.1% and 25.4%, respectively). Probation is applicable for 38.3%
of motorcyclists and 29.4% of car drivers.

5.1.4. Offenders’ demographics and time-related factors
The information on offenders’ gender is reported in 4,383 DADs

(Table 3). As would be expected, 98.8% of DUI offenders are male,
whereas the proportion of female drivers in China accounts for
31.5% as of 2019 (MPS, 2020). This is in line with the findings of
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Fig. 1. Number of private-owned vehicles in Jiangsu, China from 2000 to 2017.

Table 1
Descriptive statistics of BAC levels.

BAC level
(mg/dL)

Motorcycle Car

n (%) Mean Standard
Deviation

n (%) Mean Standard
Deviation

80–130 3,831 (36.6) 106.6 13.7 2,668 (31.7) 108.0 13.4
130–180 3,368 (32.2) 154.3 14.4 2,778 (33.1) 155.0 14.3
180–230 2,136 (20.4) 201.9 14.1 1,937 (23.1) 201.7 13.9
>230 1,122 (10.7) 266.9 33.6 1,019 (12.1) 268.6 37.1
Total 10,457 (100.0) 158.6 54.2 8,402 (100.0) 164.6 54.9
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Schwartz and Beltz (2018) and Portman et al. (2013) that percent-
age of female DUI drivers is much lower than that of males.
Amongst five educational background groups (reported by 2,630

DADs), 74.8% of offenders are less educated (i.e., uneducated, pri-
mary, or junior education level), of which motorcyclists and car
drivers account for 69.2% and 30.8%, respectively. The offenders’
ages are recorded in 2,806 DADs and grouped into five categories:
18–25, 26–35, 36–45, 46–55, and �56. Offenders aged 36–45 are
responsible for the largest number of offenses (35.7%), and offend-
ers aged 18–25 contribute to the smallest number (5.7%). This is
unlike the United States where teens and young adults are more
likely to drive while impaired (NHTSA, 2018). In China, the mini-
mum age for applying for a drivers license is 18 years old. It is a
luxury for young adults to own a car, while in the United States
it is quite common and is essential for daily life.

As would be expected, the evening period from 19:00 to 22:59
has the highest percentage of DUIs, accounting for 41.4% of DADs
reported. The effects of seasonal variations are not obvious; it is
observed that the largest number of offenses (27.5% of DADs that
reported the date) occurred in autumn.

5.1.5. Aggravating and mitigating circumstances
Table 4 illustrates the occurrence of the aggravating and miti-

gating circumstances considered in DUI sentencing. 10.4% of
offenders are found with illegal and criminal records other than

Table 2
Descriptive statistics of crash involvement and legal consequence.

Categories Variables Values Motorcycle Car All samples
n (%) n (%) n (%)

Crash involvement Involved in a crash Yc Yes 8,048 (77.0) 5,613 (66.8) 13,661 (72.4)

Legal consequence Detention time Yd (month) �1 4,080 (39.0) 2,911 (34.6) 6,991 (37.1)
2 4,826 (46.2) 3,798 (45.2) 8,624 (45.7)
3 961 (9.2) 1,043 (12.4) 2,004 (10.6)
�4 590 (5.6) 650 (7.7) 1,240 (6.6)

Fine amounts Yf (¥) �1,000 2,891 (27.6) 1,893 (22.5) 4,784 (25.4)
2,000 4,758 (45.5) 3,738 (44.5) 8,496 (45.1)
3,000 1,654 (15.8) 1,609 (19.2) 3,263 (17.3)
�4,000 1,154 (11.0) 1,162 (13.8) 2,316 (12.3)

Probation Yp Not applicable 6,455 (61.7) 5,931 (70.6) 12,435 (65.9)

Table 3
Descriptive statistics of confounders of offenders’ demographics and time-related factors.

Variables Values Motorcycle Car All samples
n (%) n (%) n (%)

Gender xm;1 Female 13 (0.5) 38 (2.2) 51 (1.2)
Male 2,618 (99.5) 1714 (97.8) 4,332 (98.8)
Missing 7,826 6,650 14,476

Educational background xm;2 Uneducated 48 (3.0) 8 (0.8) 56 (2.1)
Primary school 425 (26.4) 98 (9.6) 523 (19.9)
Middle school 887 (55.1) 500 (49.0) 1,387 (52.7)
High school 210 (13.0) 241 (23.6) 451 (17.1)
College degree or above 40 (2.5) 173 (17.0) 213 (8.1)
Missing 8,847 7,382 16,229

Age xm;3 �56 132 (7.8) 41 (3.7) 173 (6.2)
18–25 101 (6.0) 59 (5.3) 160 (5.7)
26–35 335 (19.8) 387 (34.7) 722 (25.7)
36–45 583 (34.5) 418 (37.5) 1,001 (35.7)
46–55 540 (31.9) 209 (18.8) 749 (26.7)
Missing 8,766 7,288 16,054

Time of day xm;4 Morning (5:00–9:59) 3,100 (29.9) 1,919 (23.1) 5,019 (26.9)
Noon (10:00–14:59) 2,415 (23.3) 882 (10.6) 3,297 (17.7)
Afternoon (15:00–18:59) 264 (2.5) 149 (1.8) 413 (2.2)
Evening (19:00–22:59) 3,929 (37.9) 3,793 (45.6) 7,722 (41.4)
Night (23:00–4:59) 646 (6.2) 1,577 (19.0) 2,223 (11.9)
Missing 103 82 185

Season xm;5 Spring (March–May) 2,487 (23.8) 1,950 (23.2) 4,437 (23.6)
Summer (June–September) 2,402 (23.0) 2,000 (23.8) 4,402 (23.4)
Autumn (October–November) 2,993 (28.7) 2,232 (26.6) 5,225 (27.7)
Winter (December–February) 2,560 (24.5) 2,213 (26.4) 4,773 (25.3)
Missing 15 7 22

Table 4
Descriptive statistics of aggravating and mitigating circumstances.

Variables Motorcycle Car All
samples

n (%) n (%) n (%)

Prior illegal and criminal records xn;1 984 (9.4) 980
(11.7)

1,964
(10.4)

DUI repeat offenses xn;2 91 (0.9) 73 (0.9) 164 (0.9)
Unlicensed operator xn;3 3,866

(37.0)
434 (5.2) 4,300

(22.8)
Unsafe vehicles xn;4 4,243

(40.6)
222 (2.6) 4,465

(23.7)
Commercial operating xn;5 0 (0.0) 1,989

(23.7)
1,989
(10.5)

Driving in safety enhancement zones
xn;6

30 (0.3) 169 (2.0) 199 (1.1)

Avoid checks xn;7 83 (0.8) 350 (4.2) 433 (2.3)
Mitigating circumstances xn;8 10,373

(99.2)
8,305
(98.8)

18,678
(99.0)
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DUI offenses. In line with the findings of Hansen (2015), strict pun-
ishment on DUI seems helpful to discourage a repeat of the
offense; very few DUI repeat offenses are reported (0.9%). The chal-
lenges of unlicensed operators and unsafe vehicles have been men-
tioned above. 10.5% of offenders are found to be driving
commercial vehicles transporting passengers and property while
intoxicated; all of them are car drivers. 1.10% of offenses occurred
in safety enhancement areas, which have a high risk of endanger-
ing public safety. 2.3% of offenders have the intent to avoid check-
ing. The number of motorcyclists driving in safety enhancement
zones or avoiding checks are lower than those of car drivers. The
mitigating factors are considered almost in all DADs (99.0%).

5.2. Associations between BAC, confounding factors and crash
involvement

5.2.1. Pairwise associations
A univariate logistic regression is first used to examine the

unadjusted association between BAC levels and crash involvement.
As shown in Table 5, DUI with high BAC has an increased likelihood
of crash involvement. Compared to offenders who are slightly
drunk (i.e., with a BAC range from 80 to 130 mg/dL), driving at a
BAC higher than 230 mg/dL is 4.47 and 3.95 times more likely to
be involved in a crash for motorcyclists and car drivers,
respectively.

The estimated effect for each potential confounder is from logis-
tic regression models with controls for BAC levels. Offenders’
demographic characteristics (such as gender, age, educational
background) are not found to significantly affect the likelihood of
crash involvement. Likewise, whether car drivers operate vehicles
for commercial purposes is not found as a statistically significant
predictor. These variables are thus not presented in Table 5.

The odds ratios reveal that winter has higher odds of crash
involvement than summer and spring for both motorcycle and
car DUIs. Contrary to our expectation, although the highest propor-
tion of DUIs occurred in the evening, motorcycle DUIs are approx-
imately 43% more likely (i.e., 1/0.70 = 1.43) to be involved in a

crash in the morning than in the evening. For car drivers, the high-
est likelihood of a crash occurring for alcohol-impaired driving is at
noon. Because sobriety checkpoints are usually set up in the eve-
ning when impaired driving often occurs, it seems helpful to pre-
vent alcohol-related crashes.

Offenders with a prior illegal or criminal offense are associated
with less frequency of crash involvement. They are assumed to
respond to the past punishment and consequently avoid the reoc-
currence of offenses, which criminologists call ‘‘specific deter-
rence.” That is, the experience of punishment helps to reduce the
likelihood of criminal acts by those who have previously commit-
ted them (Stafford & Warr, 1993). Similarly, offenders who have a
prior arrest or conviction for DUI are less likely to be involved in a
crash. Particularly, motorcyclists who have previously been caught
for impaired riding are approximately four times less likely
(1/0.25 = 4) to be involved in a crash. A similar phenomenon is
observed in Yao et al. (2018), which found that offenders with
drinking problems had a lower risk of crash involvement at any
time of the day.

As would be expected, offenders who are unlicensed or driving
unsafe vehicles are more likely to be involved in a crash. Because
driving a car without a license is less common compared to riding
an unlicensed motorcycle, the effect of unlicensed car drivers on
alcohol-related crashes is not statistically significant. Offenders
are assumed to drive more carefully in safety enhancement zones,
owing to the consensus that this act is dangerous and will lead to a
harsh punishment.

5.2.2. Adjust odds ratios
Binary logistic regression is performed to examine the major

determinants of alcohol-related crashes. The key confounding fac-
tors statistically significant in the models with controls for BAC are
set as independent variables of the regression model. As a prelim-
inary analysis, all independent variables have to be tested for their
independence. Spearman’s correlation coefficients indicate weak
correlations amongst dependent variables (r ranged from �0.09
to 0.29 for motorcycles, and from �0.08 to 0.23 for cars); therefore,

Table 5
Risk factors of crash involvement.

Factors Values Motorcycle Car

Unadjusted OR
(95% CI)

Adjusted OR
(95% CI)

Unadjusted OR
(95% CI)

Adjusted OR
(95% CI)

BAC XBAC

(base: 80–130 mg/dL)
130–180 2.13 (1.91–2.37)*** 2.10 (1.89–2.35)*** 1.65 (1.48–1.84)*** 1.67 (1.49–1.86)***

180–230 3.57 (3.10–4.13)*** 3.54 (3.06–4.10)*** 3.19 (2.80–3.65)*** 3.26 (2.85–3.74)***

>230 4.47 (3.67–5.48)*** 4.51 (3.69–5.56)*** 3.95 (3.32–4.73)*** 3.99 (3.34–4.79)***

Season xm;5

(base: spring)
summer 0.75 (0.66–0.86)*** 0.81 (0.72–0.91)*** 0.65 (0.57–0.75)*** 0.71 (0.64–0.80)***

autumn 0.88 (0.78–1.00) n.s. 0.89 (0.78–1.01) n.s.
winter 1.67 (1.45–1.93)*** 1.80 (1.58–2.05)*** 1.22 (1.06–1.40)** 1.33 (1.18–1.49)***

Time of day xm;4

(base: morning)
noon 0.72 (0.63–0.82)*** 0.70 (0.61–0.79)*** 1.28 (1.07–1.55)** 1.22 (1.03–1.45)*
afternoon 0.68 (0.51–0.92)* 0.64 (0.48–0.87)** 0.78 (0.55–1.12) n.s.
evening 0.70 (0.62–0.79)*** 0.72 (0.65–0.81)*** 0.63 (0.56–0.71)*** 0.61 (0.56–0.68)***

night 1.16 (0.92–1.47) n.s. 1.05 (0.91–1.22) n.s.

Prior illegal and criminal records xn;1 (base: no) yes 0.82 (0.70–0.96)* 0.75 (0.64–0.89)*** 0.78 (0.67–0.90)*** 0.76 (0.66–0.88)***

DUI repeat offenses xn;2 (base: no) yes 0.25 (0.16–0.39)*** 0.25 (0.16–0.40)*** 0.49 (0.30–0.79)** 0.46 (0.28–0.75)**

Unlicensed operator xn;3 (base: no) yes 1.45 (1.32–1.61)*** 1.34 (1.21–1.49)*** 1.12 (0.91–1.39) n.s.

Unsafe vehicles xn;4 (base: no) yes 1.49 (1.35–1.65)*** 1.38 (1.25–1.53)*** 1.77 (1.29–2.46)*** 1.72 (1.25–2.41)**

Driving in safety enhancement zones xn;6 (base: no) yes 0.43 (0.20–0.96)* n.s. 0.56 (0.41–0.76)*** 0.56 (0.41–0.77)***

Model’s fit number of samples / 10,349 / 8319
likelihood ratio test / 855.37 / 702.27
degrees of freedom / 12 / 11

‘‘n.s.”: indicates the factor is not significant at the 5% level.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
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no multicollinearity issues are expected. 10,349 samples of motor-
cycle DUI and 8,319 samples of car DUI with the complete informa-
tion of independent variables are applied to the regressions.

As shown in Table 5, for motorcycle DUIs, the effect of the risk
factor of driving in safety enhancement zones is no longer statisti-
cally significant. An increase in the BAC is significantly related to
the likelihood of a crash, confirming the hypothesis H1 that BAC
levels of 80 mg/dL or higher are positively associated with crash
involvement.

5.3. Associations between BAC, confounding factors and detention time

5.3.1. Pairwise associations
The associations between BAC level, confounders, and detention

time are examined by a series of ordered logit models. The effects
of BAC levels are first estimated when no confounders are under
control. The odds ratios reveal that as BAC rises, there is a drastic
increase in the likelihood that offenders will be sentenced to a
long-time detention. Specifically, offenders riding or driving with
BAC above 230 mg/dL are approximately more likely to be
detained longer than those who are slightly drunk (i.e., 335 times
for motorcyclists and 322 times for car drivers, respectively;
Table 6).

With controls for BAC levels, the effects of each of the aggravat-
ing and mitigating factors are examined. Whereas crash involve-
ment is one of the aggravating factors for sentencing, Yc is set as
an independent variable in the regression.

As shown in Table 6, almost all aggravating factors illustrate an
increased likelihood of long-time detention, and consistent with
intuition, the mitigating factor decreases the likelihood of long-
time detention. The aggravating factor of DUI repeat offenses
(xn;2) for motorcyclists is not found to significantly affect the length

of detention time, while for car drivers who are repeat offenders,
they are 2.24 times more likely to be punished with a long-time
detention.

5.3.2. Adjust odds ratios
Two ordered logit models are used to establish the relationships

between BAC levels, aggravating factors, mitigating circumstances,
and detention time for riders and drivers, respectively. In the
motorcycle model, the aggravating factor of driving in safety
enhancement zones (xn;6) and mitigating circumstances (xn;8) are
not performed as statistically significant predictors. For the car
model, except for the variable xn;4 which characterizes unsafe vehi-
cles, the coefficients of the other variables are statistically signifi-
cant. The multicollinearity is proved to be weak. The results
presented in Table 6 indicate that the odds of being detained
longer increase as BAC rises, which supports hypothesis H2: there
is a positive association between BAC levels and the severity of DUI
punishment.

5.4. Comparative analysis of damage fact

Aimed at offering an insight into the threat caused by DUI to the
safety of motorcyclists themselves, the damage fact of motorcycle
and car DUIs is compared in terms of three dependent variables,
namely, crash involvement Yc (Yes = 1, No = 0), single-vehicle
crashes Y1

c (Yes = 1, No = 0), and single-vehicle crashes that cause

injuries or death Y2
c (Yes = 1, No = 0). A single-vehicle crash is one

where only the offenders are involved in the crash and harm them-
selves (e.g., slip down, fall into a river, or hit roadside objects).
Cases in which passengers of the offenders get injured or die are
included in the group of single-vehicle crashes as well. 15.8% of
motorcycle DUIs and 12.1% of car DUIs are involved in single-

Table 6
Risk factors of detention time.

Factors Values Motorcycle Car

Unadjusted OR
(95% CI)

Adjusted OR
(95% CI)

Unadjusted OR
(95% CI)

Adjusted OR
(95% CI)

BAC XBAC

(base: 80–130 mg/dL)
130–180 8.34 (7.51–9.26)*** 8.35 (7.51–9.30)*** 8.42 (7.47–9.49)*** 9.10 (8.04–10.31)***

180–230 53.58 (46.25–62.18)*** 52.26 (45.00–60.83)*** 53.74 (46.06–63.03)*** 56.68 (48.25–66.75)***

>230 334.97 (280.52–
400.76)***

337.05 (281.08–
405.01)***

322.15 (266.95–
390.68)***

347.44 (285.55–
423.75)***

Prior illegal and criminal records xn;1 (base:
no)

yes 2.43 (2.12–2.79)*** 2.36 (2.05–2.71)*** 1.85 (1.61–2.12)*** 1.83 (1.59–2.11)***

DUI repeat offenses xn;2 (base: no) yes 1.51 (0.97–2.32) n.s. 2.24 (1.40–3.56)*** 2.89 (1.77–4.70)***

Unlicensed operator xn;3 (base: no) yes 1.94 (1.78–2.11)*** 1.73 (1.58–1.89)*** 2.72 (2.24–3.32)*** 2.50 (2.04–3.06)***

Unsafe vehicles xn;4 (base: no) yes 1.49 (1.37–1.62)*** 1.19 (1.09–1.30)*** 1.43 (1.08–1.88)* n.s.

Commercial operating xn;5 (base: no) yes / / 1.21 (1.09–1.34)*** 1.16 (1.04–1.29)**

Driving in safety enhancement zones xn;6
(base: no)

yes 0.44 (0.19–0.96)* n.s. 2.50 (1.82–3.42)*** 2.91 (2.11–4.02)***

Avoid checks xn;7 (base: no) yes 2.15 (1.37–3.36)*** 1.87 (1.18–2.96)** 3.49 (2.80–4.35)*** 2.80 (2.24–3.50)***

Crash involvement Yc (base: no) yes 2.21 (1.99–2.47)*** 2.15 (1.93–2.40)*** 2.61 (2.36–2.89)*** 2.64 (2.38–2.93)***

Mitigating circumstances xn;8
(base: no)

yes 0.63 (0.41–1.00)* n.s. 0.67 (0.45–1.00)* 0.60 (0.40–0.91)*

Model’s fit number of
samples

/ 10,457 / 8402

likelihood ratio
test

/ 7180.04 / 6130.91

degrees of
freedom

/ 8 / 11

‘‘n.s.”: indicates the factor is not significant at the 5% level.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
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vehicle crashes. 6.4% of motorcycle DUIs are responsible for single-
vehicle crashes and cause injuries or death, while the proportion
for car DUI is only 1.1%.

The vehicle type (Xv ) and the BAC level (XBAC) are set as explana-
tory variables in the logistic models. Since this study focuses on the
associations between vehicle type and damage, only the effects of
Xv are presented in Table 7. As mentioned above, the proportion of
motorcycle DUI reporting crashes is significantly higher than that
of car DUI. The regression results in Table 7 indicate that, if BAC
is controlled, a person riding a motorcycle while intoxicated is
1.83 times more likely to be involved in a crash compared to driv-
ing a car. This could be explained from two perspectives. On one
hand, as has been found by previous studies (Maistros et al.,
2014), a motorcycle requires more skill and coordination for oper-
ation than a car. When under the influence of alcohol, it is more
difficult for riders to operate the vehicle safely. On the other hand,
the police often set up checkpoints, hold up, and inspect cars with
drivers suspected of drunk driving. This effectively curbs the occur-
rence of alcohol-related crashes by cars.

The odds ratios illustrate that motorcyclists are almost 22%
more likely to be involved in single-vehicle crashes than car dri-
vers. To give further insight into the severity of crashes, the num-
ber of single-vehicle crashes that lead to offenders or their
passengers sustaining injuries or dying is then examined. The
results show that alcohol-impaired motorcyclists are nearly seven
times more likely to harm themselves compared to car drivers. This
verifies H3 that motorcycle offenders are more likely to be
involved in a crash and sustain injuries.

5.5. Comparative analysis of legal consequence

Two ordered logit models and one binary logistic regression are
performed to examine the effect of vehicle types on detention time,
fines, and probation decision with controls for BAC levels and other
aggravating factors, respectively. Because motorcycles are not
allowed to operate for commercial purposes, DUI offenses commit-
ted by commercial vehicles are excluded from the samples. A total
of 16,870 samples of criminally DUI offenses are applied to the
regression models.

As presented in Table 6, the variables of DUI repeat offenses (xn;2),
unsafe vehicles w (xn;4), driving in safety enhancement zones (xn;6),
andmitigating circumstances (xn;8) do not performed as statistically
significant predictors for detention time in the adjusted motorcycle
or car model (these variables do not significantly affect the likeli-
hood of fines amount either), hence they are not used to test the
effect of vehicle type. Moderate correlations are found between
vehicle types andunlicensedoperators (r = 0.38,p < 0.001). Variance
inflation factors (VIF), which detect multicollinearity in the regres-
sion analyses are calculated; no predictor has a VIF above 10

(O’Brien, 2007). Thus, multicollinearity is not considered. The odds
ratios and their statistical significances, as well as the models’ fit
are summarized in Table 8. The odds ratios reveal that the likelihood
of being sentenced to a longer detainment or a higher fine is
increased by 50% for car drivers (i.e., 1/0.65 = 1.54, 1/0.68 = 1.47)
with controls for BAC and other aggravating factors.

Most people begin to experience blackouts and lose conscious-
ness once the BAC surpasses 200 mg/dL (Awareawakealive), hence
alcohol-impaired driving or riding with a BAC above 200 is an
aggravating DUI resulting in harsh punishment. According to the
Handbook, imposing probation has to take the following circum-
stances into consideration: (a) causes injuries, death or heavy
property losses to other traffic participants (denoted as Y3

c ); (b)

with a BAC above 200 mg/dL (denoted as X200
bac ); (c) operating for

commercial purposes (xn;5); (d) driving in safety enhancement
zones (xn;6); and (e) with the intent of avoiding checks (xn;7). Once
the aforementioned factors are committed by offenders, probation
is very likely to be inapplicable. The variable xn;6 is not found as a
statistically significant predictor for the probation of motorcycle
DUIs, thus the factors Y3

c , X
200
bac , xn;7 as well as Xv are considered in

the regression of Yp.
57.9% of motorcycle DUIs and 50.2% of car DUIs are found to

cause injuries, death, or heavy property losses to other people,
and in that case, it is 1.51 times more likely that a probation is
inapplicable. Offenders with a BAC of 200 mg/dL or higher account
for 21.0% of motorcycle DUI offenses and 23.2% of car DUI offenses,
which is similar to the findings of Sun et al. (2014). It is 11.63 times
more likely not to apply probation compared to offenders with a
BAC less than 200 mg/dL. The odds ratio illustrates that for offend-
ers with the intent of avoiding checks, probation is 4.15 times more
likely to be inapplicable. Regarding the effect of vehicle type,
offenders of motorcycle DUIs are about 1.49 times more likely
(i.e., 1/0.67 = 1.49) to have a probation compared to car drivers.
The effect of vehicle type on legal consequence confirms H4 that
alcohol-impaired motorcyclists receive lesser punishment with
controls for other factors.

6. Discussion and implications

6.1. Risk of crash associated with high BAC

By utilizing the data from DADs on alcohol-impaired driving
and riding, this study investigates the variations in criminally
DUI offenses committed by motorcyclists and car drivers. A series
of logistic regression models are developed, and four hypotheses
are tested. As hypothesized, the BAC level serves as a major deter-
minant of damage fact and legal consequence of criminally DUI
offenses. In line with the previous studies (Keall et al., 2013;
Stringer, 2018; Ahmed et al., 2020), the likelihoods of crash
involvement for both motorcycles and cars present a notable pos-
itive correlation with BAC levels. In particular, the risk of crash
involvement increases significantly, especially for scenarios where
offenders have high BACs above 230 mg/dL (Table 5).

Little efforts have been made to investigate crash risk associ-
ated with high BAC levels over 200 mg/dl because of limited sam-
ples. Keall et al. (2004) found a flattening in the rate of increasing
risk of fatal injury when BAC was above 200 mg/dl. They also spec-
ulated that the high-BAC group of offenders might have a high
degree of tolerance to alcohol, thereby enabling them to drive with
a relatively lower risk of fatal crash involvement. It is impossible
for us to estimate the likelihood of offenders’ fatality associated
with BAC using DAD data, because all offenders convicted of DUI
survived alcohol-related crashes. Even so, our estimates illustrate
that the risk curve of crash involvement steepens as higher BAC
levels are reached.

Table 7
The effect of vehicle type on damage fact.

Damage fact Factors Values OR (95%
CI)

Crash involvement Yc Vehicle
type
(base:
car)

motorcycle 1.83
(1.71–
1.95) ***

Single-vehicle crashes Y1
c

1.22
(1.12–
1.33) ***

Single-vehicle crashes that cause

injuries or death Y2
c

6.92
(5.48–
8.82) ***

*p < 0.05, **p < 0.01.
*** p < 0.001.
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The high-BAC group of offenders are more likely to be problem
drinkers and to report drinking and driving more often (Fell et al.,
2010). Driving or riding with a BAC above 200 mg/dL has already
been regarded as an aggravate DUI by the law of Jiangsu, conse-
quently a drastic increase in the likelihood of being sentenced to
a severe punishment is observed. As described in Table 8, offenders
with BAC above 230 mg/dL are associated with a risk of long
detainment that is 323 times the risk for slightly drunk offenders.
Meanwhile, probation is 11.63 times more likely to be inapplicable
once BAC is above 200 mg/dL. It is known that offenders with a BAC
above 200 mg/dL account for more than 20% of DUI offenses in
Jiangsu and other cities in China (Sun et al., 2014). The
deterrence-centered penalties seem not as effective as expected.

6.2. Risk of crash associated with motorcycle

Theorists and researchers have previously noted that motorcy-
clists’ risk of crash and injury against BAC climbs more steeply than
the risk for car drivers (Jou et al., 2012; Keall et al., 2013; Ahmed
et al., 2020). This is further demonstrated by our findings that
alcohol-impaired riding results in more crashes than alcohol-
impaired driving (Table 2). Moreover, motorcyclists are found to
have a significantly higher likelihood of being responsible for
single-vehicle crashes. Among the single-vehicle crashes caused
by motorcyclists, 40.2% result in injuries or death, which confirms
that alcohol-impaired riding makes motorcyclists extremely vul-
nerable in a collision. The perniciousness of DUI offenses to other
traffic participants are considered as an adjudicative factor in sen-
tencing. By comparing judicial outcomes, judges are found more
lenient with motorcycle offenders in practice. Specifically, with

controls for BAC and other risk factors, there is an approximately
50% decrease in the likelihood of motorcyclists being sentenced
to a harsh penalty.

Jiangsu and other areas in China are confronted with a serious
problem of motorcycle DUI. More than 94% of motorcycle offenders
received short sentences of 3 months or less, whereas Weinrath
and Gartrell (2001) found that the deterrent effect of sentence
length was not linear; short sentences of four months or less did
not deter DUI as effectively as a six-month sentence. Considering
the deficiencies of punishment sentences, it is worth the effort to
try other ways to prevent motorcycle DUIs. The effects of risk fac-
tors addressed in this work have important implications.

In particular, the results reveal that traffic violations associated
with DUIs (e.g., unlicensed operators or driving unsafe vehicles)
increase the risk of crash involvement (Table 5). Compared to car
drivers, there is a much higher proportion of unlicensed riders as
well as riding unsafe motorcycles (Table 4). Hence, regulating the
behaviors of riders and combating their traffic violations is of great
urgency. Moreover, motorcycle offenders are relatively less edu-
cated (Table 3), which is consistent with the findings of Kuo
et al. (2020). Some riders may not be aware that riding after drink-
ing is against the law and has a high possibility of sustaining inju-
ries and even death. Promoting safe behaviors among
motorcyclists by public awareness campaigns is helpful to enhance
their compliance to traffic laws.

6.3. Challenges of criminalizing motorcycle DUI

To some extent the deterrent effect of criminalizing DUI is
uncovered by our analysis with the DAD data. Specifically, for both

Table 8
The effect of vehicle type on legal consequence.

Legal consequence Factors Values OR (95% CI)

Detention time Yd

(month)
Vehicle type Xv (base: car) motorcycle 0.65 (0.61–0.70)***

Involved in a crash Yc (base: no) yes 2.41 (2.22–2.61)***

BAC XBAC

(base: 80–130 mg/dL)
130–180 8.31 (7.63–9.05)***

180–230 52.06 (46.38–58.50)***

>230 323.04 (280.66–
372.28)***

Prior illegal and criminal records xn;1 (base: no) yes 2.20 (1.97–2.44)***

Unlicensed operator xn;3 (base: no) yes 1.91 (1.76–2.08)***

Avoid checking xn;7 (base: no) yes 2.67 (2.14–3.33)***

Model’s fit number of samples 16,870
likelihood ratio
test

11767.7

degrees of freedom 8

Fine amounts Yf (¥) Vehicle type Xv (base: car) motorcycle 0.68 (0.63–0.72)***

Involved in a crash Yc (base: no) yes 1.44 (1.35–1.55)***

BAC XBAC

(base: 80–130 mg/dL)
130–180 4.47 (4.14–4.83)***

180–230 15.20 (13.86–16.67)***

>230 52.52 (46.84–58.93)***

Prior illegal and criminal records xn;1 (base: no) yes 1.47 (1.33–1.61)***

Unlicensed operator xn;3 (base: no) yes 1.66 (1.54–1.78)***

Avoid checking xn;7 (base: no) yes 1.77 (1.45–2.17)***

Model’s fit number of samples 16,870
likelihood ratio
test

7323.602

degrees of freedom 8

Probation Yp Vehicle type Xv (base: car) motorcycle 0.67 (0.62–0.72)***

Causes injuries, death or heavy property losses of other traffic participants Y3
c (base: no) yes 1.51 (1.41–1.62)***

BAC�200 X200
bac (base: no) yes 11.63 (10.13–13.42)***

Avoid checking xn;7 (base: no) yes 4.15 (2.92–6.11)***

Model’s fit number of samples 16,870
likelihood ratio
test

2509.8

degrees of freedom 4

*p < 0.05, **p < 0.01.
*** p < 0.001.
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motorcyclists and car drivers, the DUI recidivism rate is relatively
low (Table 4). Offenders with criminal records or those once
arrested for DUI seem more cautious because they are less likely
to be involved in a crash (Table 5). For alcohol-impaired motorcy-
clists, because of their lenient sentences, the possible effects of
heightened severity of punishment need to be further explored.
In addition to the concern on the severity of punishment, there
are two challenges confronting the criminalization of alcohol-
impaired riding.

One challenge is the frequent occurrence of offenses. Our results
illustrate that Jiangsu is faced with a larger number of motorcycle
DUI offenses. The data released by the official website of China
Judgment Online reveal that the number of adjudications on DUI
approximately accounts for more than 25% of the criminal cases
sentenced by the courts of Jiangsu, which consumes a large quan-
tity of litigation resources. Aimed at speeding up the processing of
DUI cases, many courts in China have adopted the expedited DUI
court program, which is greatly improving the efficiency of the trial
of criminally DUI. For instance, the People’s Court of Haidian Dis-
trict, Beijing requires to complete a DUI investigation, prosecution,
and verdict within 48 h (Wang, 2020). However, Bouffard and
Bouffard (2011) found that the swift processing of DUI offenders
through specialized courts did not appear to have a deterrent
effect.

The other challenge is the certainty of punishment, which plays
an important role in the reduction of DUI offenses (William et al.,
1991; Bouffard et al., 2017). By using roadside sobriety check-
points, the probability of detection as well as the certainty of pun-
ishment are increased. The low rate of crash involvement in the
evening (Table 5) stands as proof of the effect of the certainty of
punishment because the sobriety checkpoints are often set up at
that time. However, checkpoints are usually set in urban areas
where riding motorcycles is not allowed, and most of the time
motorcyclists are found to be alcohol impaired only after their
crashes are reported. The deterrent effect of the certainty of pun-
ishment may not be applicable to motorcyclists.

The revision of legislation on DUI is under discussion in China at
the moment. The factors such as the uncertainty of detection, swift
sanctions, and short-term sentences may weaken the deterrent
effect of the criminalization of motorcycle DUI. If not criminalizing
alcohol-impaired motorcyclists, instead, imposing administrative
sanctions and undertaking education and awareness campaigns,
the limited judicial resources would be utilized more effectively.

7. Conclusions

Based on the data extracted from DADs on DUI offenses, crash
involvement and legal consequence between motorcycle DUI and
car DUI committed by offenders with BAC of 80 mg/dL or higher
are compared in this study. Four hypotheses are supported by
our findings: (1) the occurrence of crash involvement is positively
associated with BAC levels; (2) BAC level plays a dominant role in
DUI sentencing; (3) the likelihood for an alcohol-impaired motor-
cyclists to be involved in a crash and sustain injuries is relatively
higher; and (4) the likelihood for alcohol-impaired motorcyclists
to be punished severely is relatively lower. It is also found that,
with regard to motorcycle DUI, the effectiveness of criminal sanc-
tions in curbing DUI offenses and alcohol-related crashes may not
be significant. The findings have significant implications on law
enforcement agencies to identify and develop countermeasures
and awareness initiatives, which helps to make appropriate modi-
fications in rider and driver behaviors.

Utilizing the DAD data is an innovation of this study; however,
some limitations are observed. One is that the DAD data are textual
and unstructured. In order to protect privacy, information on

offenders’ demographic characteristics is not recorded by a consid-
erable proportion of DADs, which may lead to bias in adjudication
outcomes (e.g., the financial status of offenders is usually consid-
ered when applying for a fine punishment). Besides, detailed infor-
mation on the driving activities (e.g., horizontal curves, speeds,
seatbelt use, helmet use), which contributes to crash occurrence,
is not contained in DADs as well. Because the main purpose of this
study is to find an association other than provide a prediction, the
conclusions are not affected by the missing data. Another limita-
tion is that the deterrent impact on fatality reduction cannot be
assessed when all offenders survive alcohol-related crashes. In
addition, the deterrent impact of administrative penalties on
buzzed driving (i.e., driving with a BAC less than 80 mg/dL) cannot
be assessed either. The effect of enforcement and punishment on
buzzed driving and fatality reduction of alcohol-related crashes
should be further studied using the merged administrative data.

Compared to the crime of DUI manslaughter or DUI murder, DUI
offenses convicted on the charge of dangerous driving receive less
severe penalties because alcohol-impaired riders or drivers usually
do not cause the deaths of passengers, occupants of other cars, or
pedestrians. Further studies can also be carried out to investigate
the differences in influence factors among these DUI-related
crimes.
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a b s t r a c t

Introduction: There is consensus that riding with an impaired driver (RWI) constitutes a major threat to
public health. The aim of this study was to characterize the factors contributing to the motor-vehicle
deaths of 15–20 year-old (y/o) passengers that RWI with a peer. Method: Secondary analyses of the
2010–2018 Fatality Analysis Reporting System. 5,673 passengers aged 15–20 y/o killed while riding in
passenger cars with a driver aged 21 or older, 3,542 of these drivers also aged 15–20 y/o. Analyses were
conducted between October 2019 and December 2020. Results: Sixty-three percent of the young passen-
gers were killed while riding with a driver 15–20 y/o. Of these drivers, 26.8% had a blood alcohol concen-
tration (BAC) >0.00 g/dL and 77.1% had a BAC �0.08 g/dL. Compared with those occurring during the day
on weekdays, fatalities of young passengers who RWI with a peer driver with a BAC � 0.08 g/dL often
occurred on weekend nights (OR = 8.2) and weekday nights (OR = 5.2), and when the passenger and dri-
ver were both male (OR = 1.8). Race/ethnicity was not a significant contributor to RWI fatalities.
Conclusions: Most 15–20 y/o RWI fatalities occurred on weekends, at night, when the driver was a young
peer with a high BAC, and the passenger and driver were male. The high prevalence of fatalities in these
high-risk situations suggests that young driver-passenger dynamics may contribute to alcohol-related
fatalities. Practical Applications: To curb RWI fatalities among underage passengers, countermeasures
should focus not only on underage drinking drivers and riders, but also on drinking drivers of all ages.
Prevention should increase focus on situations in which both the young passenger and young driver
are males.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

In the United States, graduated driver licensing (GDL) restric-
tions have been effective tools to reduce youth involvement in
crash fatalities (Vanlaar, Mayhew, et al., 2009; Fell, Jones, et al.,
2011). Nevertheless, motor-vehicle crashes are the leading cause
of unintentional injury death for every age 5–23 (Webb 2018), par-
ticularly when the driver is a young person driving at night (Chen,
Baker, et al., 2000; Fell, Todd, et al., 2011; Shults & Williams, 2016).
In 2015, 21% of all 15–20 year old (y/o) fatally-injured drivers had a
BAC of 0.08 g/dL or higher (National Center for Statistics and
Analysis, 2017) even though according to zero tolerance laws, the

illegal limit for the underage group (<21 y/o) is between 0.00 g/
dL and 0.02 g/dL, depending on the state. About 21% of the youth
aged 20 y/o reported riding with a driver impaired by alcohol
(RWI) in the past year (Li, Ochoa, et al., 2018). Examining a survey
of high school students in Canada and the United States, Lead-
beater and colleagues (Leadbeater, Foran, et al., 2008) reported that
52%-55% of the students reported ‘‘ever” riding with an impaired
driver (RWI) aged 21 y/o or more, while 21%–33% of the students
reported ‘‘ever” riding with an impaired peer (Leadbeater, Foran,
et al., 2008). There is consensus that RWI constitutes a major public
health concern as RWI is not only a major health-risking behavior,
but also known as an antecedent of future driving while impaired
(DWI) by alcohol (NCSA, 2012; Evans-Whipp, Plenty, et al., 2013;
Li, Simons-Morton, et al., 2014).

RWI among teenagers has been found to be associated with
rural residence (O’Malley & Johnston, 1999), and increasing with
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age (Sabel, Bensley, et al., 2004). The association of RWI with sex or
race/ethnicity is less clear. Some studies have found that young
females are more likely to RWI than males (Jelalian, Alday, et al.,
2000; Harris, Johnson, et al., 2017). One study reported that those
most likely to RWI were males (Everett, Shults, et al., 2001). Still,
other studies found no significant association between passenger’s
sex and RWI (Adlaf, Mann, et al., 2003; Hultgren, Turrisi, et al.,
2018). One study by Grube and Voas found no association between
the passengers’ race/ethnicity and their likelihood of RWI (Grube &
Voas, 1996). Yet other studies found RWI more common among
Latino youth than non-Latino White youth (O’Malley & Johnston,
1999;Walker, Treno, et al., 2003; Yellman, Bryan, et al., 2020). Vaca
and colleagues also found RWI to be common among Latino youth,
but only at certain ages (Vaca, Li, et al., 2016).

This study aimed to characterize young passengers who did
RWI. More specifically, we aimed to assess the associations of
sex and race/ethnicity with crashes in which passengers aged
15–20 y/o were killed while riding with a peer driver also aged
15–20 y/o. We hypothesized that most young passenger fatalities
in the context of RWI occur on weekend nights because alcohol
use and DWI among young drivers are prevalent on weekend
nights (Tin, Ameratunga, et al., 2008; Goncy & Mrug, 2013). We
examined whether the percentage of fatally injured passengers
aged 15–20 y/o who died while riding with a peer driver was
higher for Latinos than for any other racial/ethnic group. Because
of sex difference in DWI involvement (Romano, Kelley-Baker,
et al., 2008; Vaca, Romano, et al., 2014; Webster, Staton, et al.,
2019), we expected to confirm that passengers aged 15–20 y/o
are more likely to die in a RWI crash while riding with a male peer
than a female peer. We also assessed whether the sexes of both the
driver and passenger moderates that effect. We hypothesized that
among passengers aged 15–20 y/o who died while riding with a
peer also aged 15–20 y/o, the likelihood who were engaged in
RWI at the time of the crash was higher when the driver was a
young male driving a young male passenger (Mp-Md) than when
a young male was driving a young female passenger (Fp-Md).

2. Methods

2.1. Data

Crash data were obtained from the 2010–2018 Fatality Analysis
Reporting System (FARS). After discarding fatalities that involved
vehicles other than passenger cars (e.g., buses, snowmobiles,
motorcycles, trucks), crashes with missing information on drivers’
age, and crashes outside the scope of this study (e.g., police chases;
non-moving vehicles), 5,673 fatally-injured passengers aged 15–
20 y/o remained in the file. When assessing drivers’ alcohol use
and to avoid double counting, drivers of vehicles in cases in which
more than one passenger was present at the time of the crash were
counted only once. Of the 5,673 fatally injured passengers aged
15–20 y/o in the file, of particular interest were the 3,542 who
were riding with a driver also aged 15–20 y/o at the time of the
crash.

2.2. Measures

2.2.1. Blood Alcohol Concentration (BAC)
About 65% of all drivers in the file have a measured BAC. Using

multiple imputation, the FARS estimates the BAC of those with a
missing BAC measure (Subramanian, National Center for, et al.,
2002). We grouped drivers in three BAC categories: BAC = 0.00 g/
dL; 0.00 /dL < BAC < 0.08 g/dL; and BAC � 0.08 g/dL.

2.2.2. Day of the week and time of the day
Crashes were grouped as occurring on weekends (Friday to Sun-

day), or weekdays (remaining days), and either at nighttime (from
8p.m. to 6 a.m.) or daytime (remaining hours).

2.2.3. Number of occupants
Vehicles were grouped as carrying two versus more than two

occupants (the driver and the 15–20 y/o passenger(s)) at the time
of the crash.

2.2.4. Sex of passenger & driver
For cases in which the fatally injured passenger was the sole

passenger of the car, we considered whether the fatally injured
passenger was a female riding with a male driver (Fp-Md), a female
riding with a female driver (Fp-Fd), a male passenger riding with a
male driver (Mp-Md), or a male passenger riding with a female dri-
ver (Mp-Fd). A fifth level was added to indicate when there were
three or more occupants.

2.2.5. Rural vs. urban setting
Using FARS coding we assigned each crash to either a rural or

urban setting.

2.2.6. Race and ethnicity
Since 1988, the National Highway Traffic Safety Administration

(NHTSA), working with the National Center for Health Statistics
(NCHS), has been matching the records of road users fatally injured
in crashes with their death certificate information in the NCHS
Hyde cause-of-death (HCOD) file. This information appears in the
FARS, although only on the deceased (i.e., the race and ethnicity
of the surviving drivers is missing). The FARS informs separately
on the deceased’s race (variable ‘‘Race,” with 19 categories, includ-
ing White, Black, American Indian, Other, and unknown) and eth-
nicity (variable ‘‘Hispanic Origin,” with 9 categories including
Mexican, Puerto Rican, Cuban, Other Hispanic Origin, and
Unknown). For this study, the following four groups were consid-
ered: Latinos, non-Latino Blacks, non-Latino Whites, and non-
Latino of Other race.

2.3. Statistical analyses

We conducted cross-tables to examine the bivariate distribu-
tion of demographics and crash characteristics related to riding
with a drinking driver. For each bivariate condition, prevalence of
drivers at each of the three BAC level under examination were esti-
mated. Comparisons were based on the 95% confidence intervals
(95%CI) of the prevalence estimates Next, we ran a multinomial
logistic regression model to assess the joint contribution of all fac-
tors identified by the bivariate analyses as contributors to the like-
lihood that fatally-injured adolescent passengers age 15–20 y/o
were riding with a peer-aged driver with a 0.00 g/
dL < BAC < 0.08 g/dL, and BAC � 0.08 g/dL than with respect to
BAC = 0.00 g/dL (the reference level of the dependent variable).
Main effects as well as dual interactions between all main effects
were examined. We used SAS v9.4 for all analyses. We accounted
for the additional variance introduced by the multiple imputation
of BAC values by: (1) running 10 separate regressions, one for each
of the 10 imputed BAC values; and (2) summarizing the results
while accounting for standard errors with the Proc MIanalyze
SAS procedure. Analyses were conducted between October 2019
and December 2020.
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3. Results

Table 1 shows that between 2010 and 2018, a total of 5,673 pas-
sengers aged 15–20 y/o were killed while riding in passenger cars
with a driver of known age. Of the 5,673 passengers aged 15–20 y/
o in the file, a total of 3,542 (62.4%) died while riding with a driver
also aged 15–20 y/o; a percentage significantly larger than the
18.7%, 7.0%, and 11.8% who died while riding with a driver aged
21–25 y/o, 26–35 y/o, and 36 y/o and over, respectively. Further-
more, Table 1 shows that the percent of the fatally injured passen-
gers 15–20 y/o that died when riding with a BAC > 0.00 g/dL driver
was significantly lower when the driver was also aged 15–20 y/o
(26.85%) than when the driver was aged 21–25 y/o (43.9%) or aged
26–35 y/o (42.0%), and significantly higher than when the driver
was aged 36 y/o or over (18.5%).

Of the 950 fatalities of passengers aged 15–20 y/o who were
riding with a BAC > 0.00 g/dL driver also aged 15–20 y/o, 732
(77.1) was BAC � 0.08 g/dL. Also shown in Table 1 is that for the
15–20 y/o passengers, riding with a BAC > 0.00 g/dL driver was less
prevalent when their drivers were 36 y/o and over than when of
younger age. This result, at least in part, relates to many of the
36 y/o and over being adult family members, caretakers, or other
non-peer adults of the 15–20 y/o passengers.

Factors contributing to individuals aged 15–20 y/o riding with
BAC > 0.00 g/dL drivers also aged 15–20 y/o: The results in Table 2
further illustrates that most of the 15–20 y/o passengers that died
when riding with a drinking peer, occurred when the underage
peer driver was at BAC � 0.08 g/dL. Table 2 also shows that the
proportion of passengers aged 15–20 y/o who died while riding
with a drinking peer did not vary significantly by the drivers’
race/ethnicity.

The results in Table 2 also show that the percentage of passen-
gers aged 15–20 y/o who died while riding with a drinking peer
was significantly higher when the driver was a male than a female,
both when the driver was 0.00 g/dL < BAC < 0.08 g/dL (6.8% when
the driver was male, 4.6% when female) and BAC � 0.08 g/dL
(22.9% when the driver was male, 14.9% when female). When there
were only two occupants in the vehicle, both the sex of the passen-
ger and the driver were associated with the driver being
BAC � 0.08 g/dL at the time of the crash. Although male drivers
were more likely to be BAC � 0.08 g/dL than female drivers, this
prevalence is less common if the male was driving a female (Fp-
Md, 19.1%) than another male (Mp-Md, 25.0%), although this differ-
ence was not statistically significant. Nevertheless, the degree of

overlap between the confidence intervals was minimal and sug-
gests the lack of significance could be attributed in part to sample
size limitations. In the 59.6% of the cases in which there were more
than two occupants in the crashed vehicle, the distribution of the
drivers’ BAC did not differ statistically from cases in which there
were only two occupants in the vehicle and the driver was a male.
The urbanicity of the location of the crash was not significantly
associated with the BAC of the driver. The percentage of
BAC � 0.08 g/dL drivers increased with age, a result that is
expected since alcohol use increases with age (Masten, Faden,
et al., 2009).

As expected, the percentage of passengers aged 15–20 y/o who
were riding with a BAC � 0.08 g/dL peer was significantly higher
on weekend nights (41.5%) or on weekdays at nighttime (35.9%)
than on weekdays at daytime (11.6%) or weekends at daytime
(13.5%). These results are consistent with current knowledge
showing that drinking and driving is more prevalent at night, par-
ticularly on weekends (Romano et al., 2008).

3.1. Logistic regression

Table 3 shows the odds ratio (OR) for the main effects included
in the logistic regression modeling the BAC level of a 15–20 y/o
individual driver of a fatally injured 15–20 y/o passenger. Overall,
the results of the logistic regressions support the findings of the
bivariate analyses. The fatally injured 15–20 y/o passengers were
more likely to be found riding with a BAC � 0.08 g/dL or a 0.00 g/
dL < BAC < 0.08 g/dL peer on a weekend night (OR = 8.20,
OR = 6.20, respectively) or on a weekday night (OR = 5.18;
OR = 3.90, respectively) than on a weekday at daytime. When there
were only two occupants in the vehicle, the likelihood the driver
was BAC � 0.08 g/dL was significantly higher when both the driver
and passenger were male than when both were female (OR = 1.77).
Although in Table 3, the overlapping confidence intervals corre-
sponding to each level of the ‘‘Sex of the Passenger and Driver”
variable seems to indicate that a vehicle with ‘‘3+ occupants” is
as much likely to have been driven by a 0.00 g/dL < BAC < 0.08 g/
dL, or BAC � 0.08 g/dL driver than a 2-occupants vehicle, such a
lack of significance is caused by our partitioning of all 2+ occupant
vehicles into 4 dyads (Mp-Fd, Fp-Md, Mp-Md, and Fp-Fd). After collaps-
ing these four 2+ occupant dyads into a single level indicating there
were only ‘‘2 occupants” in the vehicle, a comparison between this
level and the ‘‘3+ occupants” level (not shown in Table 3) showed
that the likelihood the peer driver was 0.00 g/dL < BAC < 0.08 g/dL

Table 1
Fatally injured passengers aged 15–20 y/o by driver age and BAC.

Drivers’ BAC (g/dL) Driver Age (years)

15–20 21–25 26–35 36 and over All

N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI)

0.00 2592 73.2 596 56.1 231 58.0 547 81.5 3966 69.9
71.7 74.6 53.1 59.1 53.2 59.1 78.6 84.5 68.7 71.1

0.01–0.049 111 3.1 44 4.1 15 3.8 14 2.1 184 3.2
2.6 3.7 3.0 5.4 3.0 5.4 0.9 3.0 2.8 3.7

0.05–0.079 107 3.0 42 4.0 18 4.5 9 1.3 176 3.1
2.3 3.4 2.9 5.3 2.9 5.3 0.5 2.2 2.6 3.5

�0.08 732 20.7 380 35.8 134 35.8 101 15.1 1347 23.7
20.1 22.8 33.5 39.3 33.5 39.3 12.2 17.6 23.2 25.4

BAC > 0.00 950 26.8 466 43.9 167 43.9 124 18.5 1707 30.1
26.0 28.9 41.8 47.8 41.8 47.8 15.3 21.1 29.4 31.8

All (ROW) 3542 62.4 1062 18.7 398 7.0 671 11.8 5673 100.0
61.9 64.3 17.5 19.4 6.1 7.3 10.7 12.3

Source: FARS 2010–2018. BAC stands for blood alcohol concentration in grams per deciliter. BAC was either measured or imputed in the file. The values in row labeled All
BAC > 0.00 represents the sum of the previous 3 rows. 95% CI indicates 95% confidence interval. Total number of passengers aged 15–20 y/o do not sum up to 5,673 due to
missing information on drivers’ age. The association between BAC level and driver’s age was statistically significant (p < .0001). Cells in gray were left empty due to small
sample size.
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was significantly higher when there were 3+ occupants in the vehi-
cle than when there were only 2 (OR = 1.5, not shown in Table 3).
The ORs the driver was 0.00 g/dL < BAC < 0.08 g/dL or BAC � 0.08 g/
dL also increased with the driver’s age.

4. Discussion

Although studies focusing on youth involvement in alcohol-
related fatal crashes are not new, most have focused on the fatally
injured driver (Tefft, Williams, et al., 2013; Simons-Morton, Ehsani,
et al., 2017). Studies focusing on the passengers who died while

riding with an impaired driver (RWI) are far less frequent, and typ-
ically based on self-reported data (Poulin, Boudreau, et al., 2007;
Cartwright & Asbridge, 2011). RWI studies based on crash data
are less frequent in part due to the challenges posited by the
absence of information on driving exposure (i.e., all events in the
file are crashes), and the imprecise determination of drivers’
impairment. In this study, we attempted to address some of these
limitations by looking at the BAC of the young passengers’ drivers,
as BAC relates with impairment and RWI. Although BAC cannot
accurately indicate impairment and subsequently any identifica-
tion of RWI based on BAC lacks precision, we argue that passengers

Table 2
Percent of passengers aged 15–20 y/o who died while RWI drivers also aged 15–20 y/o by crash and driver’s characteristics and drivers’ BAC.

N
(Col %)

Driver’s BAC

BAC = 0.00 0.00 < BAC < 0.08 BAC � 0.08

Row % Row % Row %

95%CI 95%CI 95%CI

Driver’s Race/Ethnicity Black 114 73.8 6.0 20.3
12.4 65.7 81.8 1.6 10.3 12.9 27.6

Latino 147 66.6 5.3 28.1
16.0 59.0 74.2 1.7 8.9 20.8 35.4

White 516 71.0 6.7 22.3
56.0 67.1 74.9 4.5 8.9 18.7 25.9

Other 144 67.4 5.9 26.7
15.6 59.7 75.0 2.1 9.7 19.5 34.0

Driver’s sex Male 2,539 70.3 6.8 22.9
71.7 68.5 72.1 5.8 7.7 21.3 24.6

Female 1,002 80.5 4.6 14.9
28.3 78.0 82.9 3.3 5.9 12.7 17.1

Sex of Passenger & Driver Fp-Fd 248 83.5 2.6 13.9
7.0 78.9 88.1 0.6 4.6 9.6 18.2

Mp-Fd 147 85.1 2.4 12.5
4.2 79.4 90.8 0.1 4.8 7.2 17.9

Fp-Md 359 76.0 4.9 19.1
10.1 71.6 80.4 2.7 7.2 15.0 23.1

Mp-Md 677 69.2 5.8 25.0
19.1 65.7 72.7 4.1 7.6 21.7 28.2

3+ Occupant 2110 71.9 7.1 20.9
59.6 70.0 73.9 6.0 8.2 19.2 22.7

Urban/Rural Rural 1,089 73.3 6.1 20.5
30.8 70.7 76.0 4.7 7.6 18.1 22.9

Urban 2,438 73.2 6.1 20.7
68.9 71.4 74.9 5.2 7.1 19.1 22.3

Driver’s Age 15 89 82.9 2.8 14.3
2.5 75.1 90.7 0.1 6.1 7.0 21.5

16 425 85.6 3.2 11.1
12.0 82.3 89.0 1.6 4.9 8.1 14.1

17 700 79.9 5.1 15.0
19.8 76.9 82.9 3.4 6.7 12.4 17.7

18 929 72.4 6.5 21.2
26.2 69.5 75.2 4.9 8.0 18.6 23.8

19 774 67.4 8.0 24.6
21.9 64.0 70.7 6.1 9.9 21.6 27.7

20 624 64.3 7.0 28.7
17.6 60.5 68.0 5.0 9.0 25.2 32.3

Weekday/Weekendand Time of the Day WEEKDAY
DAY

842 85.1 3.3 11.6
21.3 78.3 91.9 0.2 6.7 5.5 17.7

WEEKDAY
NIGHT

703 56.4 7.6 35.9
17.8 48.6 64.3 3.4 11.8 28.3 43.5

WEEKEND
DAY

796 84.3 2.3 13.5
20.1 78.3 90.3 0.0 4.7 7.9 19.1

WEEKEND
NIGHT

1200 47.2 11.3 41.5
30.4 40.7 53.7 7.2 15.5 35.0 47.9

All 3541 73.2 6.1 20.7
100.0 71.7 74.6 5.4 6.9 19.3 22.0

Source: FARS 2010–2018. RWI indicates the percentage (%, and its 95% lower and upper confidence limits) of passengers aged 15–20 y/o who died while driving with a driver
aged 15–20 y/o who recorded a positive blood alcohol concentration (BAC > 0.00 g/dL). bRace/ethnicity is present in the FARS only on the deceased. Therefore, the race/
ethnicity of the surviving drivers is missing. Members to more than one racial/ethnic group are included in the ‘‘Other” category. The first letter of the Fp-Fd, Mp-Fd, Fp-Md, and
Mp-Md combinations indicates the driver’s sex, the second letter indicates the sex of the passenger. For instance, the Fp-Md combination indicates a Female driver and a
Female passenger. ‘‘Weekend, day” denotes a crash that occurred on a Friday, Saturday, or Sunday Day. ‘‘Weekend, night” denotes a crash that occurred on a Friday, Saturday,
or Sunday Night; ‘‘Weekday, day,” denotes a crash that occurred on a Monday, Tuesday, Wednesday, or Thursday Day. ‘‘Weekday, night” denotes a crash that occurred on a
Monday, Tuesday, Wednesday, or Thursday Night. The number of occupants includes the driver.
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who were riding with a BAC � 0.08 g/dL driver aged 15–20 y/o
were RWI. Furthermore, because for underage, novice drivers, alco-
hol impairment may start at relatively low BACs (Peck, Gebers,
et al., 2008), we argue that 15–20 y/o passengers were RWI when
riding with drivers at any positive BAC. Regardless of the merits
of considering 15–20 y/o drivers at any BAC > 0.00 g/dL level as
impaired, our finding that most (77.1%) of the BAC > 0.00 g/dL
young drivers in the file were BAC � 0.08 these criteria yield sim-
ilar results. Such heavy drinking among the underage drivers not
only occurred despite minimum legal drinking laws, but often
occurred at nighttime, particularly on weekends, which suggests
the driving of these minors related to some festive environments.

Our findings that most (62.4%) of the fatally-injured 15–20 y/o
passengers died while riding with a driver also aged 15–20 y/o
confirm previous reports showing that 57% of the teen passengers
who died in a crash in 2018 were driven by another teenager (IIHS
2019); and shows that despite the large majority (about 89%) of
licensed U.S. drivers being aged 21 y/o or older, most 15–20 y/o
passengers who were fatally injured in a crash, died while riding
with a peer. However, when alcohol is considered, we found that
when a passenger 15–20 y/o died while riding with a drinking dri-
ver, it was less likely that the drinking driver was also a peer aged
15–20 y/o, than an older driver. This finding is in line with previous
self-reports showing that 52%-55% of high school students self-
reported ‘‘ever” RWI with a driver aged 21 y/o or more, and 21%–
33% self-reported ‘‘ever” RWI with a peer (Leadbeater, Foran,
et al., 2008). The finding that the drivers of 15–20 y/o passengers
are more likely to be impaired when they are age 21 y/o or older
suggests that zero-tolerance laws alone are not enough to prevent
the death of passengers aged 15–20 y/o who die in an alcohol-
related crash. As such, this finding points out that in order to curb
RWI fatalities among underage passengers, it is necessary to imple-
ment and/or enhance the countermeasures that have been proven

to be effective against drinking drivers of all ages (e.g., sobriety
checkpoints; Fell, Lacey, et al., 2004).

While an alcohol-related fatality among 15–20 y/o passengers
is more likely to occur when the passenger is riding with an older
driver, this should not be viewed as an indication that fatalities of
15–20 y/o passengers that occur when they are riding with a 15–
20 y/o driver are of no or little importance. As already shown,
62.4% of all 15–20 y/o passengers who died in a crash were riding
with a 15–20 y/o driver. Thus, although for an individual 15–20 y/o
passenger the likelihood that her/his driver is impaired is lower
when the driver is also 15–20 y/o than when older, by sheer num-
bers, slightly more than half of the 15–20 y/o passengers who died
while RWI died while riding with a 15–20 y/o driver (54% of
BAC � 0.08 g/dL drivers). This result emphasizes the need to also
increase our efforts to implement and/or enhance the countermea-
sures that have been shown to be effective against underage drink-
ing drivers (e.g., zero tolerance laws).

Our finding that for fatally injured 15–20 y/o passengers, the
likelihood the driver was BAC � 0.08 g/dL was lower when the dri-
ver was also 15–20 y/o than when the driver was older, and that
most of these passengers that died were riding with another 15–
20 y/o passenger, suggesting that while alcohol contributed to
most fatalities when the driver was older than 21 y/o, reasons
other than alcohol are behind a sizable number of fatalities involv-
ing 15–20 y/o drivers. Besides alcohol, distractions, inexperience,
speeding, and drowsiness are some of the most frequent contribu-
tors to crashes among young and novice drivers (Groeger, 2006;
Klauer, Guo, et al., 2014; Simons-Morton, Guo, et al., 2014). The
finding that the likelihood of an RWI fatality when the driver
was 0.00 g/dL < BAC < 0.08 g/dL was higher when more than one
passenger was present at the time of the crash than when only
one passenger was present may indicate that driving with multiple
passengers is a source of additional distraction to the young drink-

Table 3
Multinomial logistic regression for variables modeling the likelihood of RWI by drivers’ BAC levels.

Drivers’ BAC (Ref: BAC = 0.00)

0.00 < BAC < 0.08 BAC � 0.08

OR 95%LCI 95%UCI OR 95%LCI 95%UCI

Day of the week and Time of the Day Weekend, day 1.03 0.69 1.55 1.13 0.56 2.25
Weekend, night 6.20 4.61 8.34 8.20 4.56 14.77
Weekday, night 3.90 2.77 5.49 5.18 2.69 9.96
Weekday, day (Ref)

Sex of Passenger & Driver Mp-Fd 0.77 0.17 3.57 0.76 0.36 1.57
Fp-Md 1.81 0.61 5.33 1.16 0.64 2.10
Mp-Md 2.17 0.80 5.89 1.77 1.04 3.03
3+ occupants 2.60 0.98 6.86 1.34 0.81 2.21
Fp-Fd (Ref)

Driver’s Age 15 y/o 0.96 0.18 5.22 1.30 0.60 2.82
17 y/o 1.74 0.86 3.54 1.45 0.88 2.38
18 y/o 2.13 0.98 4.63 2.04 1.25 3.32
19 y/o 2.75 1.25 6.04 2.46 1.56 3.88
20 y/o 2.44 1.07 5.57 3.24 2.01 5.22
16 y/ o (Ref)

Urbanicity Urban 0.93 0.67 1.29 0.97 0.78 1.22
Rural (Ref)

Race /Ethnicity
Black 0.66 0.42 1.03 0.71 0.49 1.04
Latinx 1.07 0.67 1.69 0.99 0.74 1.32
Other 1.12 0.77 1.63 0.97 0.75 1.26
White (ref)

Source: FARS 2010–2018. OR stands for odds ratio. BAC stands for blood alcohol concentration in g/dL (grams per deciliter). The dependent variable (BAC) has 3 levels:
BAC � 0.08 g/dL, 0.00 g/dL < BAC < 0.08 g/dL, and BAC = 0.00 g/dL, the reference group. BAC was either measured or imputed in the file. (Ref) indicates the reference level. The
first letter of the Fp-Fd, Mp-Fd, Fp-Md, and Mp-Md combinations indicates, for crashes in which there were only 2 occupants in the vehicle, the passenger’s sex, the second letter
indicates the sex of the driver. For instance, the Fp-Fd combination indicates a Female passenger riding with a Female driver. ‘‘Weekend, day” denotes a crash that occurred on
a Friday, Saturday, or Sunday Day. ‘‘Weekend, night” denotes a crash that occurred on a Friday, Saturday, or Sunday Night; ‘‘Weekday, day,” denotes a crash that occurred on a
Monday, Tuesday, Wednesday, or Thursday Day. ‘‘Weekday, night” denotes a crash that occurred on a Monday, Tuesday, Wednesday, or Thursday Night. The number of
occupants includes the driver.
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ing drivers, further increasing the odds that a passenger would die
in a fatal crash with the driver at 0.00 g/dL < BAC < 0.08 g/dL.
Regarding the lack of significance of this factor when the driver
was BAC � 0.08 g/dL, we speculate that when the driver is heavily
impaired (BAC � 0.08 g/dL), alcohol is the main source of risk and
the distractions created by additional passengers do not contribute
to crash risk as much as when the distraction occurs at lower BACs.

One of the aims of this study was to assess whether race/ethnic-
ity was a factor contributing to RWI fatalities among 15–20 y/o
passengers. In our analysis, we found that race/ethnicity was not
a factor influencing the likelihood of RWI fatal crashes. Another
study aim was to assess whether the sex of the 15–20 y/o drivers
and passengers was associated with the passengers dying in
alcohol-related crashes. We found that when there were only
two occupants in the vehicle, the sexes of the young driver and
young passenger affects the likelihood the passenger was RWI.
Among the young passengers who died in an alcohol-related crash,
it is less likely to find a young female passenger riding with a
young male driver, than a male passenger riding with another
young male. There is a need to better understand the context of
young driver-passenger dynamics, particularly among young
dyads, and how such dynamics affect alcohol use and alcohol-
related crashes. It might be possible that variation in how the
driver-passenger dynamics plays out could explain some of the
discrepancies on the role of race/ethnicity on RWI reported in
the literature. Regardless, advancing the understanding of the
driver-passenger dynamics is needed for the design of efficient
and effective interventions to deter young people from engaging
in RWI.

Of course, the most effective form of prevention is reducing
impaired driving by providing alternatives to driving and to drink-
ing. With respect to driving, these alternatives include public
transportation, riding sharing, parental responsibility legislation,
and designated driver programs. Other evidence-based counter-
measures include high-visibility enforcement of zero tolerance
laws (Johnson, 2016); programs and interventions to reduce acces-
sibility of alcohol to minors (Komro & Toomey, 2002; Flewelling,
Grube, et al., 2013; Fell, Fisher, et al., 2009; Wagenaar, Harwood,
et al., 2005); communities efforts to limit alcohol outlet density
(Chen, Grube, et al., 2010); the enactment and enforcement of ordi-
nances such as alcohol retailer compliance checks (Elder,
Lawrence, et al., 2007; Erickson, Smolenski, et al., 2013); keg regis-
tration (Ringwalt & Paschall, 2011); or social host ordinances that
include strict liability and civil penalties (Paschall, Lipperman-
Kreda, et al., 2014).

The findings provide some support for extending extant GDL
passenger restrictions to age 20. Older teen-young adult might
be neurodevelopmentally mature enough to be able to navigate
social situation or context that would allow them to avoid engag-
ing in RWI or DWI. Also, it is possible that better trained novice dri-
vers aged 18–20 y/o would be able to navigate the context that
might typically precede an impairing situation associated with
alcohol use (despite being illegal) with better chances to avoid a
crash and survive than less skilled drivers. Although this study pro-
vides some support for extending GDL programs, the evidence is
far from conclusive and needs more examination.

This study has several limitations. Impairment by alcohol can-
not be precisely established from the FARS. Drugs other than alco-
hol may have also contributed to the crashes examined.
Unfortunately, as indicated by the agency that manages the data-
base, drug-related crashes cannot be reliably studied from the
FARS (Berning & Smither, 2014; Romano, Torres-Saavedra, et al.,
2017). Information on driver’s race and ethnicity was incomplete,
as it is only available on the deceased occupants in FARS. Another
important limitation of this study is that analyses are not adjusted
by crash exposure. Although relevant and novel, our study was

based only on fatal crashes, subsequently it does not take nonfatal
and non-crashed RWI events into account.

5. Conclusions

Among 15–20 y/o passenger deaths, themajority occurredwhile
riding with peer drivers. In nearly 27% of these cases, the driver had
been drinking, andwhen the driverwas drinking, about 77% of them
had been drinking heavily. In order to curb RWI fatalities among
underage passengers, it is necessary to enhance the implementation
of countermeasures focused not only on underage drinking drivers,
but also policies restricting drinking drivers of all ages.
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a b s t r a c t

Introduction: Crash data suggest an association between driver seatbelt use and child passenger restraint.
However, community-based restraint use is largely unknown. We examined the association between dri-
ver seatbelt use and child restraint using data from a state-wide observational study. Methods: Data from
Iowa Child Passenger Restraint Survey, a representative state-wide survey of adult seat belt use and child
passenger safety, were analyzed. A total of 44,996 child passengers age 0–17 years were observed from
2005 to 2019. Information about driver seatbelt use and child restraint was directly observed by survey-
ors and driver age was reported. Logistic regression was used to examine the association between driver
seatbelt use and child restraint adjusting for vehicle type, community size, child seating position, child
passenger age, and year. Results: Over the 15-year study period, 4,114 (9.1%) drivers were unbelted,
3,692 (8.2%) children were completely unrestrained, and another 1,601 (3.6%) children were improperly
restrained (analyzed as unrestrained). About half of unbelted drivers had their child passengers unre-
strained (51.8%), while nearly all belted drivers had their child passengers properly restrained (92.3%).
Compared with belted drivers, unbelted drivers had an 11-fold increased odds of driving an unrestrained
child passenger (OR = 11.19, 95%CI = 10.36, 12.09). The association between driver seatbelt use and child
restraint was much stronger among teenage drivers. Unbelted teenage drivers were 33-fold more likely
(OR = 33.34, 95%CI = 21.11, 52.64) to have an unrestrained child passenger. Conclusion: These data sug-
gest that efforts to increase driver seatbelt use may also have the added benefit of increasing child
restraint use. Practical applications: Enforcement of child passenger laws and existing education programs
for new drivers could be leveraged to increase awareness of the benefits of seatbelt use for both drivers
themselves and their occupants. Interventions aimed at rural parents could emphasize the importance of
child safety restraints.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Unrestrained children riding in motor vehicles are at significant
increased risk of crash-related injury and death (Agran et al., 1992;
Chan et al., 2006; Lee et al., 2015). Proper installation of age-
appropriate child restraint systems, such as child safety seats or
booster seats, and correct placement of children in restraints
increase safety. Evidence shows that proper child restraint can
reduce the risk of crash-related injury by 50–75% (Arbogast et al.,
2004; Arbogast et al., 2009; Lee et al., 2008). As a result, guidelines
for proper child safety seat use based on variables such as age,

height, and weight have been established by the American
Academy of Pediatrics (AAP) (2019) and the National Highway
Traffic Safety Administration (NHTSA) (2019). Currently, all 50
states and District of Columbia have child passenger safety legisla-
tion and enforcement (Governor’s Highway Safety Association,
2019). These efforts have led to an increase in child safety seat
use reaching 90.9% across the United States in 2018 (Enriquez,
2019) and a decline in child passenger fatalities (National Center
for Statistics and Analysis, 2019).

Although the use of child safety restraint has improved over
time in the United States (Enriquez, 2019; Winston et al., 2004),
there remain a substantial number of children killed while riding
in motor vehicles, many of whom are not properly restrained. In
2018, about one third of child passengers 0 to 12 years old fatally
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injured in motor-vehicle crashes in the United States were unre-
strained (Insurance Institute for Highway Safety, 2020). A more
thorough understanding of factors influencing the use of child
safety restraints is needed. Understanding these factors is impor-
tant for targeted interventions and promoting optimal child pas-
senger safety practices.

Prior research has reported an association between driver seat-
belt use and child passenger restraint compliance (Roehler et al.,
2019; Privette et al., 2018; Agran et al., 1998; Miller et al., 1998).
However, these studies were conducted using crash data and
might not depict an accurate picture of the distribution of child
occupants in compliance with restraint guidelines. Given the dif-
ference in reported prevalence of overall child restraint use and
the far lower prevalence of use reported in crash data, information
on how to focus child seat use campaigns on high-risk drivers is
warranted.

In this study we investigated the association between driver
seatbelt use and child safety restraint use and examined if this
association varied by factors such as driver age, vehicle type, and
rurality.

2. Methods

2.1. Study population

Data analyzed in this study were derived from Iowa Child Pas-
senger Restraint Survey conducted by the University of Iowa Injury
Prevention Research Center and led by the Iowa Governor’s High-
way Traffic Safety Bureau. The survey is a representative state-
wide survey of adult seat belt use and child passenger restraint
use and observes approximately 3,000 drivers and their child occu-
pants each year. The survey uses a stratified sampling scheme
where the strata were determined by the population sizes of the
communities. Approaches were taken so that the proportion of
the overall sample in each stratum was close to both the propor-
tion of the overall state population in the corresponding stratum,
and the proportion of the state child population in the correspond-
ing stratum. Within each stratum, survey locations were selected
to ensure that all geographic regions of the state were well
represented.

The survey was conducted at gas stations or other frequented
locations in communities (e. g., swimming pools, aquatic centers,

and community center parking lots) where the surveyor could
approach motor vehicles carrying passengers who appeared to be
up to 17 years of age. When the surveyor approached the vehicle,
they asked the driver if they would be willing to participate in a
child passenger safety survey. If the driver agreed, the surveyor
confirmed the driver age (<18 or �18) and the child’s age(s), and
quickly observed if the child was restrained and the child location
within the vehicle. If the child was restrained, the surveyor noted
the type of child restraint (child safety seat, booster seat, seat belt,
none). Drivers of unrestrained children observed were reminded of
Iowa child passenger law and offered a brochure outlining both
current Iowa law and best practices. From 2005 through 2019, a
total of 45,780 children ages 0–17 years were observed. We
excluded 784 (1.7%) children with missing information on child
restraint use, child’s age, and vehicle type. Thus, our final analytical
sample was 44,996.

2.2. Variables of interest

2.2.1. Driver seatbelt use and child passenger restraint
Information about driver seatbelt use and child restraint was

directly observed. For a child who was restrained, we used the
child’s age and the type of restraint to determine whether the child

was properly restrained in accordance with Iowa law (State of
Iowa, 2010). A child passenger whose age was under 1 year and
restrained with a child safety seat was classified as properly
restrained, otherwise was coded as unrestrained. A child passenger
whose age was from 1 year to 5 years and restrained with a child
safety seat or a booster was classified as properly restrained, other-
wise was coded as unrestrained. A child passenger whose age was
from 6 years to 11 years and restrained with a child safety seat, a
booster, or a seatbelt was classified as properly restrained, other-
wise was coded as unrestrained. A child passenger whose age
was from 12 years to 17 years and restrained with a booster or a
seatbelt was classified as properly restrained, otherwise was coded
as unrestrained. Completely unrestrained children and improperly
restrained children were combined and analyzed as unrestrained.

2.2.2. Covariates
Communities were categorized as rural (fewer than 2,500 resi-

dents), town (2,500–9,999 residents), small urban (10,000–49,999
residents), and urban (50,000 residents or greater). Data on vehicle
type were reported by surveyors and coded as car, pickup truck,
pickup truck with a club cab (has an extra row of seats), van, and
SUV. Other information collected in the survey included the seat-
ing position of child passenger within the vehicle (front seat vs.
back seat) and the driver age (<18 or �18). Of note, prior to
2009, data on driver age was not collected.

2.3. Statistical methods

Characteristics of the study population are presented as fre-
quency tabulations by driver seatbelt status. Multivariable logistic
regression was used to calculate adjusted odds ratios (ORs) and
corresponding 95% confidence intervals (CIs), which were used to
identify factors associated with unrestrained child passengers. To
investigate whether risk factors depend on the driver age, models
were run separately for teen drivers (16–17 years old) and adult
drivers (18+ years old). The stratified analysis by driver age was
based on data from 2009 to 2019 because data on driver age were
not collected prior to 2009. Covariates examined in the multivari-
able logistic regression models were community size, vehicle type,
child seating position (front versus back), child passenger age, and
year. All analyses were performed in SAS 9.4.

3. Results

Over the 15-year study period, 4,114 (9.1%) drivers were
unbelted, 3,692 (8.2%) children were completely unrestrained,
and another 1,601 (3.6%) children were improperly restrained
and analyzed as unrestrained. Table 1 shows the characteristics
of the study population by driver seatbelt status. About half of
unbelted drivers had their child passengers unrestrained (51.8%),
while nearly all belted drivers had their child passengers properly
restrained (92.3%). About three in four belted drivers and four in
five unbelted drivers transported child passengers ages 1–11 years
old. Unbelted drivers were most common in rural communities
(34.5%), while belted drivers were most frequent in urban commu-
nities (38.5%). Belted drivers were more likely to have child occu-
pants positioned in the back of the vehicle compared to unbelted
drivers (78.4% vs 67.3%). Among unbelted drivers, passenger cars
(42.7%) and SUVs (19.0%) were the most frequent vehicles used.
Among belted drivers, passenger cars were the most frequent vehi-
cles used (38.6%), followed by vans (27.2%). For drivers with avail-
able information on age, most child passengers were driven by
drivers 18 years or older.

The results from the multivariable models are shown in Table 2.
Compared with belted drivers, unbelted drivers had an 11-fold
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increased odds of having unrestrained child passengers
(OR = 11.19, 95%CI = 10.36, 12.09). The association between driver
seatbelt use and child passenger restraint was much stronger
among teenage drivers. Unbelted teenage drivers were 33-fold
more likely (OR = 33.34, 95%CI = 21.11, 52.64) to have unrestrained
child passengers. Compared to child passengers under 1 year old,
child passengers 1–5 years and 12–17 years old were 11 times
more likely (OR = 11.50, 95%CI = 6.28, 21.07) and almost 17 times
as likely (OR = 16.71, 95%CI = 9.09, 30.73) to be unrestrained,
respectively, while child passengers 6–11 years were 7 times more
likely (OR = 7.26, 95%CI = 3.96, 13.31) to be unrestrained. Com-
pared with urban communities, rural communities were associated
with 18% increased odds of having unrestrained child passengers
(OR = 1.18, 95%CI = 1.08, 1.29).

Compared with car drivers, pickup drivers were 64% more likely
to have an unrestrained child passenger (OR = 1.64, 95%CI = 1.42,
1.89). Vehicles such as van and SUV were associated with
decreased odds of unrestrained child passengers compared to pas-
senger cars. Child passengers positioned in the back of the vehicle
were almost 8-fold more likely to be unrestrained when the driver
was a teenager (OR = 7.69, 95%CI = 5.41, 10.92) and 1.4-fold more
likely to be unrestrained when the driver was an adult
(OR = 1.40, 95%CI = 1.23, 1.59). Increasing year was associated with
decreased odds for unrestrained child passengers.

4. Discussion

This study found that 90.9% of observed children riding in
motor vehicles were restrained. A similar percentage was reported
by the National Occupant Protection Use Survey (NOPUS) in 2018
(Insurance Institute for Highway Safety, 2020). The 2018 NOPUS
data showed that 90.4% of child passengers under age 8 were
restrained and 91.3% of children 8–15 years old were belted. The
NOPUS is conducted annually and occupants of stopped vehicles
are observed from the roadside at intersections controlled by stop
signs or stop lights. The NOPUS roadside observers subjectively
estimate vehicle occupants’ age, while data on age is directly gath-
ered from drivers in the Iowa Child Passenger Restraint Survey. In
addition, the NOPUS does not collect information on the type of
safety restraint, limiting their ability to assess whether a child
restraint was age appropriate. Earlier studies have reported much
lower percentages of child restraint use than those reported in
the current study and the NOPUS survey. In Michigan in 1999,
studies showed that 74.5% of children under 4 years of age were
in safety seats (Eby & Kostyniuk, 1999) and 57.8% of children 4–
15 years were restrained (Eby, Kostyniuk, & Vivoda, 2001). A child
restraint study conducted in 2002 across several states (Arizona,
Florida, Mississippi, Missouri, Pennsylvania, and Washington)
reported that 62.3% of children riding in motor vehicles were
restrained (Decina & Lococo, 2005). The higher percentage of child
restraint use observed in recent years may be partially explained
by the strengthening in child restraint laws as well as enforcement
and parental behavioral changes (Governor’s Highway Safety
Association, 2019; Winston et al., 2004).

This study provides supporting evidence that a driver’s seatbelt
use is strongly associated with child passenger restraint use. The
association of unbelted drivers with unrestrained child passengers
was much stronger among teenage drivers. The findings from this
study are consistent with previous studies reporting that unbelted
drivers are more likely to have unrestrained child occupants in the
vehicle. For example, a study examining factors associated with
unrestrained child passengers using national crash data collected
between 2011 and 2015 found a strong association of a driver seat-
belt use with a child passenger being unrestrained and the strength
of the association was inversely proportionate to the child age
(Roehler, Elliott, Quinlan, & Zonfrillo, 2019). Using nonfatal data,
the study found that 0- to 8-years old unrestrained passengers
and 9- to 15-years old unrestrained passengers were 15 times
and 18 times more likely to have unrestrained drivers, respectively.
A similar trend in the associations was observed across the same
age groups but weaker when fatal crash data were analyzed. Find-
ings from other studies based on crash data also concur with the
results of the current study, showing that unrestrained child pas-
sengers are more likely have unbelted drivers (Privette et al.,
2018; Agran et al., 1998; Miller et al., 1998). These crash data have
limitations. First, they might not provide an accurate distribution
of children riding in compliance with restraint guidelines, a funda-
mental shortcoming. Second, data on occupant restraint use in a
crash might not be accurate, especially when information on
restraint use was reported by the child passenger or the driver.
Inaccurate reporting of safety restraint use may occur when occu-
pants have left their vehicles before the police arrived or occupants
may falsely report the use of restraints to avoid tickets. Our study
overcomes these limitations by using a sample weighted to the
state population and by directly observing the use of driver seat-
belt and child passenger restraint.

Studies have consistently shown that rural drivers are less likely
to wear a seatbelt (Ash et al., 2014; Baker et al., 2000; Beck et al.,
2017). The current study found that rural communities were asso-
ciated with unrestrained child passengers independent of the dri-
ver seatbelt status. This finding is consistent with a previous

Table 1
Characteristics of study population by driver seatbelt use status.

Variables Driver belted

Yes (n = 40882)
n (%)

No (n = 4114)
n (%)

Child passenger restrained
Yes 37,720 (92.3) 1,983 (48.2)
No 3,162 (7.7) 2,131 (51.8)

Child passenger age
<1 year 1,172 (2.9) 58 (1.4)
1–5 years 15,806 (38.6) 1,411 (34.3)
6–11 years 15,613 (38.2) 1,843 (44.8)
12–17 years 8,291 (20.3) 802 (19.5)

Type of restraint used
Belted 20,940 (51.2) 993 (24.1)
Booster 8,455 (20.7) 499 (12.1)
Child Safety Seat 9,806 (24.0) 611 (14.9)
None 1,681 (4.1) 2,011 (48.9)

Seating position within the vehicle
Back 32,045 (78.4) 2,768 (67.3)
Front 8,837 (21.6) 1,346 (32.7)

Vehicle type
Car 15,802 (38.6) 1,756 (42.7)
Pickup 1,169 (2.9) 437 (10.6)

Pickup club cab 3,066 (7.5) 542 (13.2)
SUV 9,718 (23.8) 780 (19.0)
Van 11,127 (27.2) 599 (14.5)

Driver age
16–17 1,463 (3.6) 157 (3.8)
18+ 26,351 (64.4) 2,092 (50.9)
Missing 13,068 (32.0) 1,865 (45.3)

Community
Rural (<2,500 residents) 6,990 (17.1) 1,420 (34.5)
Town (2,500–9,999 residents) 8,542 (20.9) 996 (24.2)
Small urban (10,000–49,999 residents) 9,616 (23.5) 782 (19.0)
Urban (�50,000 residents) 15,734 (38.5) 916 (22.3)

Prior to 2009 data on driver age was not collected.
Unrestrained child passenger: completely unrestrained or improperly restrained (A
child passenger whose age was under 1 year and restrained with a child safety seat
was classified as properly restrained, otherwise was improperly restrained. A child
passenger whose age was from 1 year to 5 years and restrained with a child safety
seat or a booster was classified as properly restrained, otherwise was improperly
restrained. A child passenger whose age was from 6 years to 11 years and restrained
with a child safety seat, a booster, or a seatbelt was classified as properly restrained,
otherwise was improperly restrained. A child passenger whose age was from
12 years to 17 years and restrained with a booster or a seatbelt was classified as
properly restrained, otherwise was improperly restrained.
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study reporting a lower use of child restraint in crashes occurring
in rural communities compared to urban settings (Agran,
Anderson, & Winn, 1998). The lower use of safety restraints in rural
communities may be explained by differences in the perceived
importance of using child safety restraint. One previous study
showed that urban parents were much more concerned about
the risk of child injury in a crash than were rural parents (Ebel
et al., 2006).

Other factors associated with unrestrained child passengers
included the vehicle in which the child was traveling and the child
seating position. We found that vans and SUVs were less likely to
have unrestrained children compared to passenger cars. These data
are consistent with the 2018 NOPUS data, which showed that
restraint use was highest for vans & SUVs and lowest for passenger
cars (Enriquez, 2019). We found that the association between child
seating position and restraint use depends on the driver age.
Among teen drivers, back seat was strongly associated with a child
being unrestrained. It would be quite helpful to understand what
might have caused this effect modification to inform interventions
to increase child occupant protection use.

This study has some limitations. Data on the child’s height and
weight, which are helpful to determine appropriate restraint
requirements, were not available due to challenges and accuracy
of collecting this information in the field. As a result, we used only
the child’s age to determine whether the child was properly
restrained. Because the appropriate child safety restraint depends
on the child’s age, height, and weight, it remains possible that
we may have misclassified some child passengers. However, a pos-
sible misclassification is unlikely to change the conclusions of our
study since only 3.6% of children were classified as improperly
restrained while 8.2% of children were completely unrestrained.
Moreover, data collectors did not determine whether child safety
restraints were properly installed or fastened. These details would
be helpful to determine whether the restraint meets AAP best
practices.

Notwithstanding these limitations, the current study may have
important implications. These data suggest that efforts to increase
child restraint use may also have the added benefit of increasing
driver seatbelt use, and, similarly, that highly visible enforcement
of child passenger laws (Governor’s Highway Safety Association,
2019) coupled with focused messages addressing both driver and
child occupant protection may be helpful in increasing restraint
use for both occupant groups. Given the strong relationship
between driver seatbelt use and child safety restraint among teen
drivers, enforcement of child passenger laws (Governor’s Highway
Safety Association, 2019) combined with an emphasis of restraint
use in education programs for new drivers could be leveraged to
increase seatbelt use for both drivers themselves and their occu-
pants. Interventions aimed at rural parents could emphasize the
importance of child safety restraints. This study demonstrates an
opportunity to promote driver belt use integrated with child safety
seat use, especially in rural areas.

5. Conclusions

Unbelted drivers were strongly associated with unrestrained
child passengers in a state-wide observational study and the asso-
ciation was much stronger among teenage drivers. Rural commu-
nities were also associated with unrestrained child passengers
independent of the driver seatbelt status. These data suggest that
efforts to increase child restraint use may also have the added ben-
efit of increasing driver seatbelt use. This study demonstrates an
opportunity to promote driver belt use integrated with child safety
seat use, especially in rural areas.
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Table 2
Factors associated with child passengers being unrestrained.

Multivariable ORs and 95% CI

Variables ALL drivers Teen drivers (16–17 years) Adult drivers (18+)

Driver belted
No 11.19 (10.36, 12.09) 33.34 (21.11, 52.64) 15.36 (13.76, 17.14)
Yes 1.00 1.00 1.00

Child passenger age
<1 year 1.00 1.00* 1.00
1–5 years 11.50 (6.28, 21.07) 11.39 (5.82, 22.29)
6–11 years 7.26 (3.96, 13.31) 7.85 (4.01, 15.39)
12–17 years 16.71 (9.09, 30.73) 8.07 (4.57, 14.25) 17.58 (8.95, 34.52)

Community size
Rural (<2,500 residents) 1.18 (1.08, 1.29) 1.78 (1.16, 2.73) 1.25 (1.09, 1.43)
Town (2,500–9,999 residents) 1.10 (1.01, 1.20) 1.28 (0.84, 1.95) 1.13 (0.99, 1.29)
Small urban (10,000–49,999 residents) 1.13 (1.04, 1.24) 1.69 (1.08, 2.66) 1.06 (0.93, 1.21)
Urban (�50,000 residents) 1.00 1.00 1.00

Vehicle type
Pickup 1.64 (1.42, 1.89) 1.72 (0.90, 3.30) 2.08 (1.67, 2.58)
Pickup club cab 0.98 (0.88, 1.10) 1.13 (0.61, 2.07) 1.03 (0.88, 1.20)
SUV 0.59 (0.54, 0.65) 1.52 (0.97, 2.39) 0.60 (0.53, 0.69)
Van 0.55 (0.51, 0.60) 0.57 (0.29, 1.12) 0.66 (0.58, 0.76)
Car 1.00 1.00 1.00

Seating position within the vehicle
Back 1.08 (0.99, 1.19) 7.69 (5.41, 10.92) 1.40 (1.23, 1.59)
Front 1.00 1.00 1.00

Year 0.88 (0.87, 0.88) 0.84 (0.79, 0.89) 0.93 (0.92, 0.95)

Notes:
Overall odds ratio (OR) was calculated using data from 2005 to 2019.
Stratified odds ratios (ORs) were calculated using data from 2009 to 2019 because prior to 2009 data on driver age was not collected.
All models adjusted for community size, vehicle type, child seating position (front versus back), child passenger age, and year.
*For the teen driver model, child passenger age groups < 1 year, 1–5 years, and 6–11 years were combined into one group because the model estimates were otherwise
unstable.
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a b s t r a c t

Introduction: Beach and patio umbrellas may cause injury. There is limited published information on
injuries due to beach and patio umbrellas. This study sought to describe beach and patio umbrella inju-
ries reported to United States emergency departments (EDs). Method: An analysis was performed of
beach and patio umbrella injuries using data from the National Electronic Injury Surveillance System dur-
ing 2000–2019. Results: An estimated 5,512 beach umbrella injuries and 7,379 patio umbrella injuries
were identified. The patient was age 40 years or older in 62.1% of the beach umbrella and 65.1% of the
patio umbrella injuries. The patient was female in 68.0% of the beach umbrella and 66.9% of the patio
umbrella injuries. Wind was reported involved in 50.6% of the beach umbrella and 27.5% of the patio
umbrella injuries. The most frequently reported injuries with beach and patio umbrella injuries, respec-
tively, were laceration (44.0% vs 33.0%), contusions or abrasions (19.8% vs 19.0%), and internal organ
injury (16.6% vs 17.0%) and most often affected the head/neck (60.2% vs 44.0%) and upper extremity
(16.3% vs 30.1%). Conclusions: The majority of patients with beach and patio umbrella injuries treated
at EDs were age 40 years or older and most patients were female. For both types of umbrella injury,
the most frequently reported injury was laceration followed by contusions or abrasions and internal
organ injury, and the body part with the highest proportion of injuries was the head/neck followed by
the upper extremity. Practical Applications: Persons should use sturdier models of beach or patio
umbrella, use a rocking motion to dig into the sand and secure the beach umbrella with a metal anchor
and screws, add weight to the bottom of the umbrella, and tilt the umbrella into the wind. Policy-makers
should educate the public about the potential dangers of beach and patio umbrellas.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

A beach umbrella is a large umbrella with a central pole that has
a pointed bottom used to spike the pole into the sand (Metheney,
2018). If not properly secured, wind can uproot a beach umbrella
from the sand and propel it, potentially causing injury if it hits
someone (BBC News, 2019; MBC12.com, 2019; Wise, 2019). The
U.S. Consumer Product Safety Commission (CPSC) reported an esti-
mated 2800 people went to emergency departments (EDs) during
2010–2018 for injuries of varying severity caused by beach
umbrellas (BBC News, 2019; MBC12.com, 2019; Wise, 2019).
Deaths related to beach umbrella injuries have been reported
(Harris et al., 2018; Quatrehomme et al., 2016; Ventura Spagnolo
et al., 2016). In July 2019, several U.S. Senators asked the CPSC to
provide data on beach umbrella injuries and create recommenda-
tions to make beach umbrellas safer (BBC News, 2019;
MBC12.com, 2019; Wise, 2019).

A patio or table umbrella tends to be heavier and have a thicker
pole than a beach umbrella. The patio umbrella pole usually fits
inside a hole in the center of a table. Unlike a beach umbrella,
the pole of a patio umbrella has a flat bottom and a base
(Metheney, 2018). Patio umbrellas also may cause injuries
(Vaughn, 2008).

Published information on beach and patio umbrella-related
injuries is limited to case reports (Harris et al., 2018;
Quatrehomme et al., 2016; Ventura Spagnolo et al., 2016). The
objective of this study was to describe beach and patio umbrella
related injuries treated at EDs.

2. Materials and methods

This retrospective epidemiologic study used data downloaded
from the U.S. National Electronic Injury Surveillance System
(NEISS) website (https://www.cpsc.gov/cgibin/NEISSQuery/home.
aspx). The NEISS, operated by the CPSC, collects data on consumer
product-related injuries in the United States from the EDs of
approximately 100 hospitals representing a stratified probabilistic

https://doi.org/10.1016/j.jsr.2021.09.010
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sample of the more than 6000 U.S. hospitals with six or more beds
and 24-hour EDs. The NEISS stratified sample is based on ED size
and geographic location. Professional NEISS coders view the med-
ical charts at the selected hospitals and collect and code informa-
tion including patient demographics and basic injury
information, such as injury diagnosis, body parts affected, and loca-
tion where the injury occurred as well as a brief narrative describ-
ing the incident (U.S. Consumer Product Safety Commission, not
dated; U.S. Consumer Product Safety Commission, 2019). Data
are publically available and de-identified; therefore, the study is
exempt from institutional review board approval.

Cases were injuries involving beach and patio umbrellas
reported to NEISS during 2000–2019. The NEISS database contains
three numeric fields (Product_1, Product_2, Product_3) for coding
the type of product(s) involved in an injury. According the NEISS
coding manual (U.S. U.S. Consumer Product Safety Commission,
2019), both beach and patio umbrellas are to be assigned product
code 1660 (Umbrellas). However, other types of umbrellas, such as
hooked handle umbrellas and golf umbrellas, also would be
assigned product code 1660. Moreover, beach and patio umbrellas
might have been assigned product codes other than 1660 by mis-
take. In order to identify as many injuries involving beach and
patio umbrellas as possible, all records where the Product_1, Pro-
duct_2, or Product_3 fields contained the product code 1660 or
the Narrative text field contained the letter grouping ‘‘umbrel” (re-
gardless of product codes) were identified. The Narrative fields of
the resulting records then was reviewed for any mention of
‘‘beach,” ‘‘sand,” ‘‘patio,” ‘‘table,” ‘‘park,” or ‘‘picnic,” in order to
identify the subset of records of injuries due to beach or patio
umbrellas. This subset of records comprised the cases for the study.
Records involving beach umbrellas and patio umbrellas were
divided into two groups so that injuries due to beach umbrellas
and injuries due to patio umbrellas could be examined separately.
A total of 288 case records were retrieved and included in the
study set consisting of 111 beach umbrella and 177 patio umbrella
records.

The records were used to determine national injury estimates. A
national estimate (the sum of the numbers in the Weight numeric
field in the NEISS database) is based on the sample weight assigned
to each record based on the inverse probability of the hospital
being selected for the NEISS sample. The distribution of the
national estimates for beach and patio umbrella-related injuries
separately was calculated for patient age group, sex, and race; date
of treatment (year, season, day of week); circumstances under
which the injury occurred, location where the injury occurred; dis-
position; diagnosis; and body part affected. The public NEISS data-
base does not contain a coded variable that describes the exact
circumstances that led to the injury. Initial review of the Narrative
field identified several general circumstance categories under
which the injury occurred. Each record was assigned one of these
circumstance categories: setting up/opening the umbrella, taking
down/closing the umbrella, the umbrella fell, wind affected the
umbrella, hit by umbrella (not otherwise specified), other (e.g.,
dropped umbrella, tripped over umbrella, finger caught in
umbrella), unknown.

Ninety-five percent confidence intervals (CIs) were calculated
for the estimates according to instructions provided by the CPSC:
If the estimate is greater than 239,380, then the coefficient of vari-
ation (CV) is a fixed value, i.e., 1/(�8.6453 + 1.7368*LN(239380))
� = 0.08. If the estimate is less than 239,380, then the CV is calcu-
lated using the following formula, 1/(�8.6453 + 1.7368*LN(Esti-
mate)). The 95% CI is then calculated using the formula 95%
CI = estimate ± (1.96*estimate*CV). The CPSC considers an estimate
unstable and potentially unreliable when the number of records
used is <20, the estimate is <1,200, or the coefficient of variation
(CV) is >33% (U.S. Consumer Product Safety Commission, not

dated). As a result, any calculated national estimates that are
<1,200 should be considered statistically unstable and potentially
unreliable. For those variable subgroups where the estimate was
<1,200, 95% CIs were not calculated.

3. Results

During 2000–2019, 111 beach umbrella-related injuries were
identified, resulting in a national estimate of 5,512 beach
umbrella-related injuries (95% CI 3,802–7,222). During the same
time period, 177 patio umbrella-related injuries were identified,
resulting in a national estimate of 7,379 patio umbrella-related
injuries (95% CI 5,259–9,498). Table 1 shows the distribution of
beach and patio umbrella-related injuries by patient demograph-
ics. Patients age 40 years and older accounted for 3,423 (62.1%)
of the estimated beach umbrella-related injuries, with a mean
age of 43.5 years (range 0–84 years), and 4,807 (65.1%) of the esti-
mated patio umbrella-related injuries, with a mean age of
47.4 years (range 0–88 years). Most of the patients with either type
of umbrella-related injury were female and the majority of
patients were white.

Fig. 1 shows the annual estimated number of beach and patio
umbrella-related injuries and Table 2 presents the distribution of
beach and patio umbrella-related injuries by the circumstances
of the injury. For both types of umbrella-related injury, the annual
estimated number of injuries varied from year to year but tended
to be higher during the latter part of the study period, with the
majority occurring during 2012–2019. The highest proportion of
both beach and patio umbrella-related injuries occurred during
June–August followed by March-May, with relatively few reported
during December–February. Most of both type of umbrella-related
injury were treated during Saturday–Monday. The highest propor-
tion of both types of injuries occurred when wind affected the
umbrella, although this proportion was higher for beach
umbrella-related injuries than for patio umbrella-related injuries.
The majority of beach umbrella-related injuries occurred at a place
of recreation or sports, while the majority of patio umbrella-
related injuries occurred at home followed by other public
property.

When the diagnosis and affected body part were examined
(Table 3), for both types of umbrella-related injuries, the highest
proportion of injuries were laceration followed by contusions or
abrasions, internal organ injury, sprain or strain, and fracture.
The body part with the highest proportion of injuries was the head
or neck followed by the upper extremity, lower extremity, and
trunk. The majority of patients were treated or examined at the
ED and released (Table 3).

4. Discussion

This study characterizes beach and patio umbrella-related inju-
ries treated at EDs. Although both types of umbrella can cause seri-
ous injury, published information on such injuries is limited to case
reports (Harris et al., 2018; Quatrehomme et al., 2016; Ventura
Spagnolo et al., 2016). The majority of patients were found to be
age 40 years or older with patients experiencing patio umbrella-
related injuries tending to be older than patients experiencing
beach umbrella-related injuries. Most of the patients were female.
It may be that adults age 40 and older and female are more likely to
use beach and patio umbrellas or are more likely to experience
injuries treated at EDs when using these umbrellas.

Although the annual estimated number of both beach and patio
umbrella-related injuries varied from year to year, the estimated
number of injuries was higher during the latter part of the study
period, with 60.4% of the beach umbrella-related injuries and
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52.7% of the patio umbrella-related injuries occurring during
2012–2019. This increase may be due to an increase in the use of
beach and patio umbrellas, an increase in injuries resulting from
use of these umbrellas, and/or an increase in persons injured by
these umbrellas visiting EDs. Alternately, it may be that the indi-
viduals completing NEISS records may have been more likely in
recent years to document that the umbrellas involved in injuries
were beach or patio umbrellas. Another potential explanation
may involve changes in the hospitals participating in the NEISS.
Hospitals gradually rotate in and out of the NEISS; hospitals joining
or leaving the surveillance system can have a substantial influence
on national estimates, depending on the category of injury.

The highest proportion of beach and patio-umbrella related
injuries occurred in the June-August followed by March-May. The
majority of injuries to both types of umbrella were treated during
the weekend and Monday. This might be expected because people
in the United States may be more likely to visit the beach or use an
outdoor table during warmer weather in summer and spring and
less likely in the winter when it is cold. In addition, people might

be more likely to have the free time to visit the beach or be at out-
door tables during the weekend.

Wind accounted for the highest proportion of both beach and
patio umbrella-related injuries. Furthermore, 10.2% of beach
umbrella-related injuries and 12.6% of patio umbrella-related inju-
ries occurred when the patient was hit by an umbrella (not other-
wise specified). In a portion of these cases, the wind may have
caused the umbrella to hit the patient but wind was not specifi-
cally mentioned in the Narrative field. If beach and patio umbrellas
are not adequately secured, wind may pick them up and blow
them into people. Even if the umbrellas are not blown away, wind
may cause them to sway, causing them to strike people. A higher
proportion of beach umbrella-related injuries (50.6%) than patio
umbrella-related injuries (27.5%) were due to wind. Beach umbrel-
las usually are anchored to the ground simply by driving the
pointed bottom of the pole into sand while patio umbrellas usually
are threaded through a hole in a table and inserted into a weighted
base. As a result beach umbrellas may be more likely than patio
umbrellas to be unsecured by the wind and blown into people,

Table 1
Demographic characteristics of beach and patio umbrella-related injuries treated at emergency departments, National Electronic Injury Surveillance System, 2000–2019.

Variable Beach umbrella Patio (table) umbrella

Est. % 95% CI Est. % 95% CI

Age (years)
0–19 990 18.0 – 1,254 17.0 598–1,910
20–39 1,099 19.9 – 1,318 17.9 644–1,992
40–59 1,928 35.0 1,087–2,770 2,253 30.5 1,326–3,180
60+ 1,494 27.1 771–2,218 2,554 34.6 1,549–3,559

Sex
Male 1,764 32.0 967–2,561 2,441 33.1 1,465–3,417
Female 3,748 68.0 2,447–5,049 4,938 66.9 3,358–6,518

Race
White 3,167 57.5 2,008–4,327 4,444 60.2 2,978–5,909
Black/African American 161 2.9 – 420 5.7 –
Asian 30 0.5 – 5 0.1 –
Native Hawaiian/Pacific Islander 0 0.0 – 74 1.0 –
Other 156 2.8 – 188 2.5 –
Not stated 1,998 36.3 1,138–2,858 2,248 30.5 1,322–3,173

Total 5,512 3,802–7,222 7,379 5,259–9,498

Est. = Weighted estimate (sum of the Weight field in the National Electronic Injury Surveillance System database). The numbers in the Weight field are not whole numbers
but include decimals. As a result of rounding to whole numbers when performing analyses, the sum of the estimates for a given variable might not equal the total. The
Consumer Product Safety Commission considers an estimate unstable and potentially unreliable when the estimate is <1,200.
95% CI = 95% confidence interval. Not calculated if the estimate is <1,200.
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The Consumer Product Safety Commission considers an estimate unstable and potentially unreliable when the estimate is <1,200.

Fig. 1. Annual estimated number of beach and patio (patio) umbrella-related injuries treated in United States emergency departments, National Electronic Injury Surveillance
System (NEISS).
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possibly causing injury. However, injuries also may occur when
people set up or open the umbrellas, taken down or close the
umbrellas, or fall over the umbrella.

While the majority of beach umbrella-related injuries occurred
at a place of recreation or sports, most of the patio
umbrella-related injuries occurred at home or other public

Table 2
Circumstances of beach and patio umbrella-related injuries treated at emergency departments, National Electronic Injury Surveillance System, 2000–2019.

Variable Beach umbrella Patio (table) umbrella

Est. % 95% CI Est. % 95% CI

Treatment year
2000–2003 451 8.2 – 610 8.3 –
2004–2007 679 12.3 – 1,517 20.6 788–2,247
2008–2011 1,052 19.1 – 1,359 18.4 674–2,045
2012–2015 1,801 32.7 994–2,608 1,918 26.0 1,080–2,757
2016–2019 1,529 27.7 796–2,262 1,974 26.8 1,121–2,828

Treatment month
December–February 70 1.3 – 477 6.5 –
March–May 1,577 28.6 831–2,324 2,577 34.9 1,566–3,587
June–August 3,303 59.9 2,110–4,496 3,141 42.6 1,988–4,294
September–November 562 10.2 – 1,184 16.0 –

Treatment day of week
Saturday–Monday 2,941 53.4 1,838–4,044 4,147 56.2 2,751–5,543
Tuesday–Friday 2,571 46.6 1,561–3,580 3,232 43.8 2,057–4,407

Circumstance
Wind affected umbrella 2,787 50.6 1723–3851 2,029 27.5 1,161–2,898
Setting up/opening umbrella 764 13.9 – 1,566 21.2 823–2,309
Hit by umbrella (not otherwise specified) 560 10.2 – 931 12.6 –
Umbrella fell 610 11.1 – 685 9.3 –
Taking down/closing umbrella 165 3.0 – 565 7.7 –
Other 411 7.5 – 1,336 18.1 657–2,016
Unknown 215 3.9 – 266 3.6 –

Location
Place of recreation or sports 4,960 90.0 3,375–6,545 167 2.3 –
Home 84 1.5 – 4,680 63.4 3,159–6,200
Other public property 287 5.2 – 1,003 13.6 –
School 0 0.0 – 5 0.1 –
Not recorded 181 3.3 – 1,524 20.7 792–2,255

Total 5,512 3,802–7,222 7,379 5,259–9,498

Est. = Weighted estimate (sum of the Weight field in the National Electronic Injury Surveillance System database). The numbers in the Weight field are not whole numbers
but include decimals. As a result of rounding to whole numbers when performing analyses, the sum of the estimates for a given variable might not equal the total. The
Consumer Product Safety Commission considers an estimate unstable and potentially unreliable when the estimate is <1,200.
95% CI = 95% confidence interval. Not calculated if the estimate is <1,200.

Table 3
Diagnosis and disposition of beach and patio umbrella-related injuries treated at emergency departments, National Electronic Injury Surveillance System, 2000–2019.

Variable Beach umbrella Patio (table) umbrella

Est. % 95% CI Est. % 95% CI

Diagnosis
Laceration 2427 44.0 1455–3400 2432 33.0 1458–3406
Contusions or abrasions 1092 19.8 – 1405 19.0 706–2103
Internal organ injury 912 16.6 – 1253 17.0 597–1909
Strain or sprain 402 7.3 – 644 8.7 –
Fracture 162 2.9 – 578 7.8 –
All other/unknown 517 9.4 – 1067 14.5 –

Body part
Head/neck 3318 60.2 2121–4514 3247 44.0 2068–4427
Upper extremity 898 16.3 – 2224 30.1 1304–3144
Lower extremity 854 15.5 – 1084 14.7 –
Trunk 286 5.2 – 823 11.2 –
Other/unknown 157 2.8 – 0 0.0 –

Disposition
Treated or examined and released 5240 95.1 3591–6889 7061 95.7 5010–9113
Treated and transferred to another hospital 0 0.0 – 77 1.0 –
Treated and admitted for hospitalization 205 3.7 – 225 3.0 –
Left without being seen/against medical advice 67 1.2 – 16 0.2 –

Total 5,512 3,802–7,222 7,379 5,259–9,498

Est. = Weighted estimate (sum of the Weight field in the National Electronic Injury Surveillance System database). The numbers in the Weight field are not whole numbers
but include decimals. As a result of rounding to whole numbers when performing analyses, the sum of the estimates for a given variable might not equal the total. The
Consumer Product Safety Commission considers an estimate unstable and potentially unreliable when the estimate is <1,200.
95% CI = 95% confidence interval. Not calculated if the estimate is <1,200.

M.B. Forrester Journal of Safety Research 79 (2021) 287–291

290



property. According to the NEISS coding manual (U.S. Consumer
Product Safety Commission, 2019), the beach is assigned the loca-
tion code for ‘‘Place of recreation or sports.”

This study has limitations. Cases were identified by searching
those records with Product code 1660 or the Narrative field text
including the letter grouping ‘‘umbrel” for any mention of ‘‘beach,”
‘‘sand,” ‘‘patio,” ‘‘table,” ‘‘park,” or ‘‘picnic” in the Narrative field.
Beach and patio umbrella-related injuries where this Product code
was not assigned or any of the key phrases used would not have
been included in this investigation. Although the Narrative field
might mention a beach or patio umbrella, it does not necessarily
mean that the umbrella in question was what is thought of as a
beach or patio umbrella. It may be that a patio or other umbrella
was documented as a beach umbrella and vice versa. Furthermore,
the assignment of a circumstance category to each record was
based on limited information in the Narrative field and involved
a degree of subjectivity. In addition, the selection of records for
the study and assignment of circumstance category of the injury
was performed by a single person. Moreover, the patient race
was not stated in the ED record for 30–40% of the records, thus lim-
iting the analysis of race. Also, the NEISS database only includes
those injuries treated at an ED; the NEISS database does not
include injuries not managed at an ED. Furthermore, relatively
few beach and patio umbrella-related injuries were identified. As
a result, some of the national estimates calculated in the analyses
of the variables were <1,200 and thus unstable and potentially
unreliable. Similar analyses involving beach and patio umbrella-
related injuries using other data sources with larger numbers of
cases would be useful to verify the observations made in this study.

5. Conclusions

Beach and patio umbrella-related injuries treated at EDs tended
to increase over the 20-year period of the study. The majority of
patients were age 40 years or older and most patients were female.
The injuries most often occurred during the summer and spring.
The highest proportion of beach and patio-umbrella-related inju-
ries were reported to involve the wind. While beach umbrella-
related injuries most often occurred at a place of recreation and
sports, patio umbrella-related injuries most often occurred at
home or other public property. For both types of umbrella-
related injury, the most frequently reported injury was laceration
followed by contusions or abrasions, internal organ injury, sprain
or strain, and fracture, and the body part with the highest propor-
tion of injuries was the head or neck followed by the upper
extremity, lower extremity, and trunk. The majority of patients
were treated or examined at the ED and released.

Practical applications include precautions that can be taken by
those who use beach and patio umbrellas to reduce or prevent
injuries. People should use sturdier models of beach or patio
umbrella, use a rocking motion to dig into the sand and secure

the beach umbrella with a metal anchor and screws, add weight
to the bottom of the umbrella, and tilt the umbrella into the wind
(BBC News, 2019; Wise, 2019). People should take care when
opening and closing the umbrellas. Policy-makers should educate
the public about the potential dangers of beach and patio umbrel-
las. Since injuries most often occurred during the summer and
spring, education activities should be targeted during those
seasons.
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a b s t r a c t

Introduction: Preliminary research has indicated that numerous drivers perceive their risk of traffic crash
to be less than other drivers, while perceiving their driving ability to be better. This phenomenon is
referred to as ‘comparative optimism’ (CO) and may prove to inhibit the safe adoption of driving beha-
viors and/or dilute perceptions of negative outcomes. The objective of this study was to investigate
comparative judgments regarding crash risk and driving ability, and how these judgments relate to
self-reported speeding. Method: There were 760 Queensland motorists comprised of 51.6% males and
48.2% females, aged 16–85 (M = 39.60). Participants completed either a paper or online version of a sur-
vey. Judgments of crash risk and driving ability were compared to two referents: the average same-age,
same-sex driver, and the average same-age, same-sex V8 supercar champion. Results: Drivers displayed
greater optimism when comparing their crash risk and driving ability to the average same-age, same-
sex driver (respectively, 72%, 72.4%), than when comparing to a V8 supercar champion (respectively,
60%, 32.9%). When comparing judgements of crash risk and driving ability to a similar driver, it appears
that participants in the present study are just about as optimistic about their risk of crash (i.e. 72%) as
they are optimistic about their driving ability (i.e. 74.2%).

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

For every 1% increase in a driver’s average speed, their risk of
fatal injury increases by 4% (World Health Organisation, 2020).
Despite legal and non-legal efforts to deter drivers from exceeding
speed limits, an overwhelming proportion of fatal and nonfatal
traffic injuries continue to be related to speeding. In the state of
Queensland in Australia, 20.4% of crashes in 2018 involved a speed-
ing driver or rider (Queensland Government Department of
Transport and Main Roads, 2018), while in the state of New South
Wales at least 39% of fatal traffic injuries in 2019 were found to be
related to speeding (New South Wales Government, 2019). Similar
trends have emerged internationally, with New Zealand statistics
finding that speed contributed to 27% of fatal traffic injuries in
the period between 2017 and 2019 (Ministry of Transport, 2019),
while in British Colombia, Canada, speed contributed to almost
one-third (30%) of fatal crashes in 2019 (Insurance Corporation of
British Colombia, 2019). Serious injuries due to speeding are also
a major road safety and public health concern (World Health
Organisation, 2020). For instance, in addition to the 136 drivers

fatally injured due to speeding in New South Wales in 2019, there
were 1,071 drivers seriously injured and 1,180 moderately injured
(New South Wales Government, 2019). Similarly, in New Zealand,
an additional 408 serious injuries were recorded in 2019, where
speeding was a factor, on top of 74 fatal injuries (New Zealand
Transport Agency, 2019).

Enforcement operations for speeding in Australia have been
mostly focused on increasing the perception of apprehension
through mobile and fixed speed cameras (Freeman, Kaye,
Truelove, & Davey, 2017). Such initiatives stem directly from the
principles of classical deterrence theory, which proposes that peo-
ple are less likely to offend when the punishment for that offense is
perceived to be certain, swift and severe (Akers & Sellers, 2013).
While legal measures are important for deterring speeding behav-
iors, research continues to demonstrate that classical deterrence
items explain only a small proportion (e.g., 18%) of the variance
in self-reported speeding behavior (Truelove et al., 2017). As a
result, there remains the need to consider (and identify) other per-
ceptual factors that extend beyond classic deterrence (outlined
below), which may promote or inhibit speed limit violations.

While humans’ capacity to recognize risk has long attracted
researchers’ attention (Kuo, Talley, & Huang, 2020), such academic
pursuits have rarely extended to consider how individuals esti-

https://doi.org/10.1016/j.jsr.2021.08.006
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mate and compare risk for everyday tasks. Nevertheless, seminal
research by Weinstein (1980) found that people perceive them-
selves to be more likely than others to experience positive out-
comes in the future, and less likely to experience negative
outcomes. This phenomenon is referred to as ‘optimism bias’
(Weinstein, 1980) and has since been recognized to operate in a
range of behaviors, including music piracy (Nandedkar & Midha,
2012), smoking (Prokhorov et al., 2003), injury in the work place
(Caponecchia, 2010), and also driving behaviors (Delhomme,
1991; Dalziel & Job, 1997). In regard to the latter, preliminary
research on comparative optimism within the field of road safety
has found that drivers generally perceive their driving ability to
be better than other drivers (Delhomme, 1991; Horswill, Waylen
& Tofield, 2004), and their risk of crash (Harré, Foster & O’Neil,
2005; Gosselin, Gagnon, Stinchcombe, & Joanisse, 2010) and risk
of sanctions (Delhomme, Verlhiac, & Martha, 2009) to be lower
than that of other drivers.

On one hand, optimism has been associated with a lower likeli-
hood of adopting safe behaviors on the road (Delhomme, 1994;
Wickens, Watson, Mann, & Brands, 2019). For instance, drug dri-
vers have been found to express comparative optimism in their
perceived risk of collision in comparison to other drivers (e.g., less
likely; Wickens et al., 2019). Similarly, research by White, Eiser,
and Harris (2004) found that mobile phone users perceived their
risk of crash to be less than their peers. Comparative optimism
may also influence drivers to ignore important safety messages
that can also influence their safety (Walton & McKeown, 2001).
Conversely, comparative optimism has also been related to safe
driving behaviors (Causse, Delhomme, & Kouabénan, 2005;
Causse, Kouabénan, & Delhomme, 2004; Harris & Middleton,
1994; Martha & Delhomme, 2009). For instance, Causse et al.
(2005) found that drivers justified their superiority in driving abil-
ity by the fact that they are more observant of road rules, whereas
other drivers were more likely to violate road rules and lack con-
trollability of their vehicle.

However, research is scant that has investigated comparative
judgments regarding crash risk and driving ability simultaneously,
and how these judgments correspond to speeding behaviors. One
speeding study with French motorists found that the majority of
participants considered themselves less likely to be caught for
speeding or cause a crash due to speeding, compared to other dri-
vers (Delhomme et al., 2009). However, this comparative optimism
was related to less reported offending (compared to those who
were pessimistic about their risk of crash/detection for speeding),
indicating that participants were realistic in their comparative
judgments. Martha and Delhomme (2014) conducted a similar
study, but with drivers who had lost their license and were com-
pleting a driving course to accrue driver license points. This study
similarly found that participants were realistic about their risk of
getting a ticket for speeding (relative to their reported speeding
behavior), however participants were not realistic about their
judgment of crash-risk due to speeding (Martha & Delhomme,
2014). While these findings provide some insight into how com-
parative judgments regarding crash risk correspond to speeding
behaviors, these studies were conducted only with French samples.
Research has yet to investigate comparative judgments regarding
crash risk and driving ability, and how these respond to speeding
behaviors and perceptions of future crash and ticket risk, within
an Australian sample. Further, questions remain as to how far
motorists’ comparative judgments extend. For example, if compar-
ative judgments change when comparing ability to a superior dri-
ver, such as a professional race car driver. Understanding the
degree that motorists are realistic or unrealistic about their crash
risk, is crucial for improving road safety (particularly the develop-
ment of effective tailored countermeasures such as messaging
campaigns, training). Specifically, different preventive strategies

may be necessary for cohorts of motorists who speed but are real-
istic about their crash-risk, compared to groups who speed but are
unrealistic (or diminish) their crash-risk. Given this, it is first nec-
essary to explore the existence and influence of these unrealistic
judgments (currently undertaken via examination of speeding
practices with an Australian sample).

As a result, the objective of this current research was to apply
and expand upon the work of Delhomme (1991), Delhomme
et al. (2009), and Martha and Delhomme (2014) to investigate
comparative judgments regarding crash risk and driving ability
and how these judgments relate to speeding behaviors within a
Queensland sample. Specifically, the aims of this study were to:

(a) Examine the extent of comparative optimism in regards to
crash risk and driving ability in a sample of Queensland dri-
vers, with comparisons to a same-age, same-sex driver, and
a superior driver (e.g., same-age, same-sex V8 supercar
champion);

(b) Explore the differences between those who perceive opti-
mism, pessimism, or similar judgments in their crash risk
compared to a same-age, same-sex driver, in regards to:
their self-reported speeding behavior, traffic history, and
perceptions of causing a crash or receiving a fine due to
speeding in the future and;

(c) Investigate if such beliefs significantly predict speeding
behaviors.

2. Method

2.1. Participants

The study involved 760 Queensland motorists aged 16–85
(M = 39.60, SD = 16.34). Participant demographic information is
displayed in Table 1. In regards to licensure in Australia, a motorist
progresses from a learners license, to a provisional license and then
an open license. An open license is considered the least restrictive
license, whereas a learners license is the most restrictive (e.g., no
blood alcohol permitted while driving and must be supervised;
Austroads, 2020).

2.2. Materials – survey

The survey questionnaire had five sections.

2.2.1. Demographic data and traffic history
Demographic data were collected, including age and gender.

Traffic history information was also assessed, including years since
obtaining license, weekly driving hours, license type, crash history
(yes or no), history of license suspension (yes or no) and reasons
for suspension.

2.2.2. Speeding behavior
The dependent variable in the study was speeding, which

included two measures of offending behavior, ‘‘How often do you
exceed the speed limit by more than 5 km/h on a highway?” and
‘‘How often do you exceed the speed limit by more than 5 km/h
in a town?” These items were scored on a 7-point Likert scale
(1 = never, 7 = always). These items were utilized in analyses sepa-
rately, and also as a combined measure (a = 0.782).

2.2.3. Comparative judgments of crash risk
Comparative judgments of crash risk were assessed with two

referents: a similar driver (crash risk compared to the average

same-age, same-sex driver) and a superior driver (crash-risk com-

pared to the average same-age, same-sex V8 supercar champion).
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V8 supercar races are widely-held in Australia, therefore a ‘v8
supercar champion’ was utilized as the superior driving referent.
Items were scored on a 7-point scale ranging from 1 (greater crash
risk) to 7 (lower crash risk). Lower ratings (1–3) indicated compar-
ative pessimism (CP), a score of 4 indicated similar judgments (SJ)
and higher ratings (5–7) indicated comparative optimism (CO). The
item assessing crash risk compared to the ‘same-age, same-sex dri-
ver,’ was also transformed into a categorical variable to separate
those who demonstrated CO, CP, and SJ. Between-group analyses
were conducted with the categorical variable, whereas the
numeric, continuous variable was utilized in correlational and
multivariate analyses.

2.2.4. Comparative judgments of driving ability
Similar to the items above, judgments of driving ability were

assessed with two referents: a similar driver (driving ability com-

pared to the average same-age, same-sex driver) and a superior

driver (driving ability compared to the average same-age, same-

sex V8 supercar champion). These items were adapted from items
by Martha and Delhomme (2009) and were scored on a 7-point
scale, ranging from 1 (lowest ability) to 7 (highest ability). Lower
ratings (1–3) indicated CP, a rating of 4 indicated SJ and higher rat-
ings (5–7) indicated CO.

2.2.5. Perception of future crash and detection for speeding
Two items were included to assess perceptions of receiving a

ticket for speeding in the next 3 years, and causing a traffic crash
due to speeding in the next 3 years (e.g. ‘‘how probable is it that
you will receive a speeding ticket in the next 3 years”). These items
were adapted from a paper by Martha and Delhomme (2014), and
were scored on a 5-point scale from 1 (very low probability) to 5
(very high probability).

2.3. Procedure

A number of urban (i.e., Toowoomba, Emerald, Gold Coast,
Logan and Gympie) and regional (i.e., Rocklea, Gold Coast, Logan,
Townsville and Ipswich) areas of Queensland were targeted for
participant recruitment. Recruitment was designed to make the
sample as representative as possible (i.e., urban and regional areas,
in person and online samples). Participants completed a paper-
version of the survey in public places such as shopping centers
or at the Queensland University of Technology. An online version
of the survey was also distributed via an internet platform, with
both samples reimbursed with a $20 Coles/Myer gift card for their
participation. Snowball sampling was also encouraged. Participa-
tion in the study was anonymous. Data analysis was conducted
using IBM SPSS Statistics (version 26). A Levene’s test of equality
of variance demonstrated no statistically significant difference
between scores from the online and in-person surveys in regard
to key variables such as self-reported town (p = .101), highway
speeding (p = .240), or for perceptions of crash-risk compared to
a similar driver (p = .730).

3. Results

3.1. Statistical analysis

Firstly, descriptive statistics were analyzed to examine self-
reported speeding and to assess the extent of comparative opti-
mism regarding crash risk and driving ability in the sample. No dif-
ferences were identified between those who completed the online
versus paper copy of the questionnaire. To address the second aim,
differences between those who perceived CO, CP, or SJ in their
crash risk compared to a same-age, same-sex driver were assessed
with analysis of variance tests when the dependent variable was
continuous or with chi-square tests when the dependent variable
was categorical. Finally, correlations were utilized to examine the
linear relationships between variables. A linear regression was
then conducted to evaluate significant predictors of speeding
behaviors, when considering comparative judgments of crash risk
and driving ability, traffic history, demographic variables, and per-
ceptions of receiving a ticket or causing a crash due to speeding in
the future.

3.2. Self-reported speeding and comparative judgments of crash risk
and driving ability

Analysis with the town and highway speeding items individu-
ally demonstrated that highway speeding was more common
(M = 2.77) than town speeding (M = 2.17), t(579) = 14.60, p < .001.
However, as acceptable consistency was found between these
items (a = 0.782), they were subsequently combined to make an
aggregate measure of speeding. When looking at the mean of the
combined measure of speeding, participants reported engaging in
speeding ‘‘rarely” to ‘‘sometimes” (M = 2.47, SD = 1.22). Only
14.9% (n = 113) of participants reported ‘‘never” engaging in speed-
ing, whereas 85.1% (n = 647) of participants reported engaging in
speeding at least ‘‘rarely.” Younger (16–24 years) and older drivers
(25 + years) were not found to report significantly different speed-
ing behaviors, t(247.56) = 1.31, p = .192. However, males reported
significantly greater speeding (M = 2.65, SD = 1.32) compared to
females (M = 2.28, SD = 1.08), t(743.98) = 4.27, p < .001.

Table 1 displays the proportion of participants who reported CP,
CO, or SJ in their crash risk and driving ability compared to a same-
age, same-sex driver (similar driver) and a same-age, same-sex V8
supercar driver (V8 driver), as well as the mean and standard devi-
ation of each item. Participants were more optimistic when com-

Table 1
Participant demographics.

N %

Gender
Male 392 51.60%
Female 366 48.20%
Other 2 0.30%

Weekly Driving Hours
5 or less 158 21%
6–10 253 33.60%
11–20 10 22.50%
21–30 75 10%
Over 30 97 12.90%

License type
Learners 52 6.90%
Provisional 1 41 5.40%
Provisional 2 81 10.70%
Open 575 76.20%
Other 11 1.40%

Ever lost license
Yes 149 20.20%
No 611 79.80%

Reason for License Loss
Speeding 29 19.50%
Drink Driving 57 38.20%
Loss of demerit points 22 14.80%
Other 25 16.80%
Reason not reported 16 10.70%

Involved in car crash
Yes 127 16.70%
No 626 82.40%
Not reported 7 0.90%
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paring their crash-risk to a V8 driver (60%), than their driving abil-
ity (32.9%) to a V8 driver. The greatest proportion of participants
were optimistic when comparing their crash risk to a similar driver
(72%). The greatest proportion of CP was reported when partici-
pants compared their crash risk to a V8 driver.

Comparative Judgments of Crash Risk and Driving Ability

3.3. Judgments of crash risk compared to same-age, same-sex driver
between-group analyses

As displayed in Table 2, the majority of participants CO in their
perceived risk of crash compared to a similar driver (N = 419, 72%),
while approximately one-quarter of participants (N = 142, 24%)
reported SJ in their crash risk and a small percentage (N = 20, 4%)
reported CP in their crash risk. A range of between-group tests
were conducted to determine if the comparative judgment groups
differed in regards to demographic variables, speeding behaviors,
traffic history, and perception of causing a crash or receiving a fine
due to speeding in the future.

3.3.1. Demographics and traffic history
There were no significant differences across the comparative

judgment groups in regards to age, F(2, 578) = 0.569, p = .566. Sim-
ilarly, a crosstab analysis with the comparative judgment groups
and gender revealed a non-significant chi-square, X2 (2, N = 579)
= 3.197, p = .202. A crosstab analysis with the comparative judg-
ment groups and self-reported crash in the last three years (Yes/
No) revealed a significant chi-square, X2 (2, N = 579) = 14.951,
p = .001. Specifically, 59% of those who reported a previous crash
expressed CO in their crash-risk, 35% reported SJ and 6% expressed
CP. A significant chi-square was also found in a crosstab analysis
with the comparative judgment groups and previous loss of license
(Yes/No), X2 (2, N = 564) = 6.40, p = .041. Of those who reported
ever losing their license, 71% expressed CO in their crash-risk,
21% reported SJ, and 7% reported CP.

3.3.2. Self-reported speeding
A one-way ANOVA was conducted to assess the differences

between the comparative judgment groups in regards to the com-
bined speeding item, although the groups differed in size (see
Table 2). There was a statistically significant between-group differ-
ence for speeding, F(2, 575) = 7.96, p < .001. A Tukey’s post-hoc test
revealed that only those who reported SJ reported a significantly
greater speeding compared to those who reported CO. However,
when looking at the means alone, in Table 3, the greatest speeding
mean was reported by the CP group and the lowest by the CO
group.

3.3.3. Future apprehension and crash prediction
There were significant differences across comparative judgment

groups in regards to the reported probability of receiving a speed-
ing ticket in the future [Welch’s F(2, 49.32) = 8.68, p = .001]. Specif-
ically, the SJ group (M = 2.63) reported significantly greater
probability of receiving a speeding ticket compared to CO group
(M = 2.22). Similarly, there was a significant between-group differ-

ence in regards to causing a traffic crash because of speeding in the
next 3 years [Welch’s F(2, 48.64) = 3.36, p = .043]. Means for each
comparative judgment group are displayed in Table 3. The highest
mean for both risk of detection and risk of crash was reported by
the CP group, whereas the lowest mean was reported by the CO
group.

3.4. Bivariate correlations

Correlations among measures are displayed in Table 4. The
items with the strongest positive relationship to speeding were
perceived probability of receiving a speeding ticket in the future
and perceived probability of causing a crash due to speeding in
the future. The comparative crash risk items for both the average
same-age, same-sex driver referent and the average same-age,
same-sex driver V8 supercar referent, were negatively related to
speeding. However, the relationship between the comparative
driving ability items and speeding were weak and mostly insignif-
icant. Some weak but significant relationships were identified with
the demographic variables, such that younger age, male gender,
being involved in a car crash in the previous 3 years, and reports
of license loss were found to be related to more frequent speeding.

3.5. Predictors of speeding

A linear regression analysis was conducted in order to investi-
gate the contribution of comparative judgments and perceptions
of future crash/apprehension, on the combined measure of speed-
ing. As the demographic variables and items assessing previous
crash history and loss of license were found to be significantly
related to speeding, these were also included in the regression.
However, as hours of weekly driving was not found to be signifi-
cantly correlated to speeding, it was excluded. The multivariate
linear regression analysis predicting speeding behavior was found
to be statistically significant, F(10, 539) = 24.16, p < .001, and pre-
dicted 31% of the variance in speeding behavior. As displayed in
Table 5, significant predictors of speeding behavior were: ever los-
ing license, car crash in the previous 3 years, pessimism in crash
risk compared to the average same-age/same-sex driver, greater
perceived probability of receiving a speeding ticket in the next
3 years, and finally, optimism in driving ability compared to the
average same-age/same-sex driver.

4. Discussion

The research project aimed to investigate comparative judg-
ments regarding crash risk and driving ability, and how these judg-
ments relate to self-reported speeding. The methodology extends
on previous research conducted with French motorists
(Delhomme et al., 2009; Martha & Delhomme, 2014; Martha &
Delhomme, 2009) by examining comparative judgments of crash
risk and driving abilities in a sample of Queensland drivers. Similar
to Freeman et al. (2017) who found that 94% of participants
reported breaching speed limits in general, the present study also
found a large proportion of drivers acknowledged breaching speed

Table 2
Comparative judgments of crash risk and driving ability.

N M SD CP SJ CO

n % n % n %

Crash Risk Compared to Same-Age, Same-Sex Driver 578 5.53 1.25 20 4% 142 24% 416 72%
Crash Risk Compared to a Same-Age, Same-Sex V8 Driver 575 5.00 1.85 145 25% 88 15% 342 60%
Driving Ability Compared to Same-Age, Same-Sex Driver 575 5.37 1.21 26 4.5% 122 21.2% 427 74.2%
Driving Ability Compared to Same-Age, Same-Sex V8 Driver 572 3.88 1.61 237 41.4% 147 25.7% 188 32.9%
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limits (85.1%). Also similar to previous research, highway speeding
was found to be more common than town speeding (Truelove
et al., 2017; Freeman et al., 2017).

The research had three aims. The first was to investigate how
the sample evaluated their risk of crash and driving abilities com-
pared to a similar driver, and a V8 supercar driver. Interestingly,
the proportion of participants who reported optimism, pessimism,
or similar judgments in their crash risk, was identical to findings by
Delhomme et al. (2009) (72%, 4%, and 24%, respectively). This indi-
cates some level of cross-cultural stability with the psychological
construct. It should be noted that participants in the study by
Delhomme et al. (2009) were younger drivers aged between 18
and 25 years. However, no age group differences were identified
across the comparative judgment categories in the present study,
suggesting that comparative judgments may not be influenced by
age.

When evaluating comparative judgments of driving ability, the
majority of participants demonstrated CO when comparing their
ability to a similar driver (74.2%), which reflects findings of
Delhomme (1991). When comparing judgments of crash risk and
driving ability to a similar driver, it appears that participants in
the present study are just about as optimistic about their risk of
crash (i.e., 72%), but not as optimistic regarding their driving ability
when comparing to a same-age/same-sex driver (i.e., 56.2%). A
similar finding emerged for comparisons to a same-age/same-sex
V8 supercar driver. For instance, the findings indicate that about
one-third of participants reported CO (32.9%) when comparing
their driving ability compared to a superior driver, whereas the
majority of participants (60%) reported CO in their risk of crash.
However, participants reported more optimism when comparing
crash-risk and driving ability to a similar driver, than a superior
driver. This finding suggest that the majority of motorists acknowl-
edge their limitations in driving abilities compared to a driver who
likely has more driving experience and skills than themselves,
however, they also perceive there to be less likelihood of crash in
general driving than V8 supercar driving.

The second aim was to investigate differences between those
who were optimistic, pessimistic, and had similar judgments
regarding their risk of traffic crash compared to a same-age/
same-sex driver. Similar to findings of Delhomme et al. (2009),
the CP group reported the highest mean speeding score. The CP
group also reported the highest mean for perceived likelihood of
being caught for speeding and being involved in a traffic crash
due to speeding. These findings provide support for the idea that
some drivers are realistic about (or are cognizant of) their crash-
risk (Delhomme et al., 2009) but also demonstrates that motorists
speed despite acknowledging the risks (WHO, 2020) associated
with the behavior. However, it should be noted that there was only
a small proportion of participants in the CP group, highlighting that
only a small cohort are aware of the risks associated with their
driving behavior. Nonetheless, Truelove et al. (2017) found that
those who reported greater speeding also reported less fear of
being injured as a result of speeding. Taken with the present find-
ings, this suggests that speeders acknowledge their risk of being in
a crash, but may not necessarily fear being injured. This theme

warrants further investigation in regards to understanding the eti-
ology and stability of the perception, as well as determining
whether such beliefs relate to additional human propensities such
as discounting the saliency of future punishments (Freeman et al.,
2017).

However, outcomes from the chi-square highlighted that a con-
siderable proportion of participants who reported ever losing their
license or being previously involved in a crash were those who
reported comparative optimism in their crash risk. This would sug-
gest that drivers are not realistic about their risk of crash, but
instead, despite experience with a crash or losing a license (due
to offending), numerous drivers still perceive their risk of crash
in the future to be less than other drivers. These findings are dis-
cussed in more detail with the regression outcomes below.

While the overall regression model for speeding was found to
be significant, the explained variance (e.g., 31%) is similar to
regression models focusing on deterrence (Freeman et al., 2017).
Similar to findings by Delhomme et al. (2009) and Martha and
Delhomme (2014), drivers who reported a higher level of speeding
also reported the greatest perceived likelihood of receiving a
speeding ticket in the next 3 years. This finding provides support
for the assertion that past behavior remains a good predictor of
future behavior (Forward, 2009; Conner et al., 2007). Interestingly,
whereas previous research has suggested that punishment avoid-
ance is a predictor of speeding (Truelove et al., 2017), the results
of the regression demonstrate that those who reported ever losing
their license were most likely to speed. To some extent, this sug-
gests that some drivers’ offending behaviors may be impervious
to the threat (and application) of legal sanctions. In addition, this
phenomenon may relate to the ‘‘resetting effect” (Pogarsky &
Piquero, 2003) whereby apprehension for a crime leads to the per-
ception that they are unlikely to be apprehended again in the near
future. The regression model also highlighted that those who
engage in a greater extent of speeding acknowledge their risk of
crash is greater than other drivers, and are more likely to have been
involved in a previous crash. This finding further supports the
entrenched nature of some drivers’ speeding (even in the face of
further exposure to negative outcomes) and is aligned with previ-
ous research that has demonstrated those who engage in speeding
lack fear of the physical consequences associated with the behavior
(Truelove et al., 2017). However, the final significant predictor of
speeding was perceiving greater driving ability than same-age/
same-sex drivers. Taken together, the results indicate that numer-
ous drivers are aware of elevated crash risks, but still perceive their
driving ability to be superior to others. In regard to the latter, the
proportion of the sample who believed their driving abilities were
better than professional race car drivers (e.g., 32.9%) further rein-
forces the extent of such fallacious beliefs. Further research may
find that such risks are mediated (or diminished) by a lack of
involvement in serious crashes. Alternatively, it may yet be
demonstrated that crash risk remains a hypothetical concern that
is offset by cumulative real-time self-assessments of driving
behaviors (that can be either accurate or erroneous in nature). At
the very least, there is a need to determine whether continuously
breaking road rules produces a cumulative (negative) effect upon

Table 3
Speeding behaviors and perceptions of future negative outcomes across CP, SJ and CO groups.

N Speeding Probability - Receiving a
Speeding Ticket in Future

Probability - Causing a
Crash Due to Speeding in
Future

M SD M SD M SD

CP 20 3.30 1.380 2.85 1.31 1.95 1.15
SJ 142 3.20 1.465 2.63 1.11 1.77 0.88
CO 416 2.69 1.368 2.22 1.13 1.57 0.85
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perceptions of risk or enhances a self-fulling belief that they are
‘‘able” to offend.

The limitations should be borne in mind when interpreting the
findings, including: (a) self-report data whereby people may
answer in a socially-desirable manner; (b) additional common
method variance (CMV) issues associated with utilizing a single
data source and unintended differential effects stemming from
the interpretation of anchor items (see af Wåhlberg, 2009 for a
comprehensive review of CMV effects); (c) questions also remain
regarding participants’ capacity to accurately assess their driving
behaviors and that of others (including likely disparities between
subjective and objective assessment); and (d) the sample may
not be representative of the wider driving population. In regard
to the latter, the methodology involved convenience sampling
(with snowballing) and as a result, questions remain regarding
the generalizability of the findings to the broader motoring popu-
lation. Future research may also benefit from utilizing more robust
recruitment methods, including probability sampling. While the
small amount of explained variance by the regression may dilute
the significance of the results, it is noteworthy that multiple other
factors have been found to be related to speeding, including fear of
injury and the threat of material loss (Truelove et al., 2017), having
a criminal history (Watson, Siskind, Fleiter, Watson, & Soole,
2015), and having role models who speed (Fleiter &Watson, 2005).

5. Concluding remarks

While a significant body of research has focused on compara-
tive judgments with a wide range of negative events (Sweldens,
Puntoni, Paolacci, & Vissers, 2014) and shown that rarely are peo-
ple accurately calibrated in terms of comparisons to others
(Menon, Kyung, & Agrawal, 2009), the lack of application within
the road safety domain may be considered a significant oversight.
The results of this study demonstrate that numerous drivers
engage in speeding, despite previously experiencing negative out-
comes and being aware that they are at greater risk of future neg-
ative outcomes (e.g., crashes and tickets). This study provides
preliminary findings that fear-based tactics and legal enforcement
strategies to deter speeding behavior may not influence some
cohorts (e.g., those at most risk) of the driving population. This
finding may prove important considering deterrence theory
remains the cornerstone of speed-related enforcement. Instead, it
appears that engagement in speeding is more influenced by the
perception that one’s driving abilities are superior to others. These
findings may have implications for designing effective campaigns
and training programs, as well as enhancing our theoretical under-
standing of comparative judgments and the etiology of speeding
behavior. Specifically, it appears that messages that are targeted
towards a more realistic view of one’s driving abilities and reduce
perceptions of superiority could be effective. However, questions
remain regarding: (a) what aspects of driving ability have the
greatest influence on speeding; (b) at what point one perceives
their driving ability as ‘‘superior” to others; and (c) what range
of experiences reinforce such perceptions. Future research may
benefit from implementing a more refined operationalization of
‘‘driving ability” and assess the effectiveness of different types of
media campaigns (i.e., fear based, humorous, and informative)
among individuals with differing comparative judgments of risk.
It may also be useful to investigate how comparative judgments
in crash risk and driving ability operate with other offending
behaviors. A greater understanding of how such judgments pro-
mote driving violations can only assist in developing effective
messages to reduce the ongoing contribution of traffic offences
to the road toll.Ta
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a b s t r a c t

Introduction: Safety performance functions (SPF) are employed to predict crash counts at the different
roadway elements. Several SPFs were developed for the various roadway elements based on different
classifications such as functional classification and area type. Since a more detailed classification of road-
way elements leads to more accurate crash predictions, multiple states have developed new classification
systems to classify roads based on a comprehensive classification. In Florida, the new roadway context
classification system incorporates geographic, demographic, and road characteristics information.
Method: In this study, SPFs were developed in the framework of the FDOT roadway context classification
system at three levels of modeling, context classification (CC-SPFs), area type (AT-SPFs), and statewide
(SW-SPF) levels. Crash and traffic data from 2015-2019 were obtained. Road characteristics and road
environment information have also been gathered along Florida roads for the SPF development.
Results: The developed SPFs showed that there are several variables that influence the frequency of
crashes, such as annual average daily traffic (AADT), signalized intersections and access point densities,
speed limit, and shoulder width. However, there are other variables that did not have an influence in
crash occurrence such as concrete surface and the presence of bicycle slots. CC-SPFs had the best perfor-
mance among others. Moreover, network screening to determine the most problematic road segments
has been accomplished. The results of the network screening indicated that the most problematic roads
in Florida are the suburban commercial and the urban general roads. Practical Applications: This research
provides a solid reference for decision-makers regarding crash prediction and safety improvement along
Florida roads.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The development of safety performance functions (SPFs) to pre-
dict crash counts at different roadway network elements is the first
step toward reducing the number of crashes. This is necessary to
enhance traffic safety on our roads. The safety performance func-
tion is a regression model used to predict the expected number
of crashes based on several factors. Traffic volume is the most
influential factor in crash occurrence. However, road characteris-
tics, land use, and other information often have significant effects
also. The Highway Safety Manual (HSM) defines the SPF as ‘‘an
equation used to estimate or predict the expected average crash
frequency per year at a location as a function of traffic volume
and in some cases roadway or intersection characteristics (e.g.,
number of lanes, traffic control, or type of median)” (AASHTO,

2010). The importance of SPFs development lies in three main
applications: conduct a network screening to specify the most
problematic locations, determine the effect of design changes,
and evaluate the effectiveness of implementing safety counter-
measures (Srinivasan & Bauer, 2013).

Different SPFs were developed in the HSM for different road
classes. HSM-SPFs has been developed for road segments on rural
two-lane two-way roads, rural multilane highways, urban and sub-
urban arterials, and freeways that have certain base conditions.
Therefore, HSM-SPFs do not include geometric, pavement, and
environment condition variables. HSM-SPFs of road segments con-
tain only the exposure (annual average daily traffic (AADT)) and
the segment length variables. The reason behind this is that road
segments that were considered in the HSM-SPFs development have
certain road characteristics and conditions. Therefore, base HSM-
SPFs can only be used to predict crash counts at road segments that
have conditions like the base conditions. However, HSM-SPFs must
be calibrated before employed to predict crash counts at road seg-
ments that have characteristics and conditions different from the
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base conditions by using a set of crash modification factors that
adjust the prediction based on the road characteristics (AASHTO,
2010). HSM-SPFs have perfect performance only when they are
applied at locations that have demographics and land use condi-
tions similar to conditions of the locations that they were consid-
ered for the SPFs development. As a result of this, many studies
have been conducted to transfer and localize HSM-SPFs. Mean-
while, several studies developed new SPFs by utilizing local data.
It was found in all previous studies that the transferred HSM-
SPFs and the local jurisdiction SPFs were having better crash pre-
diction performance than the HSM-SPFs.

Recently, several states tend to develop new systems to classify
roads based on different characteristics. The Florida Department of
Transportation (FDOT) has developed a new system to classify
Florida roads into eight categories based on geographic, demo-
graphic, and road characteristics information (FDOT, 2020a). In this
study, new SPFs for road segments including all influence variables
were developed in the framework of the FDOT context classifica-
tion system which is not used before for the SPF development for
road segments. Moreover, network screening has been accom-
plished in this study to specify the most problematic road seg-
ments in Florida.

2. Literature review

The development of SPFs and the transferability of HSM-SPFs
processes have been the focus of attention during the last years
and they were amply covered and discussed in many previous
studies. Several studies have been performed to transfer the

HSM-SPFs into different local jurisdictions, states, and even coun-
tries. Mehta and Lou (2013) conducted a study to calibrate and
transfer HSM-SPFs for two road types in Alabama: rural two-lane
two-way and four-lane divided roads. They found that the cali-
brated HSM-SPFs have well crash prediction performance. A simi-
lar conclusion was drawn by Moraldi et al. (2020) after performing
a study to calibrate the HSM-SPF for rural two-lane two-way roads
in Germany.

In contrast, many other studies indicated that HSM-SPFs often
have low accuracy prediction performance in local jurisdictions.
AlKaaf and Abdel-Aty (2015) conducted a study to calibrate and
transfer the HSM-SPF for urban four-lane divided roads in Riyadh,
Saudi Arabia. In this study, local crash modification factors (CMF)
were developed for the calibration process. The results indicated
that employing the local CMFs instead of HSM-CMF values gives
better prediction performance. A study by Sun et al. (2011) was
performed to calibrate the HSM-SPF for rural multilane roads in
Louisiana. The results indicated that the HSM-SPF underpredicts
the crash frequency. Likewise, Cafiso et al. (2012) found that
HSM-SPF underpredicts fatal and severe injury crash frequency
on Italy divided multilane roads by 26%. Brimley et al. (2012) per-
formed a study to calibrate and transfer the HSM-SPF of rural two-
lane two-way roads in Utah. They found that the HSM-SPF under-
predicts the crash frequency by 16%. On the other hand, Srinivasan
and Carter (2011) conducted a study to calibrate the HSM-SPF for
North Carolina rural divided multilane roads. They found that the
HSM-SPF slightly overpredicts (less than 5%) the crash frequency.
A similar conclusion has been drawn by Sun et al. (2014) regarding
using the HSM-SPF to predict the total crash frequency on Missouri
rural divided multilane roads. While Xie et al. (2011) concluded
that the HSM-SPF significantly overpredicts the total crash fre-
quency at Oregon rural divided multilane roads by 22%.

Novel techniques have been proposed by some researchers for
the HSM-SPFs calibration process instead of using the HSM proce-
dure. Srinivasan et al. (2016) proposed using a calibration function
instead of calibration factors for the HSM-SPFs calibration process.
Farid et al. (2018) employed the K-Nearest-Neighbors regression
for the HSM-SPFs calibration process. Both techniques had better
performance than the HSM procedure. However, the K-Nearest-
Neighbors technique outperformed the calibration function
technique.

Meanwhile, several studies have been conducted to develop
specific SPFs by utilizing local crash and road environment data.
The negative binomial regression was mainly applied for the devel-
opment of SPFs process in these studies. A study was conducted by
Kim et al. (2015) to develop specific SPFs for Alabama urban and
suburban arterials by using three-year crash data. Li et al. (2017)
performed a study to develop SPFs for rural two-lane roads in
Pennsylvania by using eight-year crash data. The authors adopted

Fig. 1. FDOT context classes (FDOT, 2018).

Fig. 2. Percentages of road context classes in Florida.
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three modeling levels for the SFP development and analysis: state-
wide, engineering district, and county levels. The results indicated
that district and county-SPFs have better crash prediction perfor-
mance than statewide-SPFs. Aziz and Dissanayake (2019) used
three-year crash data to develop specific SPFs for rural four-lane
divided roads in Kansas. The results indicated that Kansas SPFs out-
perform HSM-SPFs. Other studies have been conducted outside the
United States. Garach et al. (2016) conducted a study to develop

SPFs for rural two-lane roads in Spain. Five-year crash data along
with several explanatory variables were gathered for this purpose.
La Torre et al. (2019) developed jurisdiction SPFs for freeways in
Italy. Five-year crash data were obtained in this study. They fol-
lowed the HSM procedure by production based SPFs along with a
set of CMFs for the SPFs calibration. The results indicated that
the new developed SPFs have well crash prediction performance
at Italian freeways.

Fig. 3. The FDOT context classifications map.

Fig. 4. Histogram of annual crash frequency and annual crash rate by road context class for fatal-and-injury, property damage only (PDO), and total crashes.
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3. FDOT context classification system

The context classification system was adopted by the FDOT in
2017. Based on this system, roads are classified into eight classes.
One of these classes is for natural roads, two classes are for rural
roads, and two classes are for suburban roads, while there are three
classes for urban streets. Specifically, these classes are C1: natural,
C2: rural, C2T: rural town, C3R: suburban residential, C3C: subur-
ban commercial, C4: urban general, C5: urban center, and C6:
urban core. Fig. 1 shows these road classes.

Three classification criterions are adopted in this system: dis-
tinguishing characteristics, primary measures, and secondary mea-
sures. At the first level (distinguishing characteristics), roads are
classified based on some diagnostics such as the nature of the area
and road connectivity. The second level of classification (primary
measures) is used in the absence of distinguishing characteristics.
Different road features are used in this level such as land use,
building height and placement, location of off-street parking, and
roadway connectivity. However, secondary measures (the third
level) such as allowed residential and office/retail density and pop-
ulation and employment density could be utilized sometimes for
more accurate classification. For example, the C3C roads serve dis-
connected commercial areas (retail, office, or industrial). The block
length is more than 660 ft., and the intersection density is less than
100 intersections per square mile in these areas. Wide parking lots
are provided to serve separated buildings with 1 to 4 floors. Fig. 2
shows a pie chart for the proportion of each context class.

Nature roads (C1 class) represent 7.5 % of Florida roads. Most
rural roads were classified as C2 (37.8%), while only 1.5 % of roads
were classified as C2T roads. More than 37% of roads are suburban
roads and they were classified as C3C and C3R with 21.2% and
16.5% percentages, respectively. The majority of urban roads were
classified as C4 roads. Only 6.5% of urban roads (1% of Florida
roads) were classified as C5 and C6 roads. Fig. 3 shows the FDOT
context classification map. The length (in mile) of C1, C2, C2T,
C3C, C3R, C4, C5, and C6 roads are 961, 4870, 197, 2736, 2128,
1861, 93, and 36, respectively. It is notable that C2 roads are wide-
spread along the state. C3C roads exist in major cities such as Tal-
lahassee, Jacksonville, Orlando, Tampa, and Miami. C3R and C4
roads are mainly concentrated on the southeast coastal cities such
as Fort Pierce, Port St. Lucie, West Palm Beach, and Miami.

4. Data preparation and description

High traffic volume increases the interaction and conflicts
between vehicles, which in turn increases the possibility of crash

occurrence. Therefore, it is the most significant variable in crash
prediction (Saha et al., 2016). So traffic volume must be accurately
determined. The base map was first developed based on the map of
the context classification (CC) and the average annual daily traffic
information. Roadway segments in the context classification map
were split according to average AADT value of 2015–2019 years.
Consecutive road segments that have the same road identification
(RID), CC, and AADT information were merged in pursuit of getting
long segments with accurate AADT information.

Florida crashes from 2015 to 2019 were utilized in this study.
Since most roads are classified as C2, C3C, C3R, and C4 roads, most
crashes occurred on these roads. However, although more than a
third of roads were classified as C2 roads, they were subjected to
fewer crashes than C3C, C3R, and C4 roads. It was found that most
of the crashes happened on C3C and C4 roads. Urban roads (i.e., C4,
C5, and C6 roads) had the highest crash rates per million vehicle
miles followed by suburban roads (C3C and C3R roads). Nature
and rural roads (C1, C2, and C2T roads) had the lowest crash rates.
Fig. 4 shows the annual crash frequency and crash rates for differ-
ent crash severity at the eight road classes, while Fig. 5 shows the
annual crash frequency at the eight road classes for every crash
type. It was found that rear-end crash type was the most frequent
crash type at Florida roads, followed by sideswipe and left-turn
crashes.

The road characteristics and environment information was
identified based on the FDOT data (FDOT, 2020b). In order to avoid
very short road segments, road and environment information was
determined for every roadway segment by calculating the
weighted average or the weighted majority values within the seg-
ment. Different road characteristics were collected such as signal-
ized intersections and access points density (per mile), number of
lanes, posted speed limit (in mph), pavement condition (a numeric
scale to describe pavement condition, it takes a value from 1 to 5),
surface type (asphalt, concrete, or other), surface width (in ft.),
median type (paved, raised, vegetation, or other), median width
(in ft.), and shoulder type (paved, lawn, curb and gutter, or other),
and shoulder width (in ft.). In addition, several pedestrian and
bicyclist facility characteristics were collected such as sidewalk
width and spacing (in ft.) and the presence of bicycle lane, bicycle
slot (a rack for bicycle parking), and shared path.

Table 1 shows descriptive statistics of the prepared data in this
study. It is noteworthy that C1 and C2 roads have longer segments
than other classes with average segment lengths 2.23 and 2.81
mile, respectively. Average signalized intersection density on C5
and C6 roads are the highest with 4.91 and 5.73 intersections per
mile, respectively, because these roads are located in urban areas.

Fig. 5. Histogram of annual crash frequency by crash type and road context class. KABC: fatal-and-injury crashes, O: property damage only (PDO) crashes, KABCO: total
crashes.
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Table 1
Descriptive statistics of crash data and road characteristics and environment information.

Variable Mean S.D. Min. Max. Mean S.D. Min. Max. Mean S.D. Min. Max. Mean S.D. Min. Max.

C1 C2 C2T C3C

T (total annual crash frequency) 6.9 13.5 0 117.6 9.9 13.94 0 199.2 8.34 11.32 0 109.6 44.2 57.21 0 637.2
FI (fatal-and-injury annual crash frequency) 2.16 3.61 0 32.8 3.61 4.72 0 64.6 2.26 3.22 0 31.8 12.16 15.61 0 148.6
PDO (property damage only annual crash frequency) 4.74 10.22 0 100.6 6.28 9.48 0 134.6 6.08 8.34 0 77.8 32.04 42.53 0 499.2
AADT (annual average daily traffic) 11,177 11,472 88 86,800 9,193 8,164 14 57,983 10,315 6,309 620 45,100 25,970 16,317 270 108,500
DVMT (daily vehicle miles traveled) 18,979 33,954 49 382,281 21,006 24,363 16 277,045 6,108 8,767 190 94,221 24,299 29,021 90 330,057
L (segment length in mile) 2.23 3 0.1 25.55 2.81 2.76 0.1 23.44 0.53 0.53 0.1 5 0.87 0.72 0.1 6.62
SID (signalized intersections density) 0.28 1.02 0 8.55 0.17 0.64 0 10.42 1.43 2.49 0 20 1.71 2.07 0 19.42
APD (access points density) 2.9 4.64 0 40.32 3.94 3.83 0 60.87 19.26 10.23 0 61.35 9.26 7.05 0 80.81
NL (total number of lanes) 2.73 1.12 1 7 2.64 1.03 1 6 2.64 0.95 2 6 4.03 1.5 1 9
SL (speed limit in mph) 53.6 7.85 25 65 55.17 6.91 25 70 37.62 6.62 25 65 44.84 6.43 15 65
PC (pavement condition) 3.71 0.58 2 5 3.75 0.56 1 5 3.76 0.5 2.5 5 3.79 0.6 1.95 5
SW (surface width in ft.) 46.06 8.17 22 94.12 45.26 6.79 23.18 92.78 45.04 13.02 20 96 51.51 14.43 20 105.78
MW (median width in ft.) 33.77 30.32 7.77 245.01 26.4 17.6 4 140 20.54 29.35 9 220 25.04 18.11 4.87 417.85
SHW (shoulder width in ft.) 7.13 2.04 2 12.25 6.9 1.77 2 12 4.72 2.17 1.5 17 4.97 2.6 1.53 31.05
SWW (sidewalk width in ft.) 6.81 2.53 4 21.9 5.87 2.89 4 54 5.88 2.67 4 31.95 5.7 1.58 3.41 40.99
SWS (sidewalk spacing in ft.) 14.24 17.37 0 80.8 16.22 17.51 0 100 7.04 6.91 0 56.1 10.3 13.27 0 103.88
PBL (presence of bike lane: 1 = yes, 0 = no) 0.26 0.44 0 1 0.23 0.42 0 1 0.22 0.41 0 1 0.41 0.49 0 1
PBS (presence of bike slot: 1 = yes, 0 = no) 0.18 0.39 0 1 0.22 0.41 0 1 0.1 0.31 0 1 0.37 0.48 0 1
PSP (presence of shared path: 1 = yes, 0 = no) 0.06 0.25 0 1 0.05 0.22 0 1 0.05 0.22 0 1 0.05 0.21 0 1

Variable Mean S.D. Min. Max. Mean S.D. Min. Max. Mean S.D. Min. Max. Mean S.D. Min. Max.

C3R C4 C5 C6

T (total annual crash frequency) 20 28.47 0 312.2 56.7 73.04 0 854 51.14 50.28 0.8 321.6 52.86 47.97 2.2 263.8
FI (fatal-and-injury annual crash frequency) 5.78 8.14 0 110.4 12.65 14.65 0 133.2 10.77 9.74 0 51 9.02 7.87 0.2 41
PDO (property damage only annual crash frequency) 14.22 20.87 0 214.4 44.04 59.44 0 769.4 40.37 41.67 0.8 270.6 43.85 41.15 1.8 222.8
AADT (annual average daily traffic) 16,811 13,525 128 82,200 24,817 15,641 350 94,000 25,121 15,027 2,020 78,400 18,494 12,662 1,560 64,900
DVMT (daily vehicle miles traveled) 15,742 17,843 34 188,078 17,630 17,851 70 157,642 13,209 14,355 220 110,890 7,707 9,153 168 70,175
L (segment length in mile) 0.99 0.81 0.1 9.59 0.68 0.44 0.1 3.21 0.5 0.35 0.1 2.21 0.41 0.31 0.11 1.74
SID (signalized intersections density) 0.55 1.22 0 12.2 2.08 2.48 0 19.05 4.91 4.86 0 29.41 5.73 6.41 0 26.48
APD (access points density) 9.82 6.75 0 57.14 14.69 8.9 0 66.27 14.4 11 0 59.41 15.42 10.12 0 50.51
NL (total number of lanes) 3.18 1.43 1 8 3.95 1.53 1 8 3.83 1.33 2 8 3.44 1.49 1 8
SL (speed limit in mph) 44.6 7.95 25 65 38.33 6.03 15 55 34.31 5.33 15 45 31.88 3.79 25 45
PC (pavement condition) 3.62 0.53 1 5 3.64 0.57 1 5 3.71 0.58 2.5 5 3.5 0.43 2.5 5
SW (surface width in ft.) 44.99 12.79 20.56 96 51.44 14.41 19.93 96 53.85 14.63 21.26 100.6 57.39 17.03 20 96
MW (median width in ft.) 21.56 14.89 6 272.08 18.8 9.04 2 160 18.46 10.52 3 75 24.47 25.52 6 109
SHW (shoulder width in ft.) 6.07 2.95 1.5 12.81 4.34 2.77 1 20.79 3.75 2.29 1.36 12 4.05 2.35 1.58 12.37
SWW (sidewalk width in ft.) 5.93 1.94 2 42.59 5.81 1.12 0 18 6.39 1.45 3.86 14 8.59 3.24 4 25
SWS (sidewalk spacing in ft.) 12.49 12.99 0 94.97 6.5 8.45 0 92.81 4.32 4.5 0 20.77 2.85 3 0 10.5
PBL (presence of bike lane: 1=yes, 0=no) 0.32 0.47 0 1 0.34 0.47 0 1 0.29 0.46 0 1 0.3 0.46 0 1
PBS (presence of bike slot: 1=yes, 0=no) 0.24 0.43 0 1 0.23 0.42 0 1 0.12 0.32 0 1 0.06 0.24 0 1
PSP (presence of shared path: 1=yes, 0=no) 0.06 0.24 0 1 0.02 0.15 0 1 0.04 0.21 0 1 0 0 0 0

S.D.: standard deviation, Min.: minimum, Max.: maximum.
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C2T and C6 roads have higher average access point densities with
19.26 and 15.42 access points per mile, respectively. The average
pavement condition for all road classes is satisfactory (around
3.5). C1 roads have the widest medians and shoulders, while C6
roads have the widest sidewalks.

Fig. 6 shows histograms of surface, median, and shoulder types.
The majority of Florida roads have an asphalt surface. Raised med-
ian type is more common than paved and vegetation median types
on C3C and C4 roads. Raised and paved median types are more
common than vegetation median type and they were approxi-
mately used equally on C3R, C5, and C6 roads. Rural roads (C2
and C2T roads) mostly have paved median type, while vegetation
median type is most popular on natural roads (C1 roads). Shoulders
are mostly paved on Florida roads, except on urban roads (C4, C5,
and C6 roads) where curb and gutter shoulders are the most com-
mon shoulder types. Lawn shoulders are widely used on C3R roads.

5. Research methodology

5.1. Safety performance functions

Different distributions and models were used for the SPFs
development. However, the negative binomial regression is com-
monly employed for SPFs development (Abdel-Aty & Radwan,
2000; Fitzpatrick et al., 2008; Manuel et al., 2014; Mohammadi
et al., 2014; Al-Omari et al., 2020) since it is recommended by
the HSM (AASHTO, 2010) due to its ability to handle the dispersion
in the crash data. Therefore, the generalized linear model with neg-
ative binomial distribution was used in this study. To ensure that
the negative binomial distribution represents crash counts distri-
bution, the mean and variance of crash counts of every road class

were calculated. It was found that the variance is much larger than
the mean for all road classes. This means that the crash data are
over dispersed, and the negative binomial distribution is appropri-
ate for the SPFs development. Simple (only the exposure and the
offset variables were considered) and multi-variable (all variables
were used) SPFs of annual crash frequency were developed at three
modeling levels: context classification (CC-SPFs), area type (AT-
SPFs), and statewide (SW-SPF) levels. Two exposure variables were
used in this study; the annual average daily traffic (AADT) as the
traditional approach and the daily vehicle miles traveled (DVMT)
since it accounts for the segment length and it was used in many
studies (Li et al., 2013; Dong et al., 2015; Al-Omari et al., 2020;
Abdelrahman et al., 2020). Therefore, two simple SPFs and two
multi-variable SPFs (referred to here as full SPFs) were developed
for the three modeling levels. Equations (1) and (2) are the
employed equations to develop SPFs by using AADT and DVMT
exposure variables, respectively. The high correlation between
variables was handled before the full SPFs development. Next, full
SPFs were developed by using all not highly correlated variables.
However, only significant variables with at least a 95% confidence
level were kept in the developed models. In pursuit of comparing
the prediction performance of CC-SPFs, AT-SPFs, and SW-SPF; sim-
ple and full SPFs; and AADT-SPFs and DVMT-SPFs, two types of per-
formance measures were calculated (mean absolute and root mean
square errors). Equations (3) and (4) show how to calculate these
error measurements.

Np ¼ eðaþblnðAADTÞþciXiþln Lð ÞÞ ð1Þ

Np ¼ eðaþblnðDVMTÞþciXiÞ ð2Þ
where,

Fig. 6. Histogram of (A) surface, (B) median, and (C) shoulder types by road context class.
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Np: predicted annual crash frequency.
a: the intercept’s coefficient.
b, ci: estimated coefficients.
AADT: average annual daily traffic.
DVMT: daily vehicle miles traveled.
Xi: a set of independent variables.
L: segment length (mile).

MAE ¼ 1
n

Xn
i¼1

jNp � Noj ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðNp � NoÞ2
vuut ð4Þ

where,

MAE: mean absolute error.
RMSE: root mean square error
NP: predicted value.
NO: observed value.
n: number of data points.

5.2. Network screening

One of the most important applications of SPFs is the network
screening process. The network screening is a part of the roadway
safety management process. In this process, the most problematic
roadway segments are identified by descending ranking them
based on the potential for safety improvement (PSI) value, which
it is referred to as ‘‘Excess Expected Average Crash Frequency” in
the HSM. The PSI is a measure for the long-term crash frequency
reduction. The purpose of the network screening process is to
determine the priority of implementing countermeasures to
reduce the number and severity of crashes along the roadway net-
work. Several procedures are explained in the HSM to perform net-
work screening. However, the ‘‘Excess Expected Average Crash
Frequency with EB Adjustments” method is the most powerful pro-
cedure since it accounts for regression to the mean and it does not
have any limitations. Therefore, it was employed in this study to
determine roads that have the highest PSI values. Simple DVMT
CC-SPFs for fatal-and-injury (FI) and property damage only (PDO)
crashes were developed for the network screening process. SPFs
for FI and PDO crashes were used to determine the equivalent
property damage only PSI (EPDO-PSI) in order to account for the

Fig. 7. Correlation matrix of the considered variables.

M.M.A. Al-Omari, M. Abdel-Atyand Q. Cai Journal of Safety Research 79 (2021) 1–13

7



crash severity during the comparison among roadway segments.
Equations 5–10 were used to calculate the EPDO-PSI (AASHTO,
2010).

Cn ¼ Np;n

Np;1
ð5Þ

w ¼ 1

1þ k �PN
n¼1Np;n

ð6Þ

Ne;1 ¼ w � Np;1þ ð1�wÞ �
PN

n¼1No;nPN
n¼1Cn

 !
ð7Þ

Ne,n = Ne,1 * Cn (8)

PSI ¼ 1
n

Xn
i¼1

Ne;n � Np;n ð9Þ

EPDO� PSI ¼ PSIPDOþ PSIFI � CCFI

CCPDO
ð10Þ

where,

Cn: annual correction factor for year n.
Np,n: predicted crash frequency for year n (from the SPF).
Np,1: predicted crash frequency for year 1 in the analysis period
(from the SPF).
w: Empirical Bayes weight.
k: overdispersion parameter of the SPF.

Ne,1: EB-adjusted estimated crash frequency for year 1 in the
analysis period.
No,n: observed crash frequency for year n.
Ne,n: EB-adjusted estimated crash frequency for year n.
PSI: excess expected crashes.
EPDO-PSI: excess expected equivalent property damage only
crashes.
PSIFI: excess expected fatal-and-injury crashes.
PSIPDO: excess expected property damage only crashes.
CCFI: crash cost for fatal-and-injury crash.
CCPDO: crash cost for property damage only crash.

6. Results

6.1. Safety performance functions

In pursuit of developing accurate SPFs, variables that have a
high correlation with other variables were identified and excluded
(if their correlation factor is greater than 0.5) from the SPFs devel-
opment process. This procedure was conducted before modeling
every SPF in this study. For example, Fig. 7 shows the correlation
matrix for all variables that were used in modeling the statewide
AADT-SPF. It was found that the total number of lanes, surface
width, concrete surface, raised median, lawn shoulder, curb/gutter
shoulder, sidewalk spacing, and presence of bicycle slot variables
have high correlation factors with other variables (such as ln
(AADT), asphalt surface, paved median, shoulder width, and pres-

Table 2
Simple and full AADT-SPFs for context classification modeling level.

Variable Estimated Parameter (Standard Error)

C1 C2 C2T C3C C3R C4 C5 C6

Simple SPFs
Intercept �8.06 (0.5563) �7.21 (0.2064) �5.28 (0.7144) �4.93 (0.2073) �5.23 (0.2246) �3.73 (0.1890) 0.89 (0.8370) �1.15 (1.0005)
Ln (AADT) 1.07 (0.0602) 0.97 (0.0230) 0.88 (0.0777) 0.89 (0.0207) 0.87 (0.0236) 0.81 (0.0190) 0.39 (0.0838) 0.63 (0.1038)
Dispersion 1.37 (0.1078) 0.48 (0.0218) 0.55 (0.0522) 0.68 (0.0179) 0.79 (0.0264) 0.54 (0.0153) 0.63 (0.0649) 0.41 (0.0659)
Observations 418 1,703 366 3,065 2,080 2,590 180 82
LLV 4,893 29,683 4859 451,163 107,609 522,609 30,220 14,271
MAE 8.9 6.5 6.1 28.8 14.2 30.6 33.1 26.9
RMSE 17.6 11.9 11.7 50.4 23.3 53.4 48.5 50.8
Full SPFs
Intercept �4.95 (1.3312) �4.68 (0.2444) �6.23 (0.7098) �4.63 (0.2165) �4.63 (0.3769) �3.31 (0.2262) 0.32 (0.9692) �0.68 (0.9856)
Ln (AADT) 1.03 (0.1073) 0.80 (0.0222) 1.05 (0.0815) 0.94 (0.0207) 0.90 (0.0379) 0.72 (0.0223) 0.51 (0.0911) 0.45 (0.0968)
SID 0.30 (0.0618) 0.48 (0.0303) 0.14 (0.0175) 0.17 (0.0070) 0.23 (0.0179) 0.14 (0.0060) 0.10 (0.0137) 0.04 (0.0111)
APD 0.08 (0.0180) 0.06 (0.0056) 0.02 (0.0048) 0.03 (0.0021) 0.03 (0.0046) 0.01 (0.0016) 0.03 (0.0058) -
NL - - �0.13 (0.0483) - - - - -
SL �0.05 (0.0173) �0.03 (0.0029) �0.02 (0.0073) �0.03 (0.0026) �0.03 (0.0041) - �0.04 (0.0117) -
PC - - - - - - - 0.38 (0.1625)
AS �1.16 (0.5324) - - - - - - -
MW - - - - 0.005 (0.0018) - - -
PM - - �0.25 (0.0820) - - - - -
RM - 0.19 (0.0616) - - 0.22 (0.0550) 0.13 (0.0317) - -
VM - - - �0.09 (0.0383) - - - -
SHW - - - �0.02 (0.0058) - 0.01 (0.0064) �0.08 (0.0304) �0.09 (0.0280)
PSH - - - - �0.12 (0.0557) �0.16 (0.0343) - -
SWW - - - - �0.04 (0.0136) - - -
SWS 0.01 (0.0060) - - - - �0.01 (0.0017) - -
PBL - - - - �0.20 (0.0535) �0.08 (0.0306) - -
PSP - - - - - �0.29 (0.0954) - -
Dispersion 0.67 (0.1290) 0.30 (0.0154) 0.35 (0.0392) 0.43 (0.0126) 0.49 (0.0253) 0.41 (0.0123) 0.42 (0.0482) 0.31 (0.0522)
Observations 94 1,595 366 2,866 971 2,463 159 82
LLV 1,557 29,398 4,916 438,891 75,322 509,927 28,018 14,282
MAE 6.5 5.0 4.4 20.4 14.6 26.5 28.0 23.7
RMSE 13.4 11.0 7.7 35.0 24.0 46.0 40.9 46.6

AADT: annual average daily traffic, SID: signalized intersections density per mile, APD: access points density per mile, NL: total number of lanes, SL: speed limit, PC: pavement
condition, AS: asphalt surface, MW: median width, PM: paved median, RM: raised median, VM: vegetation median, SHW: shoulder width, PSH: paved shoulder, SWW:
sidewalk width, SWS: sidewalk spacing, PBL: presence of bike lane, PSP: presence of shared path, LLV: log-likelihood value, MAE: mean absolute error, RMSE: root mean
square error.
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ence of bicycle lane). Therefore, they were excluded from the mod-
eling process of the statewide AADT-SPFs.

Tables 2–5 show the developed SPFs for the different levels of
modeling. It was found that AADT, signalized intersections density,
access points density, pavement condition, median width, and
raised median variables have negative effects on traffic safety.
These factors have positive coefficients in AADT CC-SPFs. On the
other hand, number of lanes, posted speed limit, asphalt surface,
paved median, vegetation median, paved shoulder, sidewalk width,
presence of bicycle lane, and presence of shared path variables
have negative coefficients in AADT CC-SPFs. This means that these
factors have a positive effect on traffic safety.

Shoulder width and sidewalk spacing factors have a double
safety effect on traffic safety (a positive effect at some road classes,
while a negative effect on others). Wide shoulders have positive
effect on traffic safety at C3C, C5 and C6 roads. However, it has a
negative effect on C4 roads. Large sidewalk spacing has a negative
effect on traffic safety at C1 roads. However, it has a positive effect
on C4 roads. Similar effects for the aforementioned factors were
noticed in DVMT-SPFs. However, there are some differences.

The results indicated that there is no significant difference
between the performance of simple and full SPFs. It was noticed
that simple and full DVMT-SPFs have better performance than
AADT-SPFs for most road classes. Fig. 8 shows MAE values of sim-
ple SPFs at the different modeling levels. It was found that the CC-
SPFs outperform AT-SPFs and SW-SPF for most road classes and if it
is not the case, their error values are not significantly higher than
AT-SPFs and SW-SPF error values.

6.2. Network screening

Road segments were ranked in descending order based on the
EPDO-PSI value. Table 6 lists and Fig. 9 shows the top twenty road
segments that have the highest EPDO-PSI values. These locations
have the highest potential for safety improvement by implement-
ing safety countermeasures to reduce the number and severity of
crashes along them. It was found that the most problematic road
segments are C3C and C4 roads and they are located in the Miami
area.

7. Discussion of results

The importance of the development of SPFs lies in the identifi-
cation of factors that are associated with crash occurrence at every
road class and how these factors affect traffic safety. It was found
that there are some factors have negative effects, while others have
positive effects on traffic safety represented by increasing/reducing
the crash frequency. The number of crashes is expected to increase
by increasing traffic volumes, signalized intersections, and access
point densities because of the large number of traffic conflicts
under heavy traffic volumes (especially at signalized intersections
and access points where conflicts are concentrated). Prefect pave-
ment condition encourage drivers to drive with a high speed which
increases the probability of crash occurrence. The existence of a
raised median could cause a rollover of vehicles when a crash hap-
pens, while an unraised median is not considered as an obstacle for

Table 3
Simple and full AADT-SPFs for area type and statewide modeling levels.

Variable Estimated Parameter (Standard Error)

Natural Rural Suburban Urban Statewide

Simple SPFs
Intercept �8.06 (0.5563) �7.51 (0.2254) �5.79 (0.1499) �3.15 (0.1868) �7.01 (0.1110)
Ln (AADT) 1.07 (0.0602) 1.03 (0.0250) 0.96 (0.0152) 0.76 (0.0188) 1.10 (0.0115)
Dispersion 1.37 (0.1078) 0.65 (0.0249) 0.76 (0.0157) 0.58 (0.0154) 0.99 (0.0136)
Observations 418 2,069 5,145 2,852 10,484
LLV 4,893 34,294 558,612 567,005 1,162,882
MAE C1: 8.9 C2: 8.8,

C2T: 5.4
C3C: 26.1,
C3R: 18.9

C4: 31.6, C5: 28.4,
C6: 31.3

C1: 37.5, C2: 37.0, C2T: 8.2, C3C: 31.6,
C3R: 22.8, C4: 28.5, C5: 29.3, C6: 39.1

RMSE C1: 17.6 C2: 15.3,
C2T: 9.8

C3C: 46.7,
C3R: 30.3

C4: 54.2, C5: 43.9,
C6: 46.7

C1: 82.3, C2: 61.1, C2T: 17.6, C3C: 58.1,
C3R: 38.2, C4: 54.3, C5: 45.1 , C6: 54.1

Full SPFs
Intercept �4.95 (1.3312) �6.19 (0.3666) �4.76 (0.2104) �3.47 (0.2190) �5.40 (0.1222)
Ln (AADT) 1.03 (0.1073) 0.91 (0.0295) 0.95 (0.0194) 0.85 (0.0251) 1.07 (0.0104)
SID 0.30 (0.0618) 0.31 (0.0196) 0.19 (0.0067) 0.11 (0.0052) 0.17 (0.0041)
APD 0.08 (0.0180) 0.05 (0.0031) 0.03 (0.0020) 0.01 (0.0016) 0.02 (0.0012)
SL �0.05 (0.0173) - �0.03 (0.0022) �0.03 (0.0032) �0.04 (0.0012)
AS �1.16 (0.5324) �0.69 (0.2821) - - -
MW - �0.004 (0.0010) 0.002 (0.0009) - -
PM - - �0.09 (0.0309) �0.21 (0.0323) �0.12 (0.0188)
VM - - �0.11 (0.0383) - �0.15 (0.0270)
SHW - - �0.02 (0.0051) - �0.02 (0.0038)
PSH - - �0.07 (0.0257) �0.16 (0.0345) �0.07 (0.0176)
SWS 0.01 (0.0060) - - �0.01 (0.0017) -
PBL - - �0.06 (0.0245) - -
PSP - - - �0.20 (0.0987) -
Dispersion 0.67 (0.1290) 0.40 (0.0195) 0.45 (0.0114) 0.40 (0.0129) 0.48 (0.0083)
Observations 94 1,408 3,888 2,139 8,906
LLV 1,557 32,565 513,668 498,531 1,065,241
MAE C1: 6.5 C2: 6.7,

C2T: 6.2
C3C: 20.7,
C3R: 14.6

C4: 29.1, C5: 35.5,
C6: 54.6

C1: 8.6, C2: 6.1, C2T: 8.4, C3C: 19.6,
C3R: 13.0, C4: 30.6, C5: 51.0, C6: >100

RMSE C1: 13.4 C2: 11.8,
C2T: 11.4

C3C: 36.1,
C3R: 22.8

C4: 51.4, C5: 57.8,
C6: >100

C1: 15.2, C2: 10.2, C2T: 13.5, C3C: 34.8,
C3R: 21.6, C4: 54.4, C5: 91.5, C6: >100

AADT: annual average daily traffic, SID: signalized intersections density per mile, APD: access points density per mile, SL: speed limit, AS: asphalt surface, MW: median width,
PM: paved median, VM: vegetation median, SHW: shoulder width, PSH: paved shoulder, SWS: sidewalk spacing, PBL: presence of bike lane, PSP: presence of shared path, LLV:
log-likelihood value, MAE: mean absolute error, RMSE: root mean square error.
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vehicles. On the other hand, the number of crashes is expected to
decrease by providing some conditions. Roads with a high number
of lanes provide smooth movement without congestion, therefore
reducing conflicts between vehicles. High posted speed limits are
only placed on roads with a low intersection and access point den-
sities, therefore maintaining continuous traffic without many
interruptions. Unpaved roads are very rare in Florida; therefore,
they may cause confusion for drivers. Paved and vegetation median
types are not considered as obstacles for vehicles since these med-
ian types have a small slope. Paved median and paved shoulders
are usually wide. Wide shoulders and sidewalks provide a good
separation between the road and the opposite traffic and the road-
side environment. Presence of bicycle lane or shared path reduces
the number of conflict points between bicyclists and motorized
road users. Meanwhile, some factors have a double safety effect.
This fluctuation in the effect of these factors on crash occurrence
is due to the different road environment between road classes.

The possession of the simple and full SPFs with a similar predic-
tion performance confirms that the FDOT context classification
system classifies roads effectively. The importance of this mani-
fests by the development of highly accurate simple SPFs, since
obtaining road environment characteristics is a time consuming
and hard process. It was observed that simple and full DVMT-
SPFs have better performance than AADT-SPFs for most road
classes. CC-SPFs have the best performance among other modeling
levels due to the low variability in the road environment within the
certain road class. This is in line with previous findings that more
specific SPFs have better performance.

8. Conclusion

The new FDOT context classification system was highlighted in
this study. Roads are classified into eight classes from rural to
urban roads according to this system based on geographic, demo-
graphic, and road characteristics information. Crash and traffic
data from 2015-2019 and road characteristics and environment
information were obtained to conduct crash analysis and develop
safety performance functions (SPFs) at three modeling levels: con-
text classification (CC-SPFs), area type (AT-SPFs), and statewide
(SW-SPF) levels. Simple and full SPFs were developed by adopting
annual average daily traffic (AADT) and daily vehicle miles traveled
(DVMT) as exposure variables. Network screening was also accom-
plished in this study to identify the most problematic road seg-
ments. It was found that more than a third of road segments are
rural roads (C2 roads). According to this system, suburban com-
mercial and urban general roads (C3C and C4 roads) were sub-
jected to most crashes. However, urban roads (C4, C5, and C6)
have the highest crash rate per million miles traveled. DVMT-
SPFs have better prediction performance than AADT-SPFs. CC-
SPFs outperformed AT-SPFs and SW-SPF. It is worth mentioning
that there was no significant difference between the developed
simple and full SPFs for all road classes. This confirms considering
all road environment while classifying the roads based on the
FDOT context classification system. The results of the network
screening indicated that the most problematic roads in Florida
are C3C and C4 roads.

Table 4
Simple and full DVMT-SPFs for context classification modeling level.

Variable Estimated Parameter (Standard Error)

C1 C2 C2T C3C C3R C4 C5 C6

Simple SPFs
Intercept �3.57 (0.4337) �4.94 (0.1675) �4.40 (0.3598) �3.67 (0.1198) �4.32 (0.1639) �3.70 (0.1257) �0.74 (0.4822) �2.20 (0.6474)
Ln (DVMT) 0.57 (0.0464) 0.74 (0.0173) 0.76 (0.0428) 0.75 (0.0124) 0.76 (0.0176) 0.80 (0.0134) 0.50 (0.0530) 0.70 (0.0755)
Dispersion 1.24 (0.0979) 0.43 (0.0198) 0.50 (0.0492) 0.62 (0.0164) 0.74 (0.0251) 0.52 (0.0147) 0.56 (0.0582) 0.40 (0.0646)
Observations 418 1,703 366 3,065 2,080 2,590 180 82
LLV 4,928 29,788 4,871 451,342 107,678 522,672 30,232 14,272
MAE 6.0 5.4 5.2 24.2 13.0 29.0 27.8 25.2
RMSE 11.5 10.8 8.9 41.9 21.9 53.1 41.1 40.3
Full SPFs
Intercept �5.53 (0.5558) �5.71 (0.2608) �5.21 (0.4551) �4.07 (0.1495) �4.64 (0.3096) �4.62 (0.1752) �1.89 (0.6549) �2.08 (0.8056)
Ln (DVMT) 0.78 (0.0482) 0.87 (0.0191) 0.89 (0.0433) 0.86 (0.0144) 0.88 (0.0286) 0.93 (0.0185) 0.69 (0.0662) 0.73 (0.0786)
SID 0.34 (0.0568) 0.42 (0.0285) 0.14 (0.0177) 0.16 (0.0071) 0.21 (0.0180) 0.12 (0.0068) 0.08 (0.0166) 0.03 (0.0120)
APD 0.06 (0.0131) 0.05 (0.0056) 0.01 (0.0048) 0.02 (0.0022) 0.03 (0.0047) 0.01 (0.0018) 0.03 (0.0069) -
NL 0.21 (0.0453) - - 0.03 (0.0108) 0.07 (0.0185) - - -
SL �0.02 (0.0076) �0.02 (0.0031) �0.02 (0.0071) �0.03 (0.0025) �0.03 (0.0041) �0.03 (0.0036) �0.03 (0.0132) �0.04 (0.0183)
PC - 0.07 (0.0312) - - - - - -
SW - - - - - 0.005 (0.0014) - -
AS - - - - - - - 0.92 (0.3410)
MW - - - - 0.01 (0.0021) 0.01 (0.0022) �0.01 (0.0066) -
PM - - �0.20 (0.0796) - - - - -
VM - �0.16 (0.0415) - - �0.21 (0.0925) - - -
SHW - - - �0.03 (0.0056) - - - �0.07 (0.0323)
PSH - - - - �0.11 (0.0556) �0.14 (0.0368) - -
SWW - - - - �0.04 (0.0133) - - -
SWS - - - - - �0.01 (0.0017) - -
PBL - - - - �0.19 (0.0529) - - -
PSP - - - - 0.25 (0.1104) - - -
Dispersion 0.59 (0.0610) 0.29 (0.0154) 0.36 (0.0394) 0.42 (0.0123) 0.48 (0.0250) 0.36 (0.0132) 0.39 (0.0527) 0.31 (0.0556)
Observations 365 1,589 366 2,866 971 1,701 116 72
LLV 4,167 29,268 4,915 438,933 75,329 434,141 23,520 12,600
MAE 4.8 4.9 4.4 19.9 14.5 30.0 28.5 24.7
RMSE 10.0 10.2 7.6 34.9 23.8 52.0 40.0 41.6

DVMT: daily vehicle miles traveled, SID: signalized intersections density per mile, APD: access points density per mile, NL: total number of lanes, SL: speed limit, PC:
pavement condition, SW: surface width, AS: asphalt surface, MW: median width, PM: paved median, VM: vegetation median, SHW: shoulder width, PSH: paved shoulder,
SWW: sidewalk width, SWS: sidewalk spacing, PBL: presence of bike lane, PSP: presence of shared path, LLV: log-likelihood value, MAE: mean absolute error, RMSE: root
mean square error.
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Table 5
Simple and full DVMT-SPFs for area type and statewide modeling levels.

Variable Estimated Parameter (Standard Error)

Natural Rural Suburban Urban Statewide

Simple SPFs
Intercept �3.57 (0.4337) �3.87 (0.1423) �4.15 (0.0983) �3.21 (0.1197) �3.84 (0.0781)
Ln (DVMT) 0.57 (0.0464) 0.64 (0.0150) 0.78 (0.0103) 0.75 (0.0128) 0.76 (0.0083)
Dispersion 1.24 (0.0979) 0.52 (0.0206) 0.71 (0.0147) 0.54 (0.0146) 0.95 (0.0130)
Observations 418 2,069 5,145 2,852 10,484
LLV 4,928 34,538 558,822 567,106 1,163,256
MAE C1: 6.0 C2: 5.7,

C2T: 5.2
C3C: 23.5,
C3R: 15.9

C4: 29.4, C5: 27.1,
C6: 30.5

C1: 26.9, C2: 27.2, C2T: 8.0, C3C: 23.8,
C3R: 17.1, C4: 31.9, C5: 30.9, C6: 38.3

RMSE C1: 11.5 C2: 10.9,
C2T: 10.1

C3C: 42.6,
C3R: 23.5

C4: 53.4, C5: 41.3,
C6: 45.1

C1: 40.9, C2: 36.4, C2T: 12.5, C3C: 42.1,
C3R: 24.6, C4: 63.5, C5: 48.5, C6: 54.4

Full SPFs
Intercept �5.53 (0.5558) �4.72 (0.1504) �4.28 (0.1564) �4.11 (0.1720) �4.18 (0.0911)
Ln (DVMT) 0.78 (0.0482) 0.74 (0.0161) 0.87 (0.0143) 0.88 (0.0158) 0.88 (0.0087)
SID 0.34 (0.0568) 0.25 (0.0154) 0.18 (0.0071) 0.10 (0.0053) 0.16 (0.0041)
APD 0.06 (0.0131) - 0.02 (0.0022) 0.01 (0.0017) 0.02 (0.0012)
NL 0.21 (0.0453) - 0.05 (0.0107) - 0.11 (0.0066)
SL �0.02 (0.0076) - �0.03 (0.0025) �0.03 (0.0030) �0.04 (0.0012)
SW - - - 0.004 (0.0012) -
MW - - 0.003 (0.0009) - -
PM - - - �0.14 (0.0352) -
RM - 0.26 (0.0551) - - -
VM - �0.15 (0.0431) - - �0.11 (0.0256)
SHW - - �0.02 (0.0056) - �0.02 (0.0039)
PSH - �0.28 (0.0602) �0.13 (0.0267) �0.16 (0.0343) �0.06 (0.0173)
LSH - �0.31 (0.0622) - - -
SWW - - �0.01 (0.0073) 0.03 (0.0112) -
SWS - - - �0.01 (0.0017) -
Dispersion 0.59 (0.0610) 0.38 (0.0165) 0.42 (0.0117) 0.40 (0.0127) 0.48 (0.0082)
Observations 365 2,069 3,162 2,139 8,906
LLV 4167 34,775 471,644 498,545 1,065,348
MAE C1: 4.8 C2: 5.1,

C2T: 5.6
C3C: 21.8,
C3R: 16.0

C4: 28.7, C5: 34.8,
C6: 57.2

C1: 7.4, C2: 5.7, C2T: 8.3, C3C: 19.9,
C3R: 12.4, C4: 29.7, C5: 45.8, C6: >100

RMSE C1: 10.0 C2: 10.0,
C2T: 13.7

C3C: 37.8,
C3R: 24.1

C4: 51.8, C5: 53.8,
C6: >100

C1: 11.8, C2: 9.6, C2T: 13.2, C3C: 35.7,
C3R: 20.6, C4: 53.2, C5: 79.0, C6: >100

DVMT: daily vehicle miles traveled, SID: signalized intersections density per mile, APD: access points density per mile, NL: total number of lanes, SL: speed limit, SW: surface
width, MW: median width, PM: paved median, RM: raised median, VM: vegetation median, SHW: shoulder width, PSH: paved shoulder, LSH: lawn shoulder, SWW: sidewalk
width, SWS: sidewalk spacing, LLV: log-likelihood value, MAE: mean absolute error, RMSE: root mean square error.

Fig. 8. MAE values of simple CC-SPFs, AT-SPFs, and SW-SPF.
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a b s t r a c t

Introduction: Older drivers are believed to be prone to crashes due to age-related deterioration of their
driving abilities. Currently, little is known about the characteristics of repeat crashers and the factors that
predict subsequent crashes among these older drivers. Method: A dataset containing the records of crash
events that occurred between January 2014 and November 2019 was provided by the Department of
Transport and Main Roads (DTMR) in Queensland, Australia. This dataset included 16,973 records of older
drivers involved in a single crash and 222 cases in multiple crashes, comprising a total of 17,195 cases.
Descriptive and inferential analyses were performed to understand the characteristics of repeat crashers.
Survival analysis techniques were used to determine risk factors predictive of subsequent crashes.
Results: Nearly half (46%) of the repeat crashers were culpable for both of their crashes. Their average
age was significantly older than those who were culpable for none or one of their crashes. For older male
drivers, riding a motorcycle or driving a heavy vehicle were significant risk factors for having a
subsequent crash. The risk for female at-fault drivers being involved in a subsequent crash was 4.53 times
greater than those not at-fault. Older female drivers involved in crashes caused by slowing or stopping
also presented a higher risk of being involved in subsequent crashes. Conclusions: This study identified
risk factors for older drivers being involved in repeat crashes; distinctive gender differences in the risk
for involvement in repeat crashes were found. Practical Applications: To reduce the likelihood of older
drivers being involved in subsequent crashes, attention should be directed towards elders living in major
cities, male motorcycle riders and heavy vehicle drivers, and at-fault female drivers.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The term ‘‘crash proneness” was first introduced in road safety
research about a century ago by Greenwood and Yule (1920) who
defined crash-prone drivers as ‘‘drivers with a number of crashes
higher than expected.” In recent years, a number of researchers
have asserted that human error rather than coincidence is the main
contributor to a traffic crash (Blasco, Prieto, & Cornejo, 2003;
Chandraratna, Stamatiadis, & Stromberg, 2006; Petridou &
Moustaki, 2000). After analyzing a dataset of bus driver crashes,
Blasco et al. (2003) concluded that the cause of crashes among
crash-prone bus drivers was human error and not coincidences.
These researchers revealed that behind the high number of traffic
crashes in bus drivers lay the problems of cognitive and psychomo-
tor skills (Blasco et al., 2003). Petridou and Moustaki (2000) have
asserted that a driver’s crash proneness is due to either inferior

driving capability or habitual risky behaviors. For example, young
inexperienced drivers are at a higher crash risk than mature drivers
due to their limited on-road experience and possible risk-taking
intentions (Chandraratna et al., 2006; Petridou & Moustaki, 2000).

Many researchers have attempted to determine the factors
related to crash proneness (af Wåhlberg & Dorn, 2009; Blasco
et al., 2003; Chandraratna et al., 2006; Dorn & af Wåhlberg,
2020), but few have had a specific focus on crash proneness and
aging. Research investigating the factors associated with crash
proneness among drivers of all age groups has revealed that demo-
graphic (e.g., age, gender), psychological (e.g., personality traits,
aggression), situational (e.g., city size, driving exposure), traffic his-
tory (e.g., previous citations, at-fault crashes), and behavioral fac-
tors (e.g., drink driving, risky driving practices, road rule
violations) are associated with crash proneness (Chandraratna
et al., 2006; Das, Sun, Wang, & Leboeuf, 2015; Dorn & af
Wåhlberg, 2020; Elliott, Waller, Raghunathan, & Shope, 2001;
Ferrante, Rosman, & Marom, 2001; Herzberg, 2009). For the aging
population, the main concerns related to crash proneness focus on
age-related decline such as reduced physical and cognitive func-
tions, including attention, working memory, visual processing,
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and reaction time (Aksan, Anderson, Dawson, Uc, & Rizzo, 2015;
Anstey, Wood, Lord, & Walker, 2005; Daigneault, Joly, & Frigon,
2002; Langford & Koppel, 2006). Such physiological and cognitive
decline may result in older drivers being prone to crashes. For
example, research has indicated that older drivers are frequently
involved in specific types of traffic collisions such as intersection
crashes and multi-vehicle collisions (Daigneault et al., 2002;
Hing, Stamatiadis, & Aultman-Hall, 2003; Langford & Koppel,
2006; Meyers, 2004), and are highly likely to be responsible for
the crashes in which they are involved (Clarke, Ward, Bartle, &
Truman, 2010; Mayhew, Simpson, & Ferguson, 2006). Given that
older drivers are more likely to be seriously injured or to die as a
result of a traffic crash due to their fragility (Boufous, Finch,
Hayen, & Williamson, 2008; Langford & Koppel, 2006; Lombardi,
Horrey, & Courtney, 2017), it is essential to better understand the
issue of crash proneness in this population.

To address the gap in the literature, this study aimed to under-
stand the characteristics of older drivers who had multiple crashes
by analyzing state-wide datasets between 2014 and 2019 in
Queensland, Australia. These datasets contained almost six years
of crash records including demographic, vehicle, and crash details
of drivers aged 60 years and older. The focus of the research was
to estimate the probability that an older driver will be involved
in a subsequent crash after the initial crash within the observation
period. In this study, crash-prone drivers are defined as those who
have had two or more traffic crashes during the period 2014 to
2019. The terms crash-prone, crash proneness, and repeat crasher
are used interchangeably. The aims of this study were:

a) To understand the driver and crash characteristics of repeat
crashers amongst older drivers;

b) To use the initial crash characteristics to estimate the risk of
older drivers being involved in a subsequent crash.

2. Method

2.1. Datasets and variables

A crash dataset for the period of January 2014 to November
2019 were provided by the Department of Transport and Main
Roads (DTMR) in Queensland Australia. These data are electronic
records based on motor-vehicle crashes reported by the Queens-
land Police Service (QPS) that resulted from the movement of at
least one road vehicle on a road or road-related area involving
death or injury to any person (Department of Transport and
Main Roads, 2016). The complete dataset contained 34,889 crash
records including motor-vehicle drivers, pedestrians, cyclists, and
animal riders (e.g., horse riders). For this study, pedestrians and
non-motor vehicle riders were excluded from the dataset, resulting
in a main dataset containing 17,417 crash records of motor-vehicle
drivers and motorcycle riders aged 60 years and over who survived
their initial crash. For clarity, if a driver turned 60 years of age dur-
ing the study period, only the initial and any subsequent crash
event, from age 60, were included in the analysis.

In these records, 222 drivers who were involved in two or more
crashes during the observation period were labelled as ‘‘repeat
crashers.” Their initial and subsequent crash records were identi-
fied from the main dataset and merged into individual records by
matching de-identified drivers license ID. Another 16,973 records
were older drivers involved in crashes on a single occasion during
the observation period and were labelled as ‘‘single crashers.” The
final dataset contained a total of 17,195 cases.

For each crash record, a list of crash attributes (independent
variables) was selected for analysis. These variables were catego-
rized as:

1. Human factors: driver age, gender, vehicle type, drink or drug
driving, speeding, fatigue, distraction and at-fault status.

2. Environmental factors: time of crash (e.g., peak hour: weekdays
6–9 am and 2–6 pm, off-peak hour: 10 am–1 pm and weekend,
and night-time: 7 pm–5 am), area of crash (e.g., major cities,
inner regional and outer regional areas), lighting condition
and road condition.

3. Crash results: crash type (e.g., hit pedestrian, single or multi-
vehicle crash), severe injury and minor injury.

4. Crash characteristics: driver’s intended action (e.g., go straight
ahead, right turn, left turn, etc.), roadway feature (e.g., T junc-
tion, crossroad, roundabout, etc.), traffic control (e.g., operating
traffic lights, give way sign, etc.) and crash nature (e.g., angle
crash, rear-end crash, etc.).

5. Other variables: additional variables were formulated using the
existing data to better understand the crash events. These vari-
ables included: (a) the occurrence of subsequent crash (‘‘yes”
for repeat crashers and ‘‘no” for single crashers); (b) the dura-
tion between two crashes (months); (c) the sum of at-fault sta-
tus in two crashes, with 0 occasions representing not-at-fault in
both crashes and two occasions representing at-fault in both
crashes.

It is noteworthy that the data included rare events in crashes,
such as crashes that occurred at railway crossings or involved over-
turned vehicles. Rare events can often cause biased results in sta-
tistical procedures due to the effect being underestimated or
overestimated (Guns & Vanacker, 2012; King & Zeng, 2001). In this
study, variables that were rare (e.g., crossing railway, vehicle
overturned, etc.) were grouped into the category ‘‘other.” Making
a U-turn, which is not a particularly common event, was grouped
with variables of similar concept (namely making a right turn or
a left turn) and incorporated into a new category called ‘‘change
direction.”

2.2. Statistical analysis

It is assumed in this study that single crashers represent the
broad population of older drivers who were randomly involved
in crashes. Conversely, repeat crashers were seen as crash-prone
drivers who have a higher chance of being involved in traffic
collisions.

The first part of the analysis aimed to understand the character-
istics of repeat crashers and their initial and subsequent crashes.
Descriptive and inferential tests (ANOVA and Chi-Square tests)
were performed to provide an overview of the crash-prone drivers
and their crash events. The second part of the analysis aimed to
identify risk factors and the probability of older drivers being
involved in subsequent crashes. Survival analysis techniques (Cox
proportional hazard regression) were used to estimate the inde-
pendent association of each factor with the likelihood of older dri-
vers experiencing a subsequent crash. The outcome variable for
this survival analysis model is the occurrence of the subsequent
crash (yes or no for crash recurrence). The survival period known
as ‘‘time to fail” was measured using the duration (months)
between the initial and the subsequent crash. For single crashers,
that is for those who did not experience a subsequent crash, their
survival time was considered unknown. The survival period was
the time between the initial event and the end of the observation
period, which was deemed to be ‘‘censored” in the statistical anal-
ysis procedure (Bradburn, Clark, Love, & Altman, 2003a, 2003b;
Clark, Bradburn, Love, & Altman, 2003a, 2003b; Ferrante et al.,
2001).

Four groups of factors (human factors, environmental factors,
crash results, and crash characteristics) were entered into the
regression model. For each factor with more than two variables,
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one variable was chosen as the ‘‘reference variable” and the risk
ratios of other variables were calculated relative to the reference
value. The hazard ratio (HR) in the Cox proportional hazard regres-
sion is the risk ratio (RR) of each variable, which represents the rel-
ative risk of the drivers in this particular variable. For example, if
the risk ratio is 1.50 in male drivers, the relative risk of male dri-
vers experiencing a subsequent crash is 1.5 times higher than for
female drivers.

3. Results

3.1. Repeat crashers

The characteristics of 222 older drivers with repeat crashes,
including 158 (71.17%) males and 64 (28.83%) females, are ana-
lyzed in this section. At the time of their initial crash, the average
age was 68.57 years (SD = 7.26; min, max = 60, 93), with the major-
ity (n = 184, 82.9%) being under 75 years of age. On average, the
time between initial and subsequent crashes was 18.23 months
(median = 15 months; min, max = 0, 65), with seven older drivers
experiencing two crashes within the same month. No significant
differences were found in the duration of crash reoccurrence (that
is the time between initial and subsequent crash) between gender,
age groups (age between 60 and 74 years and 75 years and over),
and at-fault status. Although not included in the main analysis, it
is noteworthy that seven older drivers experienced more than
two crashes in the observation period, among them were one
female and six males. One male driver in his sixties had four
crashes and the remaining six drivers had three crashes each.

Table 1 presents details of the at-fault status, vehicle type, crash
type, and casualties of the initial and subsequent crashes. Among
the repeat crashers, more than 60% were responsible for their ini-
tial or subsequent crashes. Female drivers showed a higher propor-
tion of culpability in their initial crash than male drivers, however,
the culpability rate was lower in their subsequent crashes. Most
repeat crashers drove light vehicles. Among the repeat crash group,
more males drove heavy vehicles and rode motorcycles than
females. More than 70% of the initial and subsequent crashes
involved multiple vehicles. The initial crashes resulted in a total
of 276 casualties, including 3 fatalities and 107 hospitalizations.
The subsequent crashes resulted in a further 291 causalities, with
7 fatalities and 117 hospitalizations.

When examining the at-fault status of the repeat crashers,
nearly half (n = 102, 45.95%) were responsible for both crashes,
while less than one-fifth (n = 37, 16.67%) were not at-fault in both
crashes. Age was found to be significantly associated with at-fault
status. ANOVA tests showed a significant trend of increasing age
and at-fault status. On average, drivers who were responsible for

both collisions were significantly older (mean age = 70.22 years)
than those who were not at-fault in both collisions (mean
age = 66.41 years). Chi-square tests revealed no difference between
gender and at-fault status (Table 2).

Table 3 lists the crash characteristics of the initial and subse-
quent crashes. In the initial crash events, older female drivers were
more likely to be involved in collisions when changing direction
(right turn, left turn or U-turn) than male drivers. The result
showed a higher proportion of rear-end collisions in the subse-
quent crash (initial crashes: 30.18%; subsequent crashes: 40.99%)
and this increment mostly occurred in female older drivers
(8.86% increase in males, 15.38% in females). In reference to both
initial and subsequent crash events, a higher proportion of female
repeat crashers were involved in crashes when decelerating (slow-
ing down or stopping). Male repeat crashers were more likely to be
involved in crashes where there was no traffic control, while
females appeared to have more crashes where the traffic was con-
trolled by traffic lights, a give way sign, or a stop sign.

3.2. Single and repeat crashers

The sample of single and repeat crashers comprised 17,195
older drivers. The average age of those who had a single crash
was 69.11 years (SD = 7.55; min, max = 60, 102), which was not
significantly different from the repeat crashers (Mean age = 68.57 -
years). Table 4 illustrates that, of the 16,973 single crashers, 61.75%
were male. While the proportion of male single crashes was lower
than that of the male repeat crashers (71.17%), there was no statis-
tical difference. Chi-square tests revealed that a significantly
higher proportion of repeat crashers were drivers of heavy vehicles
and motorcycle riders (v2 = 46.46, p < .001). No significant differ-
ences in age, environmental factors, crash results, and crash char-
acteristics between single and repeat crashers were found in the
analyses.

Tables 5 and 6 present the results of the survival analyses. For
the whole sample, Table 5 shows that at-fault status and age group
did not posit any significant risk for older drivers being involved in
subsequent crashes. However, motorcycle riders (RR = 3.50; 95%
CI = 2.20–5.58) and heavy vehicle drivers (RR = 2.23; 95%
CI = 1.47–3.37) were found to be at significantly higher risk of hav-
ing recurrent crashes than light passenger vehicle drivers. Drink
and drug driving, speeding, fatigue, and inattentive driving were
not risk factors for involvement in subsequent crashes among the
older drivers in this study.

The risk of having a subsequent crash was 1.6 times (RR = 1.66;
95% CI = 1.01–2.71) greater for those who had a night-time crash
compared to those whose initial crash was during peak hour. Older
drivers involved in crashes that occurred in inner regional areas

Table 1
At-fault status, vehicles and crash results of initial and subsequent crashes.

Initial crashes Subsequent crashes

n = 222 Male (n = 158) Female (n = 64) n = 222 Male (n = 158) Female (n = 64)

At-fault status At-fault 145 (65.32%) 91 (61.39%) 48 (75.00%) 142 (63.96%) 106 (67.09%) 36 (56.25%)

Vehicle type Light vehicle 166 (74.77%) 104 (65.82%) 62 (96.87%) 164 (73.87%) 101 (63.92%) 63 (98.44%)
Heavy vehicle 30 (13.51%) 29 (18.35%) 1 (1.56%) 32 (14.41%) 32 (20.25%) 0 (0.00%)
Motorcycle 26 (11.71%) 25 (15.82%) 1 (1.56%) 26 (11.71%) 25 (15.82%) 1 (1.56%)

Crash type Multi-vehicle 164 (73.87%) 115 (72.78%) 49 (76.56%) 169 (76.13%) 113 (71.52%) 56 (87.50%)
single vehicle 47 (21.17%) 36 (22.78%) 11 (17.19%) 45 (20.27%) 38 (24.05%) 7 (10.94%)
hit pedestrian 11 (4.05%) 7 (4.43%) 4 (6.25%) 8 (3.60%) 7 (4.43%) 1 (1.56%)

Casualties Total 276 291
Fatalities 3 7
Hospitalisation 107 117
Medical treatment 125 123
Minor injury 41 44

B. Huang, V. Truelove and J. Davey Journal of Safety Research 79 (2021) 368–375

370



(RR = 0.56; 95% CI = 0.38–0.83) were less likely to experience a
subsequent crash compared to those whose crash was in a major
city. Lighting condition and road condition were not risk factors
for older drivers being involved in subsequent crashes. Similarly,
crash results (e.g., single- or multiple-vehicle crash and injury
severity) and crash characteristics (e.g., traffic control, roadway
feature) were not predictors of subsequent crashes.

Previous findings on repeat crashers indicate that gender differ-
ence may be at play. Therefore, the same groups of factors were
entered into the regression process to estimate their risk effect
on male and female older drivers. Table 6 shows that driving heavy
vehicles (RR = 1.96; 95% CI = 1.26–3.04) or riding motorcycles
(RR = 3.24; 95% CI = 1.96–5.36) placed older males at nearly twice
to more than three times the risk of experiencing another crash
compared to light passenger vehicle drivers.

For female older drivers, their at-fault status demonstrated a
4.53 times (RR = 4.53; 95% CI = 2.00–10.25) higher probability of
being involved in subsequent crashes compared to those who were
deemed not responsible for their initial crash. In addition, the risk
of a subsequent crash for female older drivers whose initial crash

was due to slowing down or stopping was over four times
(RR = 4.15; 95% CI = 1.79–9.60) greater than those who were going
straight ahead.

4. Discussion

It is widely accepted that crash prediction is a difficult endeavor
as the range of contributing factors varies for each event. Using
almost six years of data from Queensland DTMR, Australia, this
study examined the characteristics of older drivers involved in
repeat crashes. The characteristics of the initial crash event were
used to estimate the extent to which each risk factor contributed
to subsequent crashes among older drivers. Findings suggested
that, in general, older drivers had a higher risk of subsequent
crashes when driving in major cities. It is understandable that
older drivers driving in built-up areas may have an inflated risk
of crash involvement due to traffic volume and complexity of the
road network (Bayam, Liebowitz, & Agresti, 2005; Obeidat, 2018).
Risk driving behaviors (such as drink and drug driving, speeding,
fatigue, and inattentive driving) were not predicting factors for
involvement in subsequent crashes among the older drivers in this
study. This result may be due largely to the small proportion of
older drivers engaging in such risky behaviors (Langford &
Koppel, 2006; Rakotonirainy, Steinhardt, Delhomme, Darvell, &
Schramm, 2012). The current sample showed that, on average, only
3.5% of crashes were related to these risky driving behaviors. Given
such a small percentage, this result may need to be interpreted
with caution. However, it is noted that the finding is in keeping
with previous research, which found drink driving was a factor in
only 2.2–5.9% of older drivers who crashed (Langford & Koppel,
2006; Rakotonirainy et al., 2012).

The current study found that nearly half (45.95%) of the older
drivers involved in repeat crashes were deemed responsible for
both their initial and subsequent crashes. The average age of these

Table 3
Characteristics of the first and second crashes.

Initial crashes Subsequent crashes

n = 222 Male (n = 158) Female (n = 64) n = 222 Male (n = 158) Female (n = 64)

Crash Nature Angle 75 (33.78%) 53 (33.54%) 22 (34.38%) 49 (22.07%) 31 (19.62%) 18 (28.13%)
Rear-end 67 (30.18%) 47 (29.75%) 20 (31.5%) 91 (40.99%) 61 (38.61%) 30 (46.88%)
Hit object 29 (13.06%) 18 (11.39%) 11 (17.19%) 27 (12.16%) 22 (13.92%) 5 (7.81%)
Sideswipe 19 (8.56%) 12 (7.59%) 7 (10.94%) 23 (10.36%) 19 (12.03%) 4 (6.25%)
Fall from vehicle 13 (5.86%) 13 (8.23%) 0 (0.00%) 8 (3.60%) 7 (4.43%) 1 (1.56%)

Intended Action Go straight ahead 126 (56.76%) 99 (62.66%) 27 (42.18%) 144 (64.86%) 108 (68.35%) 36 (56.25%)
Change direction 42 (18.92%) 25 (15.82%) 19 (26.57%) 39 (16.66%) 24 (15.19%) 11 (17.19%)
Slowing or stopped 40 (18.02%) 25 (15.82%) 15 (23.44%) 31 (13.97%) 17 (10.76%) 14 (21.88%)

Roadway Feature No roadway feature 89 (40.09%) 70 (44.30%) 19 (29.69%) 104 (46.58%) 79 (50.00%) 25 (39.06%)
T junction 56 (25.23%) 40 (25.32%) 16 (25.00%) 50 (22.52%) 31 (19.62%) 19 (26.69%)
Crossroad 38 (17.12%) 22 (13.92%) 16 (25.00%) 31 (13.96%) 22 (13.92%) 9 (14.06%)
Roundabout 14 (6.31%) 8 (5.06%) 6 (9.38%) 14 (6.31%) 9 (5.70%) 5 (7.81%)

Traffic Control No traffic control 126 (56.76%) 95 (60.13%) 31 (48.44%) 143 (64.41%) 105 (66.46%) 38 (59.38%)
Operating traffic lights 42 (18.92%) 26 (16.46%) 16 (25.00%) 40 (18.02%) 30 (18.99%) 10 (15.63%)
Give way or stop sign 48 (20.72%) 32 (20.26%) 14 (21.88%) 33 (14.86%) 17 (10.76%) 16 (25.01%)

Table 4
Characteristics of single and repeat crashers.

Single crashers
(n = 16.973)

Repeat crashers
(n = 222)

At-fault status At-fault 10,325 (60.83%) 147 (66.22%)

Gender Male 10,481 (61.75%) 158 (71.17%)

Vehicle type Light vehicle 15,128 (89.13%) 166 (74.77%)
Heavy vehicle 1,049 (6.18%) 30 (13.51%)
Motorcycle 796 (4.69%) 26 (11.71%)

Crash type Multi-vehicle 13,354 (78.68%) 162 (72.97%)
Single vehicle 2,931 (17.27%) 49 (22.07%)
Hit pedestrian 593 (3.49%) 9 (4.05%)

Table 2
Gender and age differences by at-fault status.

At-fault status 0 occasions 1 occasion 2 occasions Statistical tests

Average age (years) 66.41 67.51 70.22 F (2, 219) = 5.365, p = .005***
Total 37 (16.67%) 83 (37.39%) 102 (45.95%)
Male 28 (17.72%) 57 (36.08%) 73 (46.20%) v2 = 0.63, p = .73 NS
Female 9 (14.06%) 26 (40.63%) 29 (45.31%)
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drivers was significantly older than those who were deemed at-
fault for none or one of their crashes. Previous research has found
that drivers over 75 years are more likely to cause a crash than
their younger counterparts (Clarke et al., 2010; Hing et al., 2003;
Rakotonirainy et al., 2012), and the culpability rate increased sig-
nificantly with age (Clarke et al., 2010). Findings of this study con-
firm the robust relationship between age and crash culpability and
the risk of causing subsequent crash as the drivers become older.
More specifically, this study found that, with increasing age, when
older drivers were at-fault for their initial crash, they were likely to
also be responsible for their subsequent crash.

It is evident from this study that older drivers who crashed are
not a homogenous group as distinctive gender differences in the
risk for involvement in repeat crashes were found. For older male
drivers, riding a motorcycle significantly increased their risk of
involving in a subsequent crash. A range of issues may contribute
to the high risk of motorcycle crashes, including control errors
(e.g., trouble handling the bike), riding speed, traffic errors, travel-
ing in unexpected places (e.g., gaps between vehicles), as well as
climate and road conditions (Tunnicliff et al., 2012; Wells et al.,
2004). The low conspicuity (e.g., small and irregular outline) of
the motorcyclists together with being in the blind spot of other
motor-vehicle drivers is thought to be an additional factor associ-
ated with the risk of motorcycle crashes (Wells et al., 2004). The
major disincentive to motorcycle riding is the high risk of fatal
and severe injury, estimated to be more than 20 times the risk
compared to passenger vehicle drivers (NHTSA, 2019; Van

Elslande et al., 2014). For older motorcycle riders, the injury sever-
ity increases due to their declined physical strength (e.g., bone
density), flexibility and possible pre-existing comorbidities
(Fitzpatrick, Rakasi, & Knodler, 2017), resulting in higher incidence
of thoracic injury, especially multiple rib fractures (Dischinger,
Ryb, Ho, & Braver, 2006). Although researchers have found that
the proportion of motorcycle riders aged 60 years and over is rela-
tively low compared to riders in other age groups (Allen et al.,
2017; de Rome & Senserrick, 2011; Hidalgo-Fuentes & Sospedra-
Baeza, 2019), concern has been raised that older riders were more
likely to be responsible for their crashes (de Rome & Senserrick,
2011). Findings from the current study demonstrate the high risk
of older motorcycle riders being involved in recurrent crashes
and highlight the need for comprehensive investigation of crash
risk and injury prevention for older motorcycle riders.

Additionally, for older males, driving heavy vehicles increased
the risk of being involved in subsequent crashes by more than
two-fold compared to driving light passenger vehicles. Heavy vehi-
cle drivers in this study were mostly professional drivers such as
bus, articulated truck, or road train drivers. Previous studies have
argued that the high crash involvement of heavy vehicle drivers
may result from their increased exposure and the high level of
driving demand featuring long distances and hours (Brodie,
Lyndal, & Elias, 2009; Mooren, Grzebieta, Williamson, Olivier, &
Friswell, 2014). Therefore, it is reasonable to assume that the
decline of sensory, physical, and cognitive functions in older heavy
vehicle drivers may affect their work ability and lead to more

Table 5
Risk factors associated with subsequent crashes among older drivers.

B Sig. RR 95.0% CI

Lower Upper

Category 1: Human factors
At-fault status Yes 0.30 0.10 1.35 0.94 1.93
Age group 75 and over �0.14 0.43 0.87 0.60 1.24
Type of vehicle Light vehicle Ref.

Motorcycle 1.25 <0.001 3.50 2.20 5.58
Heavy vehicle 0.80 <0.001 2.23 1.47 3.37

Drink or drug driving Yes �0.29 0.41 0.75 0.38 1.48
Speeding Yes �0.31 0.76 0.73 0.10 5.31
Fatigue Yes �0.25 0.61 0.78 0.30 2.01
Distraction Yes 0.14 0.59 1.16 0.68 1.95

Category 2: Environmental factors
Time of crash Peak hour Ref.

Off-peak hour �0.14 0.33 0.87 0.66 1.15
Night-time 0.50 0.04 1.66 1.01 2.71

Area of crash Major cities Ref.
Inner regional �0.57 <0.001 0.56 0.38 0.83
Outer regional and remote areas �0.38 0.06 0.68 0.46 1.02

Lighting condition Yes 0.20 0.52 1.22 0.67 2.22
Road condition Yes �0.40 0.15 0.67 0.38 1.16

Category 3: Crash results
Crash type Hit pedestrian Ref.

Single vehicle 0.24 0.53 1.27 0.60 2.69
Multiple vehicle �0.15 0.67 0.86 0.45 1.67

Severe injury Yes �0.28 0.16 0.76 0.52 1.11
Minor injury Yes 0.02 0.91 1.02 0.74 1.41

Category 4: Crash characteristics
Intended actions Go straight ahead Ref.

Change direction �0.19 0.35 0.83 0.56 1.22
Slowing or stopped 0.22 0.31 1.24 0.82 1.88

Roadway feature No roadway feature Ref.
T junction 0.16 0.47 1.17 0.76 1.81
Crossroad 0.00 0.99 1.00 0.58 1.72
Roundabout 0.01 0.97 1.01 0.50 2.05

Traffic control No traffic control Ref.
Operating traffic light 0.29 0.24 1.33 0.83 2.14
Give way or stop sign 0.75 0.06 2.12 1.00 4.49
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involvement in crashes (Duke, Guest, & Boggess, 2010; Kloimüller,
Karazman, Geissler, Karazman-Morawetz, & Haupt, 2000). An early
study revealed that the risk of heavy vehicle drivers being involved
in crashes increased when they reached the aged of 63 years and
over (Campbell & Sullivan, 1991); however, a more recent study
suggested otherwise (Guest, Boggess, & Duke, 2014). Guest et al.
(2014) found that heavy vehicle (rigid and articulated trucks in
particular) drivers aged 65 years and older were not more likely
to cause a crash than drivers of other age groups. The conflicting
findings indicate that more research is needed to focus on the crash
risk of older heavy vehicle drivers.

An important study finding was the crash proneness of older
female drivers. The current study found that, among older female
drivers who crashed, those deemed at-fault for their initial crash
were highly likely to be involved in a subsequent crash than those
were not at-fault. Additionally, older female drivers in this sample
were more likely to experience a subsequent crash if their initial
crash was caused by slowing down or stopping. These results
may reflect previous research findings regarding various driving
maneuvers that prove to be problematic for older drivers, such as
difficulties in gap acceptance and estimation, turning against
oncoming traffic, and lane changing (Bayam et al., 2005;
Chandraratna & Stamatiadis, 2003; Clarke et al., 2010; Lombardi
et al., 2017). These common driving maneuvers require complex
yet agile cognitive abilities, such as perceptual awareness, and
the calculation of speed and distance in a fast paced, moving envi-
ronment (Chandraratna & Stamatiadis, 2003; Lombardi et al.,
2017). Thus, older drivers may resolve the complex traffic tasks
by slowing down or stopping to allowmore processing time, which
in itself can become a danger for crash involvement (Bayam et al.,
2005). These findings are important in a time of population aging.

Older females have a longer life expectancy, are more likely to live
alone as they become older, and are of a cohort where holding a
driver’s license is commonplace (Australian Bureau of Statistics,
2019; Oxley, Langford, & Charlton, 2010). Thus, it is important
for older people, particularly older females, to understand that
their involvement in an at-fault crash likely pre-disposes them to
a future crash. This information may provide a signal for older
females to evaluate their driving risk and highlights the need for
safety interventions for older female drivers involved in at-fault
collisions.

While this study provides an important addition to the scant lit-
erature on crash proneness among older drivers, a number of lim-
itations need to be considered. First, all crash data were compiled
from crashes reported by Queensland police officers/units. The
determination of at-fault status relies heavily on the police officer’s
experience(s) at the scene of the crash. Thus, inconsistency and
bias in reporting may exist between crash events and/or between
crash investigators. Therefore, the culpability rates should be inter-
preted with caution (af Wåhlberg & Dorn, 2007). Second, the data-
sets only contain ‘‘in scope” crash events, which means crashes
with no injury to any person and crash events occurring in car
parks or private driveways are considered ‘‘out of scope” in
Queensland (DTMR, 2016). The exclusion of ‘‘out of scope” events
likely reduces the number of crashes involving older drivers. Thus,
the current analysis may under-represent the crash events of older
drivers. Third, this analysis contains crash records from 2014 to
2019. The number of older drivers involved in repeat crashes is rel-
atively small (about 1.3% of the sample); however, those who were
involved in subsequent crashes presented distinctive risk factors
compared to those who were not. Further research using a larger
sample size and over a more extended time period may help to fur-

Table 6
Risk factors associated with subsequent crashes among male and female older drivers.

Male Female

B Sig. RR 95.0% CI B Sig. RR 95.0% CI

Lower Upper Lower Upper

Step 1: Human factors
At-fault status Yes �0.03 0.89 0.97 0.65 1.46 1.51 <0.001 4.53 2.00 10.25
Age group 75 and over �0.28 0.24 0.75 0.47 1.20 0.04 0.90 1.04 0.58 1.86
Type of vehicle Light vehicle Ref. Ref.

Motorcycle 1.17 <0.001 3.24 1.96 5.36 1.46 0.17 4.29 0.54 34.40
Heavy vehicle 0.67 <0.001 1.96 1.26 3.04 1.58 0.12 4.87 0.65 36.41

Step 2: Environmental factors
Time of crash Peak hour Ref. Ref.

Off-peak hour �0.18 0.28 0.83 0.60 1.16 �0.11 0.68 0.90 0.53 1.51
Night-time 0.40 0.17 1.49 0.84 2.64 0.71 0.15 2.03 0.77 5.40

Area of crash Major cities Ref. Ref.
Inner regional �0.69 <0.001 0.50 0.31 0.81 �0.42 0.22 0.65 0.33 1.29
Outer regional �0.34 0.14 0.71 0.45 1.12 �0.66 0.13 0.52 0.22 1.23

Step 3: Crash results
Crash type Hit pedestrian Ref. Ref.

Single vehicle 0.46 0.32 1.59 0.64 3.96 �0.28 0.69 0.76 0.19 2.97
Multiple vehicle 0.08 0.84 1.09 0.48 2.45 �0.82 0.18 0.44 0.13 1.45

Severe injury Yes �0.41 0.09 0.66 0.42 1.06 0.12 0.73 1.13 0.57 2.22
Minor injury Yes �0.02 0.93 0.98 0.67 1.45 0.28 0.37 1.32 0.72 2.43

Step 4: Crash characteristics
Intended actions Go straight ahead Ref. Ref.

Change direction �0.33 0.19 0.72 0.44 1.18 0.11 0.75 1.11 0.58 2.14
Slowing or stopped �0.09 0.71 0.91 0.56 1.49 1.42 <0.001 4.15 1.79 9.60

Roadway feature No roadway feature Ref. Ref.
T junction 0.09 0.72 1.10 0.66 1.84 0.39 0.35 1.47 0.65 3.35
Crossroad �0.37 0.28 0.69 0.35 1.36 0.88 0.07 2.41 0.92 6.27
Roundabout �0.42 0.35 0.65 0.27 1.60 1.09 0.07 2.96 0.91 9.65

Traffic control No traffic control Ref. Ref.
Operating traffic light 0.37 0.22 1.44 0.81 2.58 0.14 0.73 1.15 0.51 2.63
Give way or stop sign 0.72 0.13 2.05 0.81 5.19 0.86 0.20 2.37 0.63 8.86
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ther understand the characteristics of older crash-prone drivers.
Last, results of this analysis are further limited as the crash data-
sets lack information about older drivers’ individual differences
(e.g., health status, medication) and driving exposure. Despite
these limitations, the current findings highlight some important
trends for furthering the general understanding of recurrent crash
involvement in older drivers.

5. Conclusion

The current population-based study is unique in the literature
as it contributes to recognizing the high-risk groups of older dri-
vers who were likely to be involved in subsequent crashes after
their initial crash event. The study confirmed that culpability his-
tory, environmental, and situational factors contribute to crash
proneness. However, other predictors were discussed regarding
broader crash proneness and were sufficiently nuanced to justify
focusing specifically on an older population. Several of the findings
may be useful for public health and safety messaging at the indi-
vidual and community level, as well as for health professionals
and policy makers. Two crash-prone groups, namely older male
motorcyclists and heavy vehicle drivers, were evident from the
study. In addition, older female drivers who crashed were highly
prone to a subsequent crash if they were deemed at-fault in their
initial crash. This information translates into the need for a close
assessment and better resources to address the specific problems
of this group, and provides information on how to potentially
maintain safe mobility. In summary, as life expectancy increases,
more people at older ages are having to make decisions in regard
to their professional driving career (e.g., older truck drivers),
motorcycle riding activities, and to plan for when and how to limit
or cease driving. The study’s findings may assist older drivers in
their decision making around continuation, modification to, or ces-
sation of driving. Finally, the study highlights the need for further
research to separate older drivers in the analysis to better under-
stand their specific crash patterns and injury prevention strategies.
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a b s t r a c t

Introduction: Studies thus far have focused on automobile accidents that involve driver distraction.
However, it is hard to discern whether distraction played a role if fault designation is missing because
an accident could be caused by an unexpected external event over which the driver has no control.
This study seeks to determine the effect of distraction in driver-at-fault events. Method: Two generalized
linear mixed models, one with at-fault safety critical events (SCE) and the other with all-cause SCEs as the
outcomes, were developed to compare the odds associated with common distraction types using data
from the SHRP2 naturalistic driving study. Results: Adjusting for environment and driver variation, 6 of
10 common distraction types significantly increased the risk of at-fault SCEs by 20-1330%. The three most
hazardous sources of distraction were handling in-cabin objects (OR = 14.3), mobile device use (OR = 2.4),
and external distraction (OR = 1.8). Mobile device use and external distraction were also among the most
commonly occurring distraction types (10.1% and 11.0%, respectively). Conclusions: Focusing on at-fault
events improves our understanding of the role of distraction in potentially avoidable automobile acci-
dents. The in-cabin distraction that requires eye-hand coordination presents the most danger to drivers’
ability in maintaining fault-free, safe driving. Practical Applications: The high risk of at-fault SCEs associ-
ated with in-cabin distraction should motivate the smart design of the interior and in-vehicle information
system that requires less visual attention and manual effort.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Road safety involves an intricate web of interplaying roles by
the driver, the traffic, and the road, and not every element is under
the control of the driver. Distractions have long been established as
a leading cause of automobile accidents. Studies thus far have
focused on automobile accidents that involve driver distraction.
However, it is hard to discern whether distraction played a role if
fault designation is missing, because an accident could be caused
by an unexpected external event through no fault of the driver.
Understanding the human factors involved in at-fault crashes
may be most relevant to pinpointing risky driver behaviors that
are potentially avoidable. Therefore, this study seeks to determine
the effect of distraction in at-fault safety critical events (SCEs) by:
(a) teasing out the effect of distraction from common traffic scenar-
ios and road conditions, and (b) comparing the strength of associ-
ation between distraction and at-fault SCEs against all-cause SCEs
regardless of fault designation.

1.1. Distraction

Studies have examined the prevalence, the effects, and the
mechanism of driver distraction on automobile accidents. Eight
percent of fatal crashes and 15% of injury crashes in 2018 (most
recent year available) were reported as affected by distraction,
and that was 2,841 people killed and 400,000 people injured
(National Highway Traffic Safety Administration, 2020). By con-
sumption of attention resources, researchers put distraction into
two classes: (a) visual distraction (eyes-off-the-road) and (b) cog-
nitive distraction (mind-off-the-road), with cognitive distraction
disrupting the allocation of visual resources to driving scenes and
slowing the process of oncoming information (Liang & Lee, 2014;
Savage et al., 2020). Common distractions include cell-phone use,
interaction with passengers, eating, and adjusting the radio or cli-
mate controls. Cell phone use and texting, especially among teen
drivers, has been extensively studied (Yannis et al., 2014; Carney
et al., 2018; Ebadi et al., 2019; Qin et al., 2019; Seaman et al.,
2017); driver interaction with passengers has also been studied
(Theofilatos et al., 2018; Zhang et al., 2019). Driver distraction
can be detected by video recognition and even solely relying on
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vehicular data with high accuracy in a nonintrusive fashion (Eraqi
et al., 2019; Ye et al., 2017).

1.2. At-fault accidents

There is limited literature that specifically studies at-fault acci-
dents as opposed to all-cause automobile accidents. Fault determi-
nation requires manual analysis, lacks a universal definition (Dorn
& af Wåhlberg, 2019), and is not always available in datasets. The
U.S. Department of Transportation identified 17 Unsafe Driving
Acts (UDA) to be the criteria for fault assignment (i.e., fault was
assigned if any factor was coded for a given driver), including judg-
ment, speed-related, right-of-way or headway-related, and lane
change or lane position problems (Council et al., 2003). Existing
studies on at-fault accidents focused on driver characteristics
(Sagar et al., 2020; Penmetsa et al., 2017; Tseng, 2012) and impro-
per driving maneuvers (Mohammadzadeh Moghaddam et al.,
2017; Wu & Hsu, 2021). The lack of studies on predicting at-fault
crashes was also noted (Wu & Hsu, 2021). No studies have exam-
ined the association between distraction and at-fault events by
our search.

1.3. Risk estimation

To estimate road injury risks, studies traditionally rely on police
and emergency department records (Regev et al., 2018; Sagar et al.,
2020), which are representative of the population, although crash-
specific details are not always fully recalled or captured (Regev
et al., 2017). To analyze driver or environment impacts on acci-
dents, simulated studies can capture a wide array of variables dur-
ing a trip, but the studies usually focus on a small subset of the
population of interest (e.g., teenage drivers). Large-scale naturalis-
tic driving studies may enjoy the best of both worlds. On one hand,
its study size and naturalistic setting can be used to construct
study designs reflective of real-world exposure. On the other hand,
it captures a variety of variables via pre-fitted motion and vision
sensors that can be helpful for retrospective analysis of what tran-
spired on the road, possibly with high fidelity.

In summary, the past literature indicates that driver distraction
plays an important role in automobile accidents, but there is a need
to further verify these findings with fault data. None of the previ-
ous studies have associated at-fault accidents with specific distrac-
tion types. Such an analysis could help define the effect of
distraction on drivers’ ability to maintain safe, fault-free driving
and inform efforts to improve road safety by reducing hazardous
driver distraction.

2. Materials and methods

2.1. Data source

Data from the 2nd Strategic Highway Research Program
(SHRP2) Naturalistic Driving Study (NDS) (Dingus et al., 2014)
were used for this study. The dataset included human expert anno-
tated variables based on video recordings of trips that captured the
activities and environments both inside and outside of the cabin of
the subject vehicles in real-world road settings. Annotated vari-
ables from the video reduction process make it possible to retro-
spectively analyze the characteristics of the trips involving at-
fault incidents, including the dependent variables derived from
‘‘event severity” and ‘‘fault,” the independent variables derived
from ‘‘secondary tasks,” and seven control variables including
weather, lighting, roadway surface, profile (e.g., uphill, downhill)
and curvature, presence of roadway junctions, as well as traffic
density.

2.2. Study design

The SHRP2 dataset allows a case-cohort study design that is
appropriate for time-variant risk exposure approximated by the
odds ratio (Dingus et al., 2016; Guo, 2009). In this study, cases
were identified as SCEs that include all levels of crashes but low-
risk tire strikes as well as near crashes. Non-cases were sampled
from the baseline in a balanced fashion that the number of trips
selected for each driver is proportional to the total traveling time
when they were in the study (i.e., balanced-sample baseline;
Hankey et al., 2016). Said in another way, the cases and non-
cases were in terms of the outcome of a trip (i.e., whether an SCE
took place), and all of the trips may be exposed to the independent
variable (i.e., distraction). The cases were further differentiated by
fault assignment, namely, at-fault SCEs, in which the subject vehi-
cle driver was at fault, and all-cause SCEs regardless of fault. As a
result, a total of 7,962 all-cause SCEs, among which 4,908 were
at-fault, and 19,998 balanced-sample baseline trips were selected
for the analysis (Table 1). They were generated by 3,542 participat-
ing drivers.

2.3. Data analysis

We designed a generalized linear mixed model (GLMM) with
random intercepts as one driver can generate multiple trips in
the dataset. The rationale behind choosing this model is two-
fold: first, a multivariate regression can produce adjusted risk esti-
mates that account for scenarios when multiple distraction types
or environmental risk factors were present concurrently. Second,
compared to regular linear regression, the mixed-effect model
can reflect the latent heterogeneity in driver characteristics that
might impact the individuals’ risk levels when distracted. The
model is as follows:

g E yð Þð Þ ¼ Xbþ Zuþ e

E yð Þ ¼ P Y ¼ yjX; Zð Þ

g �ð Þ ¼ log
p

1� p

� �

where y is the outcome variable; g �ð Þ is the logistic link function for
a binomial outcome; p is the estimated probability of a positive out-
come; X is a matrix of N trips and q variables; b is a q� 1 vector of
the fixed-effect regression coefficients; Z is a matrix of N trips and d
drivers designating the driver-specific random effects; u is a d� 1
vector of the random intercepts; and � is the general error term
not explained by the model.

Two separate models were run, one with at-fault SCEs as the
outcome and the other with all-cause SCEs, because we wanted
to understand whether a particular kind of distraction particularly
increases the driver’s at-fault risk compared to all-cause SCEs.

The input variables, types of distraction, were engineered from
the annotated secondary tasks. First, the secondary tasks were
mapped into 10 distraction types (Table 2) in addition to a ‘‘no sec-
ondary task” category based on their semantic meanings and the
ordering found in the SHRP2 Researcher Dictionary for Video

Table 1
Event distribution.

Result in safety critical
events?

Subject vehicle driver at fault?

Yes No or NA

Yes Crash 766 282
Near crash 4,142 2,772

No Baseline 0 19,998
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Reduction Data (Virginia Tech Transportation Institute, 2015). For
example, all secondary tasks involving a cell phone or a tablet were
grouped into ‘‘mobile device.” Next, the distraction types were

converted into dummy variables. Finally, because up to three sec-
ondary tasks were annotated, the three corresponding distraction
types were combined for each trip. If a trip involved two secondary
tasks belonging to the same distraction category, the category was
labeled as 1 denoting the presence of one or more secondary tasks
in the same distraction category. For example, a driver can be
annotated as both dialing and subsequently talking on the phone
during the video epoch. This treatment is due to the consideration
that secondary tasks within the same category tend to involve a
series of related tasks, whereas having two secondary tasks in dif-
ferent categories suggests a higher level of distraction that is non-
trivial.

The control variables were treated as categorical with the least
demanding driving scenario as the reference group for regression.
For example, ‘no adverse weather condition’ was coded 0 and all
other adverse weather conditions were coded 1. The analysis was
performed in R using library lme4 (Bates et al., 2015; R Core
Team, 2020).

3. Results

3.1. Distribution of distraction types

Distraction occurs frequently, in fact, the majority (55.8%) of the
selected trips involved one or more distraction types (Table 3).
Interaction with a passenger (14.5%), external distraction (11.0%),
and mobile device use (10.1%) were among the most common dis-
traction, while smoking (1.1%), food & beverage consumption
(3.1%), and adjusting the in-vehicle information system (IVIS)
(3.9%) were the least common. Next, we will examine the risk level
associated with individual distraction types.

3.2. Risk estimate

Overall speaking, the presence of distraction, regardless of type,
doubled the odds of SCEs (OR = 2.1), and the difference between at-
fault and all-cause SCEs was minimal (Table 4). Delving into the
specific categories, 6 of 10 distraction types significantly increased
the risk of at-fault and all-cause SCEs to varying degrees after
adjusting for environmental factors (Fig. 1). While entertainment,
personal hygiene, IVIS, external distraction and mobile device use, in
ascending order of ORs, increased the odds of at-fault SCEs by
20–140%, the odds of at-fault SCEs was raised by 1330% related
to in-cabin objects. Among the individual secondary tasks grouped
under in-cabin objects, ‘‘moving object in vehicle” (e.g., an object
fell off the seat when the driver stopped hard at a traffic light)
and ‘‘reaching for object, other” not only had the most occurrences
but also disproportionately associated with at-fault events
(p < 0.001) (Table 5).

Comparing the estimated ORs of at-fault to all-cause SCEs, the
lower bounds of the at-fault ORs associated with external distrac-

Table 2
Distraction type mapping.

Distraction Type Secondary Tasks

Entertainment � Talking/singing, audience unknown
� Dancing
� Reading
� Writing

External distraction � Looking at previous crash or incident
� Looking at pedestrian
� Looking at animal
� Looking at an object external to the vehicle
� Distracted by construction
� Other external distraction

Food and beverage � Reaching for food-related or drink-related
item

� Eating with utensils
� Eating without utensils
� Drinking with lid and straw
� Drinking with lid, no straw
� Drinking with straw, no lid
� Drinking from open container

In-cabin objects � Moving object in vehicle
� Insect in vehicle
� Pet in vehicle
� Object dropped by driver
� Reaching for object, other
� Object in vehicle, other

Interaction � Passenger in adjacent seat - interaction
� Passenger in rear seat - interaction
� Child in adjacent seat - interaction
� Child in rear seat - interaction

IVIS (in-vehicle
information system)

� Adjusting/monitoring climate control
� Adjusting/monitoring radio
� Inserting/retrieving CD (or similar)
� Adjusting/monitoring other devices integral
to vehicle

Mobile device � Cell phone, holding
� Cell phone, talking/listening, hand-held
� Cell phone, talking/listening, hands-free
� Cell phone, texting
� Cell phone, browsing
� Cell phone, dialing, hand-held
� Cell phone, dialing, hand-held using quick
keys

� Cell phone, dialing, hand-held using voice-
activated software

� Cell phone, locating/reaching/answering
� Cell phone, other
� Table device, locating/reaching
� Tablet device, operating
� Tablet device, viewing
� Tablet device, other

Personal hygiene � Reaching for personal body-related item
� Combing/brushing/fixing hair
� Applying make-up
� Shaving
� Brushing/flossing teeth
� Biting nails/cuticles
� Removing/adjusting clothing
� Removing/adjusting jewelry
� Removing/inserting/adjusting contact
lenses or glasses

� Other personal hygiene

Smoking � Reaching for cigar/cigarette
� Lighting cigar/cigarette
� Extinguishing cigar/cigarette

Other secondary tasks � Other nonspecific internal eye glance
� Other secondary task
� Unknown type (secondary task present)

Table 3
Proportion of distraction types (N = 27,960).

Distraction Type n (%)

Entertainment 2,453 (8.8)
External 3,072 (11.0)
Food & Beverage 853 (3.1)
IVIS 1,082 (3.9)
In-Cabin Objects 2,101 (7.5)
Interaction 4,062 (14.5)
Mobile Device 2,812 (10.1)
Personal Hygiene 1,149 (4.1)
Smoking 305 (1.1)
Other 1,015 (3.6)
None 12,651 (45.2)
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tion and mobile device use were higher than the upper bounds of
the ORs of all-cause SCEs without overlap (Fig. 1), suggesting that
these distraction types significantly increased the risks of faulty
driving that led to an SCE.

On the other hand, food and beverage consumption in driving sig-
nificantly decreased the odds of at-fault and all-cause SCEs by 20–
30%. Interacting with a passenger and other secondary tasks in the
vehicle did not modify the risk of at-fault SCEs but slightly reduce

the chance of all-cause SCEs. In other words, although not signifi-
cantly, having these two distractions still raised the chance of at-
fault SCEs compared to all-cause SCEs. Smoking was not signifi-
cantly associated with either at-fault or all-cause SCEs.

4. Discussion

4.1. Principal findings

In this study, we quantified the at-fault SCE risks associated
with common distraction types using a mixed-effect model that
allows for driver variation. The most hazardous source of distrac-
tion is in-cabin objects (OR = 14.3) followed by mobile device use
(OR = 2.4) and external distraction (OR = 1.8), with the latter two
also showing an elevated risk of at-fault SCEs beyond that of all-
cause SCEs. Not only were mobile device use and external distrac-
tion the most dangerous among distraction types, but they were
also among the most commonly occurring (10.1% and 11.0%,
respectively).

Table 4
Odds ratios of safety critical events associated with distraction types.

At-fault SCEs All-cause SCEs

Odds Ratio
(95% CI)

p-value Odds Ratio
(95% CI)

p-value

Distraction, regardless of type 2.1 (2.0–2.3) <0.001 *** 2.1 (1.9–2.2) <0.001 ***
Entertainment 1.2 (1.0–1.3) 0.024 * 1.1 (1.0–1.2) 0.067
External 1.8 (1.6–2.0) <0.001 *** 1.3 (1.2–1.4) <0.001 ***
Food & Beverage 0.8 (0.6–1.0) 0.031 * 0.7 (0.6–0.9) 0.001 **
In-cabin Objects 14.3 (12.4–16.5) <0.001 *** 12.3 (10.8–13.9) <0.001 ***
Interaction 0.9 (0.8–1.1) 0.260 0.9 (0.8–0.9) 0.001 **
IVIS 1.7 (1.4–2.1) <0.001 *** 1.4 (1.2–1.7) <0.001 ***
Mobile Device 2.4 (2.2–2.7) <0.001 *** 1.8 (1.6–2.0) <0.001 ***
Personal Hygiene 1.6 (1.4–2.0) <0.001 *** 1.4 (1.2–1.6) <0.001 ***
Smoking 1.2 (0.8–1.8) 0.355 1.1 (0.8–1.5) 0.653
Other 0.9 (0.7–1.1) 0.155 0.8 (0.6–0.9) 0.004 **

Significance codes: <0.001 ‘***’ 0.001–0.01 ‘**’ 0.01–0.05 ‘*’.

Fig. 1. Odds ratio comparison of at-fault and all-cause SCEs by distraction type.

Table 5
Distribution of secondary tasks related to ‘‘in-cabin objects” distraction.

Secondary Task Subject vehicle driver at fault?

Yes No or NA

Moving object in vehicle 772 447
Reaching for object, other 321 208
Object in vehicle, other 248 434
Pet in vehicle 21 47
Object dropped by driver 2 2
Insect in vehicle 1 0
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The study findings are consistent with previous research about
the detrimental effect of mobile device use on driver performance,
and also highlighted another type of activities, namely, in-cabin
objects, that has an even greater impact. The distraction of in-
cabin objects results in manual activities that require the coordi-
nated control of the eye movement with hand movement and
the processing of visual input to guide reaching or grasping. Con-
sidering the commonality between the manipulation of in-cabin
objects and mobile device use, it seems the most dangerous dis-
traction types involve transient inattention from both eyes-off-
the-road and hand-off-the-wheel. Compared to in-cabin objects,
external distraction implies eyes-off-the road but does not require
hands-off-wheel, or more importantly, eye-hand coordination.

On the flip side, we also examined what variables are not signif-
icantly associated with at-fault SCEs. When drivers have food and
beverages or interaction with passengers, their overall risk of SCEs
was slightly reduced, suggesting a small protective effect. This may
be explained by lower traveling speed or less challenging traveling
conditions when the driver carries out such tasks and it is worth
investigating as a next step. Interaction with passengers is more
of a cognitive distraction than visual, therefore, our finding is con-
sistent with previous research that visual distraction has much
stronger effects on driving performance and accident hazard
(Peissner et al., 2011). Still, the odds ratios of at-fault SCEs were
slightly raised by these two distractions. In addition, smoking is
the only annotated distraction that is not significantly associated
with at-fault or all-cause SCEs. Considering these three distraction
types altogether, none of them direct the driver’s visual attention
off the roadway ahead in a substantial way, which might be the
reason why they are relatively harmless compared to others.

4.2. Limitations and future research

The study findings should be interpreted with limitations. First,
the grouping of distraction types is manual and based on the
semantic meanings of the descriptions of the secondary task, not
characterized by quantifiable measures of the extent of visual/cog-
nitive distraction it causes. The result is distraction types under-
stood by common sense and meaningful sample sizes of
subgroups that reduce biases related to small samples in regres-
sion. A future research direction is to study how the secondary
tasks can be clustered based on how they affect the kinematic mea-
sures of the vehicle. Second, the reasons that certain distraction
types are more (or less) hazardous were not examined in this
study. For example, we speculated that food and beverage con-
sumption may be associated with lower vehicle speed, thus, reduc-
ing the risk of all-cause SCEs. However, the theory requires further
investigation. Research on how drivers adapt their driving behav-
iors while engaging in secondary tasks is needed (Oviedo-
Trespalacios et al., 2016). Third, driver characteristics were not
included as control variables in the study. This was a deliberate
decision to be compatible with the mixed-effect model that
already factors in a random effect on individual drivers. Including
driver characteristics (e.g., gender and age) would make interpreta-
tion of the coefficients counterintuitive - we would be suggesting
‘‘for the same driver, their at-fault risk may be modified if they
change gender/age.” Although not explicitly controlling for tangi-
ble driver characteristics, the mixed-effect model does account
for driver heterogeneity.

4.3. Practical applications

The high risk of at-fault SCEs associated with in-cabin objects
serves as empirical evidence that in-cabin activities that require
eye-hand coordination present grave danger to drivers’ ability to
maintain fault-free maneuver of the vehicle. Most straightfor-

wardly, this should motivate the design of the vehicle interior that
securely stores owner items while allowing for easy access.
Although in this study IVIS (OR = 1.7) has a much lower risk than
in-cabin objects, the study finding is cautionary for the design of
future IVIS, given the rising popularity of touchscreen control pan-
els that require much more visual attention and manual effort
compared to physical knobs. In our wild but realistic imagination,
we envision that future connected wearable technology can detect
driver states such as drowsiness and perspiration to automatically
inform in-cabin climate control and adjust to driver comfort with-
out manual input. In addition, our findings provide hazardous dis-
traction types that computer vision based in-cabin sensing
technologies (Kaliouby et al., 2020) can learn to recognize.

5. Conclusions

Focusing on at-fault events improves our understanding of the
effect of distraction in potentially avoidable automobile accidents.
Adjusting for environment and driver variation, 6 out of 10 com-
mon distraction types significantly increase the risk of at-fault SCEs
by 20-1330%. The three most hazardous sources of distraction
were handling in-cabin objects (OR = 14.3), mobile device use
(OR = 2.4), and external distraction (OR = 1.8), with the latter two
also among the most commonly occurring (10.1% and 11.0%,
respectively). The study findings provide evidence that in-cabin
distraction that require eye-hand coordination presents grave dan-
ger to drivers’ ability to maintain fault-free, safe driving.
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a b s t r a c t

Introduction: Using connected vehicle technologies, pedestrian to vehicle (P2V) communication applica-
tions can be installed on smart devices allowing pedestrians to communicate with drivers by broadcast-
ing discrete safety messages, received by drivers in-vehicle, as an alternative to expensive fixed-location
physical safety infrastructure. Method: This study consists of designing, developing, and deploying an
entirely cyber-physical P2V communication system within the cellular vehicle to everything (C-V2X)
environment at a mid-block crosswalk to analyze drivers’ reactions to in-vehicle advanced warning mes-
sages, the impacts of the advanced warning messages on driver awareness, and drivers’ acceptance of this
technology. Results: In testing human subjects with, and without, advanced warning messages upon
approaching a mid-block crosswalk, driver reaction, acceptance, speed, eye tracking data, and demo-
graphic data were collected. Through an odds ratio comparison, it was found that drivers were at least
2.44 times more likely to stop for the pedestrian with the warning than without during the day, and
at least 1.79 times more likely during the night. Furthermore, through binary logistic regression analysis,
it was found that driver age, time of the day, and the presence of the advanced warning message all had
strong, significant impacts with a confidence value of at least 98% (p < 0.02) on the rate at which drivers
stopped for the pedestrian. Conclusions: The results from this study indicate that the advanced warning
message sent within the C-V2X had a strong, positive impact on driver behavior and understanding of
pedestrian intent. Practical Applications: Pedestrian crashes and fatality rates at mid-block crossings con-
tinue to increase over the years. Connected vehicle technology utilizing smart devices can be used as a
means for communications between pedestrians and drivers to deliver safety messages. State and local
city planners should consider geofencing designated mid-block crossings at which this technology oper-
ates to increase pedestrian safety and driver awareness.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

While current designs have aided pedestrians in crossing road-
ways at mid-block crossings, conflicts still arise due to the confu-
sion these designs can cause between pedestrians and motor
vehicles (Ibrahim, Karin, & Kidwai, 2005). Mid-block crosswalks
are dangerous for both pedestrians and drivers because communi-
cation between the pedestrian and driver is non-verbal and each
individual pedestrian decides when it is safe to cross (Katz,
Zaidel, & Elgrishi, 1975). These instances are increased when a des-
ignated mid-block crossing is installed at the crossing of a green-
way with a roadway due to the higher volume of pedestrians and
cyclists crossing. Sometimes these mid-block crossings are across

roadways where mid-block crossings are uncommon or unex-
pected, thus exposing users to an uncomfortable environment.

Multistage mid-block crossings can increase delay because
vehicles at all approaches must wait to interpret the pedestrian
to non-verbally communicate their desire to cross (Katz et al.,
1975). Communication between the pedestrian and driver
becomes more complicated when a mid-block crossing crosses a
road with a 3-lane or more cross section because one vehicle at a
multi-lane approach can block an adjacent vehicle’s view of a
pedestrian in the mid-block crossing. Connecting pedestrians and
vehicles to provide advanced warnings that anticipate potential
collisions should help to eliminate crossing confusion and
ambiguities.

Visual communication confusion aside, the balance of existing
laws and safety can create further confusion at mid-block cross-
ings. Virginia law requires drivers to yield to pedestrians in the
crosswalk; however, along routes such as the Washington & Old
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Dominion (W&OD) and Mt Vernon Trails in Northern Virginia, mid-
block crossings are signed such that the pedestrians must stop for
traffic. Legally, the drivers are required to stop at the crosswalk
should someone be within it; however, it is unclear what to antic-
ipate from drivers as they may yield to pedestrians either expect-
ing them to cross even though pedestrians are supposed to stop
and wait until no oncoming traffic is approaching or may not yield
knowing that pedestrians are supposed to give the right away to all
oncoming traffic.

Due to the unique nature of mid-block crossings, the unclear
and inconsistent rules of right of way, and the difficulty of estab-
lishing visual communication between pedestrian and driver,
mid-block crosswalks prove to be confusing and dangerous. This
study consists of designing, developing, and deploying a P2V com-
munication based cyber-physical system (CPS) at a mid-block
crosswalk designed to create an entirely virtual advanced warning
system for a mid-block crosswalk within the cellular vehicle to
everything (C-V2X) environment without the need for installing
physical safety infrastructure and technology.

1.1. The dangers of mid-block crosswalks

Unsignalized mid-block crosswalks pose a unique and confus-
ing scenario for all roadway users as driver and pedestrian commu-
nication, or the lack thereof, is paramount in understanding the
safety of these designs. In the National Highway Traffic Safety
Administration (NHTSA) 2017 annual report released in 2019,
pedestrian fatalities increased by 35% over the 10 year span from
2008 through 2017 (U.S. Department of Transportation National
Highway Traffic Safety Administration, 2019). Furthermore, this
NHTSA report states that the percentage of pedestrian fatalities
of total fatalities in traffic crashes each year increased over this
same 10 year span from 12% in 2008 to 16% in 2017, and that
73% of these fatalities did not occur at intersections (U.S.
Department of Transportation National Highway Traffic Safety
Administration, 2019).

With respect to the state that this experiment was conducted,
13.2% of total traffic fatalities were pedestrians in Virginia (U.S.
Department of Transportation National Highway Traffic Safety
Administration, 2019). The Virginia Department of Transporta-
tion’s (VDOT) Pedestrian Safety Action Plan released in May of
2018 states that 51% of pedestrian injury crashes and 66% of pedes-
trian fatal crashes occurred at mid-block crossings (Virginia
Department of Transportation, 2018). This report also showed that
Northern Virginia, where the W&OD and Mt Vernon Trails are
located, had the second highest percent of pedestrian fatal crashes
in Virginia over the years of 2012–2016 and the highest percent of
pedestrian injury crashes in all of the state (Virginia Department of
Transportation, 2018). Furthermore, the report states that 71% of
pedestrian fatal crashes occurred in dark or unlit conditions
(Virginia Department of Transportation, 2018). In the Virginia
Pedestrian Crash Assessment published by VDOT representing an
analysis between the years of 2012 and 2016, it was discovered
that pedestrian crashes accounted for 1.4% of all reported traffic
crashes, but accounted for 12.5% of all traffic fatalities (Virginia
Department of Transportation, 2017). Loudon County, the City of
Alexandria, Fairfax County, and Arlington County all ranked within
the top 10 cities and counties for pedestrian injury and fatal
crashes (Virginia Department of Transportation, 2017).

It would feel appropriate, then, to implement a form of control
of pedestrians at these mid-block crossings. A 2017 study con-
ducted by Coeugnet et al. studied the effectiveness of a vibrotactile
wristband on older pedestrian crossing behavior in a simulated
environment, alerting pedestrians as to whether they were making
a safe crossing decision. Results indicated that older pedestrians
responded in accordance with the wristband 51.6% of the time,

however, simulated collisions did not fall to zero (Cœugnet et al.,
2017). A study conducted by Zhuang and Wu also found that
pedestrians have poor crossing behavior at controlled pedestrian
crossings, often overestimating their ability to cross controlled
intersections with countdown timers (Zhuang & Wu, 2018). New
timers with required crossing speeds reduced risky crossing behav-
iors in pedestrians, but did not altogether prevent them (Zhuang &
Wu, 2018). While these studies reduced risky crossing behaviors,
they did not mitigate the unpredictability of pedestrian behavior
at crosswalks. Furthermore, Zhai et al. (Zhai, Huang, Sze, Song, &
Hon, 2019) found that the effects of jaywalking and risky driving
behavior on pedestrian crash severity were most prevalent under
rainy conditions (Zhai et al., 2019).

In order to attempt to combat the unpredictability of pedestri-
ans, the city of St. Louis rewrote their laws requiring all trail users
to stop and yield to vehicles at trail-roadway intersections. St.
Louis deemed that trail-roadway intersections were not in fact
intersections, but simply trail crossings. Thus, in order to control
pedestrians at such crossings, St. Louis removed all striping at
these crossings and installed stop signs and warning messages
along their trails, indicating that it is state law that all trail users
stop and yield to vehicles (Lindeke, 2015; Oleary, 2015). Ulti-
mately, pedestrians operated as usual, with some obeying the sig-
nage posted and others ignoring these warning and stop signs and
crossing with the assumption that motorists will yield to them as
the new state law stated.

A similar case can be seen in Virginia at identical intersection
types along the vast network of greenways in Northern Virginia.
There are stop signs and warning messages along the trails at inter-
sections with roadways, yet there is still some confusion at such
crossings. Whether it be pedestrians ignoring the signs and walk-
ing into the roadways with the assumption that they have the right
of way or pedestrians stopping as the signage demands, yielding to
vehicles, only to encounter vehicles yielding at the crosswalk to
pedestrians, leaving pedestrians to cross with the assumption that
vehicles in adjacent lanes will do the same. Such uncontrolled mid-
block crossings foster unpredictable and unsafe situations, leaving
all of the decision-making at these intersections in the hands of
each individual, thus increasing the potential of possible incidents.

1.2. Advanced warning messages

For this study, the presence of the on-board GPS system is
deemed as negligible, as most vehicles and drivers already have a
display present while they are driving, whether it be part of the
vehicle or a smart device mounted on their dashboard. Since this
application has both a visual and auditory warning message, the
way in which drivers interpret and react to an advanced warning
message must be accounted for in order to best test the application
for effectiveness. Providing drivers with pertinent information
from which they can make a decision sounds like a positive
approach to addressing road safety, but information provided at
the wrong time can drastically change driver behavior. Should a
message be sent to a driver well before a scenario arises or before
the driver has a visual on the scenario, the alert may be considered
a false alarm, therefore leading to mistrust in the messaging sys-
tem; too late and the driver may behave drastically and inappro-
priately (Lee and Moray, 1992; Wan et al., 2016). A study
conducted in 2016 found that, providing drivers with an advanced
warning message of an oncoming collision had the strongest
impact in reduced kinetic energy (braking of vehicle) at a lead time
of 4 to 8 seconds (Wan, Wu, & Zhang, 2016).

Furthermore, the acceptability of onboard advanced warning
messages is paramount to their impact on driver behavior. Cristea
et al. conducted a study to examine drivers’ acceptance and under-
standing of onboard advanced warning messages, finding that dri-
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vers positively reacted to the onboard warning messages and
expressed confidence in the onboard messages (Cristea &
Delhomme, 2014). A similar study conducted by Hajiseyedjavadi
et al. also found that advanced onboard alerts significantly
increased the likelihood that younger drivers would glance
towards latent pedestrian hazards and that advanced alerts led
to safer driving behavior around a possible pedestrian threat
(Hajiseyedjavadi et al., 2018). A 2018 study conducted by Wu
et al. also evaluated whether auditory warning characteristics of
an onboard collision alert system effected drivers’ avoidance
behaviors in a driving simulator and found that all tested warning
alerts reduced collision rates and shortened reaction times (Wu,
Boyle, Marshall, & O’Brien, 2018).

Concerns regarding driver distraction with respect to technol-
ogy within vehicles, especially among younger age groups, and
reliance on advanced warning messages have also been analyzed
in previous studies. Earlier studies from the 2000s highlighted
the potential negative effects of technology within vehicles (espe-
cially among younger drivers), however, with the inclusion of
assistive driving technologies in more recent studies, distraction
has become less of a concern (Lee, 2007; Mccartt et al., 2006). More
recently, in 2017, both Jermakian et al. and Kidd et al. have found
that integrated collision warning systems were not associated with
distracted behaviors across all age groups (Jermakian et al., 2017;
Kidd and Buonarosa, 2017).

A key distinction between these studies and the mid-block
crossing application addressed in this paper is that an overwhelm-
ing majority of advanced warning systems rely on a reactive
approach to an already occurring event (i.e., a collision warning
recognizing a pedestrian within the path of a vehicle), whereas
the application in this paper relies on a proactive approach, where
the pedestrian is alerting the driver of their intent to cross the
crosswalk before they even do so. Furthermore, previous studies
had focused primarily on driver distraction due to the introduction
of new technologies, whereas the research conducted in this paper
investigated the CPS warning application’s potential for increasing
driver awareness of pedestrian intent to cross.

2. Purpose and scope

With new technologies being released to the public, the number
of incidents involving vehicles and vulnerable road users can be
minimized. The research discussed in this paper describes and ana-
lyzes the development and deployment of a pedestrian to vehicle
(P2V) connectivity system via cellular vehicle to everything (C-
V2X) technology designed to increase driver awareness of pedes-
trians at mid-block crosswalks.

Designated mid-block crossings have been modified over time
to increase the safety and functionality for pedestrians and motor-
ists. Mid-block crosswalks can incorporate refuge gaps, staggered
halves, and curb extensions; however, mid-block crosswalks are
not always safe because they can create unpredictable scenarios
for both drivers and pedestrians. With the surge of connected vehi-
cle (CV) technology and push for increased alternative modal usage
penetration into overall travel mode choice, there are more oppor-
tunities to connect pedestrians and vehicles and provide road users
with increased situational awareness, potentially reducing the
number of vehicle–pedestrian incidences.

The scope of this project was to develop an entirely cellular,
cyber-physical C-V2X application to replace physical safety tech-
nology that both pedestrians and motorists can install on their
smartphones or tablets to give users the ability to communicate
with each other at mid-block crossings via discrete safety mes-
sages and analyze the safety impacts and performance metrics of
said application. Advanced warning messages differ from currently

deployed technologies in vehicles, for example automatic braking,
as this technology takes a pro-active approach in preventing inci-
dents rather than a reactive approach. Personalized advanced
warning messages sent to drivers inform them of the pedestrian’s
intent to cross, potentially increasing the driver’s awareness of the
pedestrian’s presence and intent at the upcoming crosswalk, limit-
ing the number of incidents observed, and limiting the ineffective-
ness of visual communication. Furthermore, C-V2X technology that
only relies on a cellular network for operation such as this applica-
tion eliminates the need for deploying costly CV technology, such
as short-range communications and WIFI devices on-site, increas-
ing the extent of the CV network coverage and operability without
physical infrastructure like in previous studies (Suzuki,
Raksincharoensak, Shimizu, Nagai, & Adomat, 2010). The develop-
ment of this application was also designed to be integrated into
typical GPS navigation applications (like WAZE or Google Maps),
differentiating itself from on board devices designed for advanced
warnings currently deployed in many modern vehicles (lane
departure warning, collision warning, etc.), while providing warn-
ing messages on a familiar platform that typically does provide
warning messages.

3. Materials & methods

This project aimed to expand connected vehicle technology to
include vulnerable road users in the connected environment.
Mid-block crosswalk treatments vary by region and operational
needs; often, a mid-block crosswalk is striped but receives no
active infrastructure support, such as flashing warning lights, to
warn pedestrians and drivers of a potential conflict. The applica-
tion was designed to create an advanced warning CPS for a mid-
block crosswalk through geofencing – a process of using GPS tech-
nology to virtually draw geographic boundaries, or geospaces,
which allowmobile technologies to trigger a response when within
the defined space – designated areas in which users will be able to
interact with each other via smartphone or tablet, as seen in Fig. 1.

The geofenced cellular network delineates three geofenced
areas:

1. A geofence encompassing the mid-block crosswalk and adja-
cent sidewalk for the Pedestrian Geofence.

2. Two geofences adjacent to either side of the mid-block cross-
walk for the Vehicle Geofence.

3.1. Concept of operations

The advanced warning mobile application was designed such
that it used wireless communications to create an environment
consisting of stagnant virtual mid-block crossings, overlapping
the existing mid-block crossings, which users could interact with.
When a pedestrian is in range of the designated crossing, the vir-
tual environment recognizes that a user is present and enables
the user to broadcast their presence and intent to cross at the
crossing. Drivers need to be equipped with the application so that
they may interact with the virtual network, as well. When the dri-
ver is within a designated range of the virtual crosswalk and a
pedestrian broadcasts a notification of their presence at the mid-
block crossing using the mobile application, a visual and audible
advanced warning message is transmitted to the driver, warning
them that a pedestrian is present.

The proposed application was designed to run as the primary
screen on the phone and will serve as a proof of concept. Further
development can have the application operate in the background
of the smart device or integrated into other GPS technologies,

Austin Valentine Angulo and B.L. Smith Journal of Safety Research 79 (2021) 237–245

239



seamlessly allowing users to view their GPS and be alerted from
the crossing via visual and audible messaging.

This application needs only standard signage, pavement mark-
ings, and cellular signal from two smart devices (one in vehicle
and one on the pedestrian’s person) in order for proper operation
at a mid-block crossing. The application was designed so that it
would limit the cost and materials needed to operate and maintain
active warning technology at mid-block crossings.

3.2. System overview

The CPS was created using localized, designated geospaces,
using GPS navigational systems (in this instance, Google Maps) at
mid-block crossings. Users in the geospaces have the ability to
interact with the virtual crosswalk; the interaction between users
and the environment is limited to user request and solely personal-
message oriented. Users have the option to define themselves as a
Pedestrian or Motorist upon opening the application and are
allowed to alter roles between trips. The system architecture and
data flow for messaging of the CPS is displayed in Fig. 2 and the
user interface of the application is shown in Fig. 3.

The test course for this experiment was determined to be a lap
around the Federal Highway Administration’s Turner Fairbank
Highway Research Center located in McLean, Virginia. The test
course is a two-lane cross section, bi-directional road that encircles
the research center. There is one mid-block crosswalk present
along the course, as indicated by the red square in Fig. 4.

There are sidewalks leading up to the mid-block crosswalk that
the pedestrian utilized for his approach during testing and signal-
ized intersections border both approaches of the mid-block cross-
walk. Considering the Wan study, a lead time of 4 to 8 seconds
provides the best response from drivers receiving advanced colli-
sion warning messages (Wan et al., 2016). Since the speed limit
on the test roadway is 25 mph and the median lead time for send-
ing a message is 6 seconds, it was determined that the appropriate
distance from the crosswalk that a message was to be sent was 220
feet. A utility marker was placed alongside the roadway at this
point to indicate for the researcher acting as the pedestrian when
he should press the button as the vehicle approached the cross-
walk. In testing, it was found that the advanced warning message
was delivered at an average distance of 215.85 feet from the cross-
walk with a standard deviation of 26.05 feet, yielding a range of
189.81 feet to 241.91 feet. Driver approach speeds at the instant
the message was received averaged at 20.34 mph with a standard
deviation of 2.63 mph and a range of 11.95 to 27.28 mph. Based on
these statistics, the shortest theoretical reaction advanced warning
lead time would be 4.74 seconds at a speed of 27.28 mph and dis-
tance of 189.81 feet, still falling within the recommended 4–8 sec-
onds as suggested in the Wan study. Performance testing with the
application analyzed latency, defined as the time it takes for a
device to encode and send a hyper-text transfer protocol request
to the server and then receive and decode the response, which
was found to be an average of 130.947 milliseconds for the driver
side of the application and 83.208 milliseconds on the pedestrian
side of the application.

Test subjects each drove a total of four laps around the facility
in which the first and third laps no pedestrian was present and
for the second and fourth laps a pedestrian was present attempting
to cross the crosswalk with and without the warning application.
The names Lap 1 and Lap 2 are given for the second and fourth laps
of the testing cycle to indicate the first and second laps in which
the test was conducted. Subjects were also tested in both day
and night conditions for this experiment. During the daytime per-
iod, drivers were split into two groups: Group A saw the pedestrian
attempt to cross the crosswalk without the warning application on

Fig. 1. Mid-block crossing user during the experiment with driver and pedestrian geospaces highlighted in red and green, respectively.

Fig. 2. System architecture.
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Lap 1 and with the application on Lap 2. Group B experienced the
warning application on their Lap 1 and no warning on their Lap 2
to analyze the effects that repeated measure learning might have
on the subjects’ willingness to yield to the pedestrian. The night-
time testing subjects experienced the same scenario order as
Group A from the daytime testing.

Subjects were briefed before experimentation and were
informed that the study was designed to study their reactions to
advanced warning messages in general. Multiple advanced warn-
ing message examples were provided including, in order: Con-
struction Ahead, Pedestrian Ahead (the actual warning message
they would receive), Curve Speed Warning, and Pothole Ahead.
Subjects were also told that they would be driving around the facil-
ity for a few minutes to familiarize themselves with the vehicle
before leaving the facility for the actual study, which was not the
case as the study was conducted after the first lap was completed
around the facility.

3.3. Dataset demographics

A total of 124 subjects were recruited from the northern Vir-
ginia area, representative of the community that lives in the north-
ern Virginia area. The subjects were split into two age groups – the
‘‘Young” group consisted of subjects 45 years of age or younger and
the ‘‘Old” group consisted of ages 46 and older. 92 of these subjects
were tested during the daytime and 32 of these subjects were
tested during the nighttime, and no subjects tested in both day
and night conditions. Table 1 details the count totals of subjects
based on Age, Gender, and Time of Day.

3.4. Data collection for analysis

In this report, four major data types were considered to under-
stand the behaviors of drivers with the advanced warning message.

The first data source considered was drivers’ reaction to the
warning message. This was defined as the percentage of drivers
stopping for the pedestrian with and without the advanced warn-
ing message.

The second data source considered was drivers’ stated prefer-
ence data. This was collected through a posttest questionnaire
regarding the drivers’ perceptions of the application. Responses
were recorded on a five point Likert scale ranging from 1 to 5 –
with responses of 1 indicating strongly disagreeing with the state-

Fig. 3. (Left to right) Application initiation screen, pedestrian user interface showing location of user and crosswalk, driver user interface with alert (audio of a tri tone,
woman’s voice saying ‘‘pedestrian ahead”, and a second tri tone plays when message is received).

Fig. 4. (Left to right) Test track with direction and crosswalk location, distance from crosswalk where message is to be sent to the driver.

Table 1
Dataset demographics. Bold values indicate the two time
periods this study was conducted, daytime and
nighttime.

Count

Day 92
Female 46
Old 28
Young 18

Male 46
Old 23
Young 23

Night 32
Female 16
Old 9
Young 7

Male 16
Old 6
Young 10

Grand Total 124
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ment and responses of 5 indicating a strong agreement with the
statement – and analyzed perceptions of how much drivers
believed it improved their awareness of the pedestrian, whether
drivers found the technology distracting, and whether or not dri-
vers would like to see this technology integrated into commonly
used GPS routing applications.

The third data source considered was drivers’ collected eye
tracking data. The eye tracking software, SmartEye, collected the
location the driver is looking as a vector in 3-dimensional space.
This information was overlaid on the recorded video from the
forward-facing camera installed in the vehicle to analyze where
the driver was looking during the experiment. The eye tracking
data were recorded at a rate of 120 Hz, which resulted in very
accurate detailing when and for how long drivers were looking
somewhere. Eye tracking accuracy analysis was conducted by a
researcher visually watching a video playback of the scenario with
a gaze tracker overlaid on the screen indicating where the driver
was looking during the test. Using MAPPS v2017.1, researchers
were able to select these time frames to analyze and pull the exact
amount of data they needed from the study. To best understand
how often the driver was looking at the pedestrian, researchers
were able to use a tool in the eyesDx MAPPS software to draw a
region of interest on top of the video footage captured by the
forward-facing camera around the pedestrian in multiple frames
of the test track.

The last data source considered was the drivers’ kinetic data,
which was collected via the on-board vehicle control area network
(CAN) bus. The vehicle’s standard data collection protocol was
deemed appropriate as it collected speed (MPH), location (GPS),
acceleration rate, deceleration rate, steering wheel angle, and
break application (a binary measurement is the brake is pressed
or not pressed).

4. Results & discussion

During the daytime, a total of 92 subjects were tested and dur-
ing the nighttime a total of 32 subjects were tested for a grand total
of 124 test subjects.

4.1. Yielding rates & odds ratios

The first measure of effectiveness that was considered was the
effect of the warning application on the driver’s yielding rate. Dur-
ing the daytime, 45% of drivers in Group A stopped for the pedes-
trian without the warning during Lap 1, whereas on Lap 2 with the
warning they stopped 80% of the time. Group B during the day
stopped 73.1% of the time with the warning during Lap 1 and

63.5% of the time without the message during Lap 2. During the
nighttime, drivers stopped for the pedestrian 75% of the time with-
out the warning during Lap 1 and 90.6% of the time with the mes-
sage during Lap 2. The odds ratios for indicating the likelihood that
drivers will stop with the warning message for each of the different
test laps is shown in Fig. 5.

Looking at the odds ratios in Fig. 5, it is found that, in all of the
scenarios, drivers were more willing to stop for the pedestrian with
a warning message than without one. The confidence intervals dis-
played found for each odds ratio with a confidence of 95%; with
respect to the confidence intervals, none of the scenarios show
any odds ratio values under 1, indicating that at the lower confi-
dence of 95%, all of the scenarios are still likely to show that drivers
are more willing to yield for the pedestrian with the advanced
warning message. In particular, drivers on their first exposure to
the pedestrian were 2.44 times more likely to stop for the pedes-
trian during the day and 1.79 times more likely to stop for the
pedestrian at night with the advanced warning (Warn vs No Warn
Day – Lap 1 and Warn vs No Warn Night in Fig. 5, respectively).
These results are consistent with previous studies and regarding
the effects of RFB activation and driver yielding rates along similar
roadways (Al-Kaisy et al., 2016; Hunter et al., 2012; Shurbutt and
Van Houton, 2010).

Furthermore, the odds ratios for the questionnaire responses
are shown in Fig. 5. These odds ratios indicate the likelihood for
the driver to be in agreement with the statements provided in
the questionnaire regarding whether the warning increased the
drivers’ awareness of the pedestrian (Increased Awareness),
whether the application is a technology that drivers would like
to see incorporated into other GPS applications (Technological
Acceptance), and whether drivers didn’t find the application dis-
tracting (Found Not Distracting). For each survey question, it was
found that the driver was more likely to give positive feedback
for the application if the driver stopped for the pedestrian. With
a confidence value of 95%, only the Increased Awareness category
saw a lower confidence value lower than 1, indicating that it is pos-
sible that the application increased all drivers’ awareness of the
pedestrian, regardless of whether the driver stopped or didn’t stop.
An interesting case was seen in the Found Not Distracting
responses, where drivers were 7.9 times more likely to say the
application didn’t distract them if they stopped for the pedestrian.
Such a large odds ratio demands consideration of the instances that
were false positives, in this case those who didn’t find the message
distracting but still didn’t stop for the pedestrian. Only 21 of the
subjects didn’t stop for the pedestrian with the warning applica-
tion and 14 of those subjects noted that they did not find the appli-
cation distracting. Of those 14 drivers, 11 were older drivers

Fig. 5. (Left to right) Odds ratios for the driver reaction (Stopped vs Didn’t Stop) for the Warning vs No Warning analysis, Odds ratios for the driver stated preference data for
the Stopped vs Didn’t Stop Scenario.
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(45 years of age or older), 9 were female, and 8 received the warn-
ing message on Lap 1. From these demographics it may be consid-
ered that older drivers may not be as willing to stop for the
pedestrian, even if they did not find the application distracting.

4.2. Binary logit model

To best understand the impacts of the many variables in the
experiment on the yielding decisions of the drivers, binary logistic
regression analyses were conducted on select cases for the study.
The binary logit model follows the following form:

Y ¼ logb
p

1� p
¼ b0 þ b1X1 þ � � � þ bnXn

Where:

Y = Expected Outcome (i.e. Stop or Didn’t Stop)
p = probability of stopping for pedestrian
b = ‘‘degree of change” coefficient
X = independent variable (i.e. Age, Warning Message, Gender,
etc.)
n = subject number

Due to the nature of real-world experimentation, there were
some limitations to the study that impacted data yields. For each
of the logit models displayed in this report, different subject totals
were found due to data loss and/or poor eye tracking. Table 2 dis-
plays the variable coding for each binary logit model considered
and the frequencies for each data field.

The variable values, standard errors, and significance values
with a confidence value of 95% for three select binary logit models
are presented and considered in this analysis, the results of which
are shown in Table 3.

The first binary logit model – All Subjects – included all 124
subjects. This model was split by 72 of the subjects not receiving
the message on their first lap and 52 of them receiving the message
on their first lap. This model considered age (Age), gender (Gen-
der), time of the day (TimeOfDay), the order in which the warnings
were received (Lap), and the presence or lack thereof of the
advanced warning message (Message). Due to data losses in the
speed and eye tracking data for subjects throughout the experi-
ment, these variables weren’t considered for the All Subjects
model. The significant variables in this model form were found
to be Age, TimeOfDay, and Message. Considering all subjects, it
was found that younger drivers were more willing to stop for the
pedestrian, that drivers were more likely to stop for the pedestrian

during the nighttime than the daytime, and that drivers were more
willing to stop for the pedestrian with the warning message. Both
the Message and TimeOfDay variables had larger coefficient values,
indicating that these had a strong influence over whether or not
the driver stopped for the pedestrian. With respect to the higher
rate of yielding for the pedestrian at night – a possible explanation
to consider is the character of the test environment at this time:
during the nighttime hours, the facility was closed and only the
researcher and security of the federal facility were present during
the experiment, whereas during the day workers were present and
walking around the facility, so drivers may have been more ‘‘on
guard” than normal during the night hours. It should be noted that
the Lap variable does show as significant with a confidence value of
90%, indicating that drivers were more likely to stop for the pedes-
trian during their second exposure to the pedestrian, possibly indi-
cating that there was some in-test learning during the repeated
measures study. This Lap variable may also be influenced by the
order in which subjects received the message, with an uneven bal-
ance in the order in which messages were received a bias may have
been introduced into this model.

The second binary logit model – Eye Tracking Subjects –
included 87 total subjects, 59 from the daytime and 28 from the
nighttime experiments. This model was split by 59 of the subjects
not receiving the message on their first lap and 28 of them receiv-
ing the message on their first lap. This model considered age (Age),
gender (Gender), time of the day (TimeOfDay), the order in which
the warnings were received (Lap), the presence or lack thereof of
the advanced warning message (Message), and the percentage of
time the driver looked at the pedestrian while the pedestrian
was visible up to the moment the driver stopped for the pedes-
trian, or drove through the crosswalk (PercPedLook). The signifi-
cant variables in this model form were found to be Age,
TimeOfDay, and Message. Considering this subject group, it was
found that younger drivers were more willing to stop for the
pedestrian, that drivers were more likely to stop for the pedestrian
during the nighttime than the daytime, and that drivers were more
willing to stop for the pedestrian with the warning message. All of
these variables had larger coefficient values, indicating that they
had a strong influence over whether or not the driver stopped for
the pedestrian. Interestingly, this model shows that the Lap vari-
able becomes insignificant, whereas in the All Subjects model, it

Table 2
Variable encodings for generated in SPSS for the binary logit models.

Dependent variable coding

Action Value

Didn’t Stop 0
Stopped 1

Categorical variable coding

Frequency Value

Message No Warn 124 1
Warn 124 0

Gender Female 62 1
Male 62 0

Time of Day Day 92 1
Night 32 0

Lap 1st Lap 53 1
2nd Lap 72 0

Age Old 66 1
Young 58 0

Table 3
Binary logit model results for the three selected models.

Variable b Std Error df P-value

All subjects
Age (1) �0.795 0.307 1 0.010
Gender (1) �0.257 0.298 1 0.389
Time of Day (1) �1.006 0.393 1 0.010
Lap (1) �0.521 0.301 1 0.084
Message (1) �0.984 0.304 1 0.001
Constant 3.063 0.527 1 0.000

Eye tracking subjects
Age (1) �1.212 0.381 1 0.001
Gender (1) �0.241 0.355 1 0.497
Time of Day (1) �0.978 0.420 1 0.020
Lap (1) �0.575 0.372 1 0.123
Message (1) �0.907 0.374 1 0.015
% Time Looking at Pedestrian 1.031 0.774 1 0.183
Constant 2.629 0.580 1 0.000

No missing data
Age (1) �1.065 0.456 1 0.02
Gender (1) 0.059 0.419 1 0.888
Lap (1) �0.768 0.434 1 0.077
Message (1) �1.197 0.441 1 0.007
Speed �0.084 0.082 1 0.303
% Time Looking at Pedestrian 2.049 0.961 1 0.033
Constant 2.982 1.754 1 0.089
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could be considered significant. The PercPedLook variable is found
to not be significant in this model, however, this model is worth
considering as the last model – No Missing Data Subjects – shows
this variable to become significant.

The third binary logit model – No Missing Data Subjects –
included 58 subjects, all of which were part of the daytime exper-
iment. This model was split by 30 of the subjects not receiving the
message on their first lap and 28 of them receiving the message on
their first lap. This model considered age (Age), gender (Gender),
time of the day (TimeOfDay), the order in which the warnings were
received (Lap), the presence or lack thereof of the advanced warn-
ing message (Message), the percentage of time the driver looked at
the pedestrian while the pedestrian was visible up to the moment
the driver stopped for the pedestrian, or drove through the cross-
walk (PercPedLook), and the approach speed at which the driver
was travelling at the average distance from the crosswalk that
the message was received by drivers (Speed). The significant vari-
ables in this model form were found to be Age, Lap, Message, and
PercPedLook. Considering this subject group, it was found that
younger drivers were more willing to stop for the pedestrian, that
drivers were more willing to stop for the pedestrian on their sec-
ond lap, that drivers were more willing to stop for the pedestrian
the longer they looked at them, and that drivers were more willing
to stop for the pedestrian with the warning message. The Message,
Age, and PercPedLook variables had larger coefficient values, indi-
cating that these had a strong influence over whether or not the
driver stopped for the pedestrian.

A binary logit model for speed was considered as well without
the eye tracking data, however, speed was not found to be signifi-
cantly impactful on the model and nor was it found to become sig-
nificant in the No Missing Data Subjects model, therefore, the
model is not reported.

5. Conclusions & Future work

This research aimed to develop a cyber physical, C-V2X applica-
tion that could be easily integrated into typical GPS navigation
applications that provided proactive, advanced warning messages
to drivers of pedestrians’ presence and intent to cross at mid-
block crosswalks.

From the analysis conducted, a few conclusions can be made
that indicate the positive performance of the advanced warning
message.

First, the odds ratio tests for the warning versus no warning
case on lap order shows that, across the board, those who received
the advanced warning message were more willing to stop for the
pedestrian than without it.

Second, it was found that in the odds ratio comparison between
driver reaction (stopped vs. didn’t stop) and stated responses in the
questionnaire that those who did stop for the pedestrian were
more likely to rate the application positively. An argument can
be made, however, that the ideal scenario for this odds ratio test
be 1 for each questionnaire statement, indicating that there isn’t
a difference in perception of the application between those that
did and didn’t stop for the pedestrian, with all subjects reporting
positive feedback. This in mind, the most important questionnaire
response, whether the application increased the drivers’ awareness
of the pedestrian, has an odds ratio of 1.35 and a confidence inter-
val below 1. In this analysis, 88.9% of the subjects indicated that
the application increased their awareness of the pedestrian, vali-
dating this ideal scenario.

Third, regarding the binary logit models, it can be concluded
that driver age, the time of the day that subjects were tested,
and the presence of the advanced warning message all had strong,
significant impacts on the rate at which drivers stopped for the
pedestrian. Most importantly, the presence of the advanced warn-
ing message was found to be very significant across all models,
showing an increase in the likelihood for the driver to stop for
the pedestrian, further indicating that the message had a positive
impact on driver behavior.

As mentioned in Section 4.1, 21 subjects did not stop for the
pedestrian when they received the advanced warning message.
After the study was completed and subjects were debriefed and
told the actual goal of the study, they were asked to provide any
comments or suggestions for the application – of the 21 subjects
who didn’t stop, 13 subjects left responses. Comments left by the
subjects showed no clear trends, though, three cited that the mes-
sage came too late as the primary reason they didn’t stop. The full
responses of these 13 subjects are shown in Table 4.

Future work on this application and its methods can be con-
ducted to better the application’s performance as well as better

Table 4
Comments from subjects who didn’t stop when they received the advanced warning message.

Post-Test Comments – Didn’t Stop with Advanced Warning Message

Age Gender Lap Message
Received

Comments

23 F 1st Lap The software jolted me and scared me for a second. Suggest that come with an explanation that the sound comes up at any time.
Perhaps instruct the driver to remain calm while it is talking

45 F 1st Lap Have notification sent earlier
35 F 1st Lap Perhaps a control or two where the pedestrian comes/approaches the road and begins to walk across to see reaction to moving

pedestrian
70 F 1st Lap Found the study to be very insightful
75 M 1st Lap Using a GPS would be more challenging. Pedestrian was far away from crosswalk so verbal warning was not useful. Maybe the

pedestrian could be closer to the road. Pedestrian was too nonchalant. Could have more pedestrians even crossing the road without
a traffic light

34 F 1st Lap Please add this feature to Waze or google maps
77 F 2nd Lap Pedestrian warning application helpful if more clearly stated and more succinct and louder. Was unaware of the visual display of

the pedestrian warning application
75 M 2nd Lap More driver education on laws pertaining to mid-block crossings when a pedestrian is waiting to cross, but the driver has the green

light. If the driver stops, she could be rear-ended
28 M 2nd Lap The application increased my awareness, but I felt that it came too late for me to do anything other than slam on my brakes since

the pedestrian wasn’t actually in the crosswalk I just kept going
54 M 2nd Lap Reduce volume of pedestrian warning
57 F 2nd Lap I was confused by the lack of warning the first time
58 F 2nd Lap It caught me by surprise because I did not know it was there, would be helpful if people knew beforehand it is there
56 F 2nd Lap Have the messages for crosswalk sooner
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understand the impacts the application has on drivers. Firstly, a
more robust nighttime testing scenario could be conducted with
a more random approach to what lap the driver receives the mes-
sage – this study only say nighttime drivers receiving the message
on Lap 2 of the experiment, which may show some bias towards
drivers’ learning through repeated measures what the test is actu-
ally about. Furthermore, different results may be found in testing
this application on a different roadway, preferably not on a govern-
ment facility such as this experiment was done – there may be
some bias in driver behavior due to the pressure of being on a fed-
eral facility located right next to the Central Intelligence Agency.
Another approach to this experiment would be to test pedestrian
interactions and acceptance of the technology and analyze their
behavior at mid-block crossings with the application and deter-
mine whether this should be a tool for all users or if the application
is better suited for use by those with disabilities.
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a b s t r a c t

Introduction: This paper investigates how members of a culinary and hospitality arts program generate,
share, and learn safety knowledge via social and identity mechanisms. Method: We conducted semi-
structured interviews with 20 participants of varying roles and experience (i.e., students, culinary
instructors, and restaurant chefs) in the culinary and hospitality arts program at a large polytechnic in
western Canada. Results: The emergent themes from these interviews indicated that the circulation of
safety knowledge relied on the interaction among individuals with various levels of experience, such that
those who were more experienced in the culinary arts were able to share safety knowledge with novices,
who had less experience. Comparing safety knowledge gleaned from within the school against that
gleaned from within the industry highlighted differences between the construction of safety in the
two contexts. Notably, many aspects of safety knowledge are not learned in school and those that are
may not apply in the industry context. We found that safety knowledge was shared through informal
means such as storytelling, a process that allowed members to come to a deep, collective understanding
of what safety meant, which they often labeled ‘‘common sense.” Conclusion:We found that safety knowl-
edge was a currency through which participants achieved legitimacy, generated through continual prac-
tical accomplishment of the work in interaction with others. Practical Applications: Our findings provide
novel insights into how safety knowledge is shared, and we discuss the implications of these findings for
classroom, work-based learning, and other forms of curricula.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The definition of ‘‘safety” and how it is understood seems to
vary widely depending on who you ask: an experienced chef is
likely to give a very different account of how to ensure safety in
an industrial kitchen compared to that of a novice apprentice. Dif-
ferences in safety knowledge as a function of experience and role
have been documented in a range of work contexts (e.g., Carroll,
1998; Clarke, 1999; Gherardi, 2006; Gherardi, Nicolini, & Odella,
1998; Gherardi & Nicolini, 2000a; Pollnac, Poggie, & Cabral,
1998; Simpson, 1996), and point to several features of how knowl-
edge about safety is learned and shared. First, safety is more than

the absence of accidents (Rochlin, 1999). Likewise, ‘‘unsafe behav-
ior” is undoubtedly more complicated than individuals acting ‘‘un-
safely” even after learning the ‘‘proper way” of doing things. Green
(1997) investigates people’s perceptions of accidents and finds that
individuals generally understand them as preventable through
individual responsibility and basic competence, and this under-
standing varies by experience. Second, learning about safety is
not a ‘‘linear practice” (Pink, Tutt, Dainty, & Gibb, 2010, p. 656).
The construction of safety knowledge is a continuous and active
process achieved through social engagement with other people
who are also part of the learning (Gherardi & Nicolini, 2002a). In
this way, learning about safety from on-the-job experience or hav-
ing an intuition (i.e., ‘‘gut feeling”) about safety comes from social
interaction (Kamoche & Maguire, 2010; Nicolini, 2012). Indeed,
social interaction is key to understanding safety in the workplace.
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It is therefore unsurprising that, in general, work safety research
has moved away from an individualistic conceptualization of
safety and safe work behavior toward one that focuses on collec-
tive accomplishment and responsibility (Gherardi, 2006; Green,
1997; Llory, 1997; Somerville & Abrahamsson, 2003; Turner &
Gray, 2009; Turner & Tennant, 2010). To this end, Holmes and
Gifford (1997) argue that occupational health and safety strategies
that focus solely on individual behavior change or technical mea-
sures will fail because they do not consider the ‘‘social context,
the hierarchical structure of the industry, or the shared assump-
tions about risk control through individual skills and responsibili-
ties” (p. 11). The social context is especially important for
understanding occupational safety because the meanings of risk
and physical danger are socially constructed and develop through
individuals interacting with one another to share and learn about
these meanings (Simpson, 1996). As such, safety is often difficult
to quantify, requiring us to employ other modes of inquiry (e.g.,
qualitative research) to understand how it is created and
maintained.

Circulation of such safety knowledge in a social context—which
we describe hereafter as ‘‘safety knowledge sharing”—is achieved by
both experienced and novice workers in interaction. Knowledge
about safety is shared through storytelling, formal and informal
mentorships, and day-to-day interactions in the course of carrying
out tasks and observing how others complete the same tasks.
Safety knowledge sharing is an important social process to under-
stand as it underscores how workplace safety is learned, and cap-
tures some of the dynamics of safety climate—the shared sense of
how safety is ‘‘done around here” (Zohar & Luria, 2003).

The goal of this study is to qualitatively investigate how safety
knowledge is shared among novices and more experienced work-
ers. In doing so, the study makes three contributions. First, it pro-
vides a richer understanding of the features and processes that
enable a novice to learn safe work practices through interaction
with others (Gherardi, 2006). Second, the study highlights a key
aspect of safety knowledge sharing: the conception of safety as
‘‘common sense,” or knowledge that is not taught in a didactic
way in the classroom but rather through informal means and
everyday interaction. Third, the findings from this study provide
valuable guidance for practice, suggesting ways to identify and
facilitate formal and informal opportunities to facilitate safety
knowledge sharing.

2. Conceptual background

2.1. Safety knowledge sharing

Knowledge in organizations is an important and ethereal ‘‘re-
source,” and the social processes by which it circulates among
employees of varying experience involve knowledge transfer—that
is, the acquisition of knowledge—and knowledge exchange—that is,
mutual knowledge seeking (Wang & Noe, 2010). A common ele-
ment in both of these processes is knowledge sharing, which refers
to the ‘‘provision of task information and know-how to help others
and to collaborate with others to solve problems, develop new
ideas, or implement policies or procedures” (Wang & Noe, 2010,
p. 117). Research from multiple disciplines has examined charac-
teristics correlated with knowledge sharing at the individual
(e.g., Connelly, Ford, Turel, Gallupe, & Zweig, 2014; Li, Yuan,
Ning, & Li-Ying, 2015), team (e.g., Bakker, Leenders, Gabbay,
Kratzer, & Van Engelen, 2006; Sawng, Kim, & Han, 2006), and orga-
nizational level of analyses (e.g., Connelly & Kelloway, 2003;
Nesheim & Gressgård, 2014; Wang, Noe, & Wang, 2014), indicating
the importance of interaction among organizational members in
facilitating knowledge sharing. Of particular relevance to the cur-

rent study are the relationships and ties that facilitate knowledge
sharing (e.g., Kankanhalli, Tan, & Wei, 2005; Nahapiet & Ghoshal,
1998; Witherspoon, Bergner, Cockrell, & Stone, 2013), such as
social networks among employees and their supervisors (e.g.,
Dysvik, Buch, & Kuvaas, 2015), among colleagues (e.g., Holste &
Fields, 2010; Lin, 2007), and among organizational units (e.g.,
Hansen, 2002; Schulz, 2003). Because social networks describe
the patterns of interaction among organizational members to
obtain and circulate (safety) knowledge, social interaction is the
means through which safety is practically accomplished.

The knowledge sharing literature has primarily focused on the
circulation of knowledge among knowledge workers. This narrow
focus underserves and misrepresents the importance of knowledge
in all jobs, not just those labeled as ‘‘knowledge work” (Kelloway &
Barling, 2000). As a result, our understanding of how domain- or
content-specific knowledge is shared and learned remains limited.
For example, knowledge sharing between organizational members
is particularly important for jobs that involve ‘‘challenging, critical,
and extremely time pressured contexts” (Maslen, 2014, p. 83),
which accurately describes most jobs that are sensitive to, or prior-
itize, safety issues in some form. Such jobs may involve, for
instance, responsibility for patient safety within health care, ensur-
ing staff and customer safety in the restaurant and hospitality
industries, or enacting emergency response procedures to major
disasters such as pandemics (e.g., COVID-19) that may endanger
organizational, customer, and general public safety. Furthermore,
manual labor-intensive jobs concerned with employee safety, such
as coal mining, may rely on sharing knowledge as a way to mini-
mize or prevent injuries and accidents (Cullen & Fein, 2005;
Kamoche & Maguire, 2010). Thus, understanding how safety
knowledge circulates is an essential exercise within many safety–
critical organizations.

Research on sharing safety knowledge (e.g., Hayes, 2015; Hayes
& Maslen, 2015; Maslen, 2014) has explored a range of physically
hazardous contexts in which employees risk injury in the conduct
of their work, illustrating how decision-making under physically
challenging contexts often requires employees to share safety-
related knowledge. For example, Hayes and Maslen (2015) con-
ducted ethnographies in organizations in three separate hazardous
industries—a chemical plant, a nuclear power station, and an air
navigation service provider—showing that sharing safety knowl-
edge via informal stories enables operations staff to ‘‘build ‘safety
imagination’ and assess the safety of their decisions on a daily
basis” (p. 724). Indeed, this concept of the ‘‘safety imagination”—‘
‘an ability to think beyond rigid compliance with rules and proce-
dures as a strategy for ensuring ongoing safety” (Hayes & Maslen,
2015, pp. 718-719)—reflects an orientation to transferring and
exchanging safety knowledge that is crucial to our exploration of
how safety knowledge is shared.

Knowledge sharing is also particularly important for circulating
safety-related tacit (unspoken) knowledge. This type of knowledge
is rooted in values and expressed in lived experience (Nonaka &
Konno, 1998), as well as the interaction among individuals in
specific contexts (Alavi & Leidner, 2001). It reflects understanding
knowledge that is difficult to articulate (Hayes & Maslen, 2015),
and can be described as intuition or a ‘‘gut-feeling” (Holste &
Fields, 2010). For instance, Leger and Mothibeli (1988) study how
the rock formations in a coal mine may ‘‘talk” (make sounds) to
gold miners, providing ‘‘pit sense”—a form of embodied cognition
about the imminence of danger, such as cave-ins. Tacit knowledge
about safety is difficult to obtain through written instruction
(Sauer, 1998), with the circulation and acquisition of this knowl-
edge relying on the interaction among individuals (Nonaka &
Konno, 1998); this further illustrates the importance of social
interaction in the sharing and learning of safety knowledge.
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More generally, safety knowledge sharing is consistent with a
social constructionist view of learning: organizational members
come to construct a shared understanding of the task or issue at
hand (Brown & Duguid, 1991; Lave & Wenger, 1991), and part of
this learning involves how to co-create safe work. At the same
time, safety knowledge sharing is also consistent with the
knowledge-in-practice view (Gherardi & Miele, 2018), in that it
may be done informally via stories told by experts as well as
through the actual practice of interacting with others while doing
the work (Gherardi, 2006; Maslen, 2014). Participation in a com-
munity of practice is how novices are socialized into knowledge
about working safely. It is also how they construct their identities
as they transition from peripheral to legitimate members of the
community of practice (see Fig. 1).

2.2. Learning safety through participation in a community of practice

Novices entering an occupational field such as culinary arts are
socialized into their roles within the organization—whether that
organization is the classroom, a commercial kitchen placement,
and their overlap. As part of doing their work, novices observe
how more experienced workers complete their work and learn
from them. While observing, novices can see tricks of the trade
from more experienced workers (Gherardi, 2006) and gain addi-
tional knowledge of how everyday work is conducted. Gherardi
and Nicolini (2002a) refer to this process as ‘‘occupational social-
ization.” Novices learn while actively working on tasks alongside
other novices and more experienced colleagues, as Maslen
describes: ‘‘an important requirement for gaining experience [is]
taking responsibility and participating in the work” (2014, p. 85).
This participation is what generates knowledge and constitutes
knowledge sharing among individuals. It also encourages discus-
sion among experienced workers and novices, furthering a shared
understanding of what safety means and looks like in practice.
Gherardi (2006) and Nicolini (2012) have investigated extensively
the social construction of safety among novice learners (see also
Gherardi & Nicolini, 2000a, 2000b, 2002a, 2002b; Gherardi et al.,
1998). Gherardi et al. (1998) argue that people ‘‘do not learn ‘safe-
ty’. . . rather they learn safe working practices” (p. 202) as a partic-

ipating member of a community of practice (Gherardi & Nicolini,
2000a).

Learning about safety is very much about being socialized into a
new identity through interaction with a community of practice
(Lave & Wenger, 1991) via legitimate peripheral participation—‘‘the
process by which newcomers become part of a community of prac-
tice” (p. 29) and learn through an ‘‘evolving form of membership”
(p. 53) that sees individuals transition from novices on the periph-
ery to more legitimate, experienced participants.

While a community of practice is constructed in interaction, it is
not necessarily bound by a physical location. The phrase is often
used to refer to ‘‘co-presence, a well-defined, identifiable group,
or socially visible boundaries” (Lave &Wenger, 1991, p. 98). A com-
munity of practice is hard to identify because it need not be a vis-
ible, co-located group (Nicolini, 2012), but rather a ‘‘set of relations
among persons, activity, and world over time and in relation with
other tangential and overlapping communities of practice,” and
these communities are always in flux (Lave &Wenger, 1991, p. 98).

Similarly, the fact that novices’ participation in the community
of practice is ‘‘peripheral” does not mean that it is less important or
disconnected; rather, it is about being at different stages in the
process of learning (Lave & Wenger, 1991). Being an experienced
or legitimate member also does not mean that a person has
reached a terminal point of expertise or learning (Nicolini, 2012).
Learning is about getting to a place where a novice is able to pass
as a member of the community by learning a new identity, and
seeing, speaking, and acting as a legitimate practitioner
(Gherardi, 2006; Nicolini, 2012).

Going through the process of becoming a legitimate practitioner
can take place whether formal education provides the context for
learning or not (Lave & Wenger, 1991). Studies have found that
intentional instruction through schooling is not a prerequisite for
learning, but that participation is (Gherardi, 2006; Lave &
Wenger, 1991); this is because learning is social and about ‘‘be-
longing, engagement, inclusiveness, and developing identities”
(Nicolini, 2012, p. 80). Participants—both novices and experienced
practitioners—create the community in which learning takes place,
not the other way around.

As a part of working alongside others, novices are socialized by
hearing stories. For instance, having conducted interviews with

Fig. 1. Becoming a practitioner.
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novice and experienced engineers, Maslen (2014) concluded that
socialization was an important aspect in sharing safety knowledge.
Young engineers drew from experienced engineers’ stories
(Maslen, 2014), enabling these novice learners to benefit from
more experienced engineers’ intuition about a particular course
of action. Hearing the stories allowed for the development of safety
imagination as novices simulated the situation in their own minds
and decided what they would have done in those same circum-
stances (Hayes & Maslen, 2015). These stories are embedded with
knowledge pointers, important features by which safe working
practices are learned (Gherardi, 2006). Knowledge pointers allow
less experienced workers to organize ways of seeing, conceiving,
and understanding a particular practice, what it means to be a
legitimate part of an aspirant occupational group, and the shared
knowledge constituting a community of practice.

Using ethnographic data from a building site, Gherardi (2006,
pp. 97-98) describes five knowledge points and other discursive
practices involved in the learning of safety. These are comprehen-
sive, as Gherardi acknowledges, but not necessarily exhaustive:

Highlighting: being able to watch, look, see, and listen to others
as they ‘‘carry out meaningful activities” in the generation of
safety;
Shaping aesthetic feelings: repeated ‘‘exposure to clues and sen-
sory experiences,” as well as the language employed, making
safety embodied (also in Strati, 2003);
Talking in practice and talking about practice: talking about safety
while doing, or talking about doing safety, including stories;
Weaving the texture between the social and the material: mediat-
ing the social world with physical artifacts (e.g., training manu-
als, posters) that support learning about safety; and
Supporting the enactment of the new identity: knowledge and
behavior considered appropriate, reinforced by other
practitioners.

Safety knowledge sharing through interaction is part of socializ-
ing novices into the community of practice to become legitimate
participants. From knowledge sharing, ‘‘common sense” (i.e., ‘‘good
sense and sound judgement in practical matters”—Lexico, n.d.)
becomes the currency for this identity process. While the word
‘‘sense” appeals to something innate, common sense is far from
innate (Geertz, 1975). Common sense should be thought of as a
‘‘relatively organized body of considered thought” (Geertz, 1975,
p. 7) and ‘‘largely a result of deliverances of experiences, rather
than deliberate reflections upon it” (Geertz, 1975, p. 7).

3. Methods

3.1. Research context—Safety in the kitchen

We elected to focus on culinary settings as the physical dangers
of a commercial kitchen are omnipresent and occupational hazards
may not always be evident until an accident occurs (Fine, 2008;
Lippert, Rosing, & Tendick-Matesanz, 2020). Those working in the
kitchen are often in the presence of highly hazardous elements
(Cook Articulation, 2019; Agency, 2008), which ethnographic
accounts describe as major sources of occupational injury (Fine,
2008; Tsai & Salazar, 2007). Given that working in a kitchen can
be physically dangerous, one way to improve safety in this envi-
ronment may be through sharing safety-related knowledge (e.g.,
tricks of the trade, workarounds) that others may not know about
and role modeling ways of conducting everyday tasks in a safe
manner.

3.2. Sample

This study reports on qualitative data from a larger data collec-
tion conducted for a project on safety knowledge sharing
(Goodbrand, McClelland, Turner, & Uggerslev, 2018). The data in
the current study consist of transcripts from 20 in-depth, semi-
structured interviews with individuals who had various levels of
experience in the culinary industry in a variety of roles: chefs
and instructors in the field of apprentice training (e.g., culinary
arts, baking, and meat cutting), as well as students at different
stages of their education enrolled in apprentice, culinary, and meat
cutting programs. We recruited all participants from a culinary arts
and professional food studies department of a large polytechnic in
western Canada. We made a deliberate effort to recruit partici-
pants with different levels of experience and from different culi-
nary fields to represent as broad a population as possible.

3.3. Data collection

In-depth interviews as a method of data collection are ideal for
‘‘issue-oriented” studies (Hesse-Biber & Leavy, 2011), and a semi-
structured approach allows for an ‘‘exchange” between the
researcher and the informant. The interviewer’s questions are
meant to guide the conversation; however, this approach leaves
room for the re-ordering and re-wording of questions, and for
the interviewer to probe and make clarifications to fit the partici-
pant and the situation (Berg & Lune, 2012). A copy of the semi-
structured interview guide is included in the Appendix. All inter-
views were digitally recorded and conducted by the fifth author,
and ranged in length from approximately 30 to 90 minutes. A pro-
fessional transcriber then created a written transcription of each
interview. The research team listened to the interviews, read the
transcripts, and had focused discussions about the interviews,
before commencing formal data analysis using NVivo 11 software
(QSR International, 2017) to organize the data.

3.4. Data analysis and coding strategy stages

We organized the interview data using a re-working of Gherardi
(2006) five discursive practices described above. As the coding pro-
gressed, it became clear that the categories were certainly neither
exhaustive nor mutually exclusive, and that subtle differences
often allowed data to fit in multiple categories. This development
was not interpreted as a limitation of using pre-established cate-
gories, but rather as a testament to the complexity of attempting
to neatly compartmentalize human experience.

Coding of the data progressed through the following stages.
First, interview data were assigned to pre-established categories
through structural coding. Second, we used axial coding to review
and examine initial codes from each overarching- and sub- cate-
gory. In these first two stages, ideas and themes were organized
through analytic memo- and note- writing. In the third stage, we
created ‘‘memo/concept” groupings based on themes, systemati-
cally discussed each memo, and determined how they related to
the overall research questions of how individuals learn about
safety and how they share safety knowledge. From this, we con-
structed a coding map that was a visualization of memos, memo
notes, and conversations.

4. Findings

We present our findings in three parts. First, we describe the
variation in experience among novices and more experienced prac-
titioners, mitigating the assumption that students come into the
culinary arts program as ‘‘blank slates” about culinary safety. Sec-
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ond, we describe accounts of the differences in how safety is
enacted in classroom versus industrial kitchen settings. Third, we
elaborate on the notion of safety as ‘‘common sense” that comes
from the intersection of experience, reflexivity, and increasing
self-identification of novices (i.e., peripheral practitioners) as more
experienced members (i.e., legitimate practitioners) of a particular
community of practice.

4.1. Students are not blank slates

The interview data show that although the formalized safety
instruction that each student receives in school is ostensibly the
same, students’ experiences in industry contexts when entering
culinary programs are not. Students are not proverbial blank slates,
and all students enter the culinary, apprenticeship, baking, and
meat cutting stages of their programs having had various experi-
ences in kitchen settings. The safety knowledge that students
acquired while working in the culinary industry, including exam-
ples of behaviors considered ‘‘safe” or ‘‘unsafe,” is shared among
classmates, and interviewees often used cross-context examples
as reference points when asked about culinary safety. When expe-
riences are shared in this way, students with less experience get
the benefit of learning from their peers’ ‘‘real world” experiences.
Below is an example of a culinary student describing lessons
learned from the field to the interviewer:

Interviewer: Can you tell me a little bit about people you have
worked with or studied with who have been very safe and what
made them safe?
AS: When I started at [name of local restaurant] I worked with a
cook. He went across Europe and he went across kind of every-
where, he’s just been everywhere. He just got back from two
years in Australia. That guy was just textbook, textbook every-
thing: cleanliness textbook, cooking techniques textbook. Just
the way the guy operated. You just watched him. It was like
watching a ballet or something. It was graceful watching the
guy work because he was just so efficient at what he did and
just so technical but he made it look so easy. But even right
down to the small things like cleaning as he goes. . . . The guy
was a great example of just safety in the workplace.
Interviewer: Nice to hear there are people like that out there.
AS: Yeah, it is nice. It makes you want to go to work not only
just for that but just to learn from the guy.

4.2. Classroom kitchens differ from industry kitchens

The interview data revealed three key differences between the
classroom environment and an industry kitchen that affected
how safety was handled. First, interviewees expressed that school
is a protected environment compared to industry. The school had a
nurse who could treat students’ injuries, whereas industry relies on
practitioners to ‘‘own their safety,” and in some cases ‘‘suck it up”
when they get injured, as seen in the following interview excerpt
with an apprentice instructor:

I see a difference where, especially in the first year apprentices
that come in, right away if they cut themselves or let’s say they
get a little burn they think they’re dying. So right away they
need to get medical attention immediately. Being in school I
would say, ‘‘Yes, go ahead. Go see the nurse and get it set up”
and then they would come back with a bandage all the way
around their arm because they burned themselves on the tip
of their finger. But in industry, it doesn’t work that way. In
industry, if it’s really severe then yes, we’re taking you to the

hospital because we don’t have a nurse on staff there, we’re tak-
ing you to medical attention immediately. But if it’s just a little
nick or a little burn or whatever, ‘‘Suck it up princess, go to
work.” That’s the way we encourage it because of the fact that
it’s small. But there are some small things that can turn very
bad.

The second difference pertained to the emphasis on safety in
the two environments. In the school environment, safety is explic-
itly taught, whereas the emphasis on safety in industry settings
could range from non-existent to comprehensive (e.g., safety train-
ing programs). However, even when novice practitioners are
attuned to safety concerns, the nature of actually practicing cook-
ing in an industrial kitchen sometimes trumps those concerns, at
least in the short term. As described by an experienced chef:

If it’s just a little nick or if it’s something that’s a little more
uncontrollable, in that business, in that line where you’ve got
all these deadlines and you’ve got all this production that you’re
doing that day, wrap it up and get to work, depending on the
severity. If it’s severe then no, I would definitely, if it was myself
cutting it I would basically because we had proper first aid
training I would try and wrap it up as good as I can. Get out
there and do what I need to do and then I would seek medical
assistance after the fact. Because I knew I would always report
it. But [that] doesn’t happen all the time. If it’s a little nick or
whatever, it’s like put a bandage on it, put a finger cot and get
to work. Because that business is that business. You’re not going
to constantly stop. That was another thing. I had some cooks
that were with me at the [name of local restaurant] where they
would get a little nick and they wanted to go home. It is like,
‘‘No, you’re not going home. Wrap it up, tighten it up, we’ll
make a note of it and get back to work.”

Third, the speed with which work has to be performed in indus-
try is considerably higher than in a school environment, which has
implications for safe work practices—especially for those with less
experience. The school environment emphasizes that things be
done correctly rather than quickly, as seen in the interview excerpt
below:

Interviewer: So now here you are, you’re thrown into that envi-
ronment. It’s super busy and there’s a hazard of some sort. . . .
How are you able to recognize [or] see that hazard and then
how do you deal with it when it’s so busy?
CS: If it’s really busy that’s what happens because you’re not—
that’s hard to make a habit of recognizing things like that and
then you’re just trying to crank out food. I think it’s easier at
school than it is in the workplace because at school you’re not
being paid to be fast. You have the opportunity to slow down
if you need to. I think lots of the time it takes something to hap-
pen there’s the dish cart by the sink and someone’s doing dishes
and someone’s at the steamer and that’s a tight spot. You only
have to run back and forth three times and run into people
and the dish cart before you need to move the dish cart or
you need to scream you’re coming around or something. But I
think it takes repetition of doing it badly when you’re in a tight
crunch to realize, ‘‘Okay hold on. Wake up.” You need to.
Interviewer: Yeah because you don’t have that time to step back
and look around and. . .
CS: Yeah and I think [of] a simple thing like [the] floor. When
are you going to get a mop to come on the line and wipe it
up? It’s ‘‘Okay no, I can [use] paper towel or whatever to. . .”
Interviewer: Like kind of a quick fix for now until you can get to
it later.
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4.3. Safety knowledge as ‘‘common sense”

As one interviewee noted, ‘‘There’s only really so much you can
teach people. At the end of the day they need common sense.”
Many others used this same term to describe safety knowledge.
Yet despite its prevalence, interviewees did not share an under-
standing of how people come to possess common sense. Several
participants spoke of common sense as something innate (e.g.,
‘‘you know not to touch something hot”), while others believed
that it was learned (e.g., ‘‘you touch something hot and know not
to do it again”). At the same time, interviewees in both camps
acknowledged that common sense is also based on ‘‘deliberate
reflections” (i.e., sharing with others how to be safe). We argue
in a community of practice, common sense is socially constructed
and shared in interactions. More specifically, safety knowledge as
common sense has three characteristics: (1) common sense is
shared and social; (2) it is a practical accomplishment—something
learned and re-enacted; and (3) common sense is a legitimizing
device that enables professional identification.

4.3.1. Common sense as shared and social knowledge
Interviewees talked about how they learn safety from their

peers and mentors—how watching and interacting with others
within the community of practice teaches them ‘‘common knowl-
edge.” Below is an excerpt from an interview with an apprentice
student speaking about how safety knowledge is shared and has
been shared with them:

Listening to guys, they’ve been around a lot longer than I have.
Chef’s been in the industry 20–30 odd years. . .. Just past expe-
riences, just common sense kind of things. Just proper sanita-
tion, proper this. Don’t cross contaminate, things like that.
Just a lot of past experiences really, most of the stuff that I’ve
been told. I’ve been fortunate to work with a lot of guys with
a lot of experience and they have a lot of knowledge to share,
not only cooking but with safety as well.

Novices (i.e., ‘‘peripheral legitimate practitioners” in commu-
nity of practice language) often learn about safety in interaction
with ‘‘legitimate practitioners” (Lave & Wenger, 1991), who simul-
taneously create and re-create what appears to the novice (and
sometimes even to experienced practitioners themselves) to be
simply ‘‘common sense.” Getting to a point where knowledge is
considered common sense is a process that takes time, and
although some interviewees considered common sense innate,
many also viewed it as occurring in interaction with others, as
shown in the following excerpt:

Interviewer: Do you find safety reminders in the kitchen to be
helpful?

AS: Sometimes. I could see the benefit for new trainees but for
me a lot of the stuff I realize is common sense so I just don’t do
it. Like don’t touch hot things, don’t clean the slicer while it’s on
or plugged in.

Interviewer: So common sense, do you think it’s always com-
mon sense?

AS: Once you learn it, it becomes common sense. I’m not saying
that I innately knew that. I probably left the slicer plugged in
the first time I cleaned it but somebody was like, ‘‘Oh, you need
to unplug that, otherwise you’re going to die.” And I was like,
‘‘Oh, okay. That makes sense.”

In this way, common sense is shared and social. It is the inter-
actions surrounding how to do things—things that may appear
obvious—that create the conviction that doing things that way is
simply common sense.

4.3.2. Common sense as a practical accomplishment
Common sense seems to be accomplished once it becomes an

unquestioned habit, which arguably comes with practice. An
apprentice student described this process of learning common
sense as follows:

And you work with guys, you’d think that they’d understand
proper don’t cross contaminate. It’s preached a lot and people
should know that but you’d be surprised how often I’d have
to tell someone to ‘‘Get rid of that cutting board” or ‘‘Clean that
cutting board” or ‘‘Clean up that counter” or ‘‘Are you going to
leave that sitting on the counter all day? Are you going to leave
that? What are you doing with that? Get that in an ice bath. You
can’t leave that in the sink.” Things like that. Some things that
people I guess don’t practice themselves and it shows.

The above excerpt also highlights the notion that common
sense is not a given, but that it is accomplished through interac-
tion—through someone telling you what the proper action is, for
example. Accomplishing common sense, in turn, gives other prac-
titioners an understanding of the accomplisher’s level of legitimacy
as a practitioner.

4.3.3. Common sense as a legitimizing device
Another feature of treating safety knowledge as ‘‘common

sense” is that common sense becomes a kind of currency for pro-
fessional legitimacy. If a practitioner lacks what is regarded as
common sense, they are considered less legitimate in the commu-
nity of practice. The transition from peripheral to legitimate prac-
titioner therefore involves progressing to a point where acting in a
safe manner and taking safety precautions appears as common
sense. One chef explained that when he was starting out, his ‘‘com-
mon sense didn’t kick in for a long time.”

Thus, common sense surrounding safety is a tell-tale sign of
legitimacy, and common sense identifies who is legitimate and
who is not. The overarching idea of ‘‘supporting the enactment of
the new identity” (Gherardi, 2006, p. 98) is about getting to a point
where everything about the work becomes common sense. How-
ever, curiously, once a practitioner gets to this point, they may
not be able to articulate how they got there (Gherardi, 2006;
Strati, 2003), as an apprentice student explained: ‘‘Like, if you don’t
know something, come and ask somebody. Or I don’t know. I’ve
just been doing it so long it just . . . grows on you, I guess.” A baking
instructor highlighted the same point in talking to the interviewer:

Interviewer: Can you tell me about how safety in the kitchen
happens?

BI: I think it’s through personal experience as well as through
experience of others. . . .

Interviewer: So you’re saying you’re kind of relying on your own
experience, your own safety knowledge but you’re also relying
on everyone in the kitchen to be aware?
BI: Everyone else as well. Kind of like a collective knowledge.

In summary, when there is a shared understanding of the
importance of safety—a collective or common knowledge—those
who experience safe work practices as common sense draw on it
as a source of professional legitimacy.

5. Discussion

The current study sought to understand how safety knowledge
was learned and shared among novices and experienced workers
in a culinary arts program. Community of practice theory was a
useful conceptual apparatus to describe the process by which prac-
titioners learn together, in that ‘‘people mutually guide each other
through their understandings of the same problems in their area of
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mutual interest” (Pyrko, Dörfler, & Eden, 2017, p. 389). Three
themes emerged from the interviews with these practitioners:
(1) the variation in experience of novices in industrial kitchens
and what that means for learning about safety in classroom kitch-
ens, (2) the difference between and relevance of safety knowledge
in classroom kitchens and industry kitchens, and (3) the processes
by which safety knowledge becomes ‘‘common sense” connecting
novices and experienced practitioners with a common professional
identification. The themes highlighted the features that enabled
the circulation and sharing of safety knowledge. Interviewees with
prior exposure to the culinary industry noted the differences
between the classroom and the industry kitchen environment, sug-
gesting differences in how safety is handled and prioritized
between these two contexts. These differences also emphasized
that some forms of safety knowledge were not learned in school.
Interviewees gained varying degrees of exposure to safe and unsafe
practices in the culinary industry and brought this awareness into
the classroom kitchens, where safety knowledge was shared
among other novices (students) and more experienced practition-
ers (instructors).

The theme of regarding safety knowledge as ‘‘common sense”
points to the social construction of safety. Understanding common
sense as a purely individual characteristic means ignoring the
importance of interaction in safety knowledge exchange. Accord-
ing to our interview data, common sense has three overarching
characteristics: it is shared and social, it is a practical accomplish-
ment, and it represents a collective understanding that separates
peripheral practitioners from legitimate ones. Interactions among
novices and experienced interviewees were crucial in developing
common sense, as this interaction allowed for sensemaking of
the practices required for work tasks. This sharing of safety knowl-
edge in interaction with other practitioners created a ‘‘common
sense” that was continually re-constituted. In this way, common
sense necessitates that a community be held in common (see
Fig. 1). In sum, our research highlights the importance of learning
and sharing safety knowledge through socialization, interaction,
and participation, with strong implications for both theory and
practice.

Our findings have several theoretical implications for the
knowledge sharing and safety literatures. First, they provide
greater understanding of how novices develop knowledge about
safe work practices. Specifically, in our research, the process of
socialization enabled novices to interact with their more experi-
enced peers; this allowed experienced practitioners to share their
safety knowledge with novices in the classroom and professional
kitchens. Novices learned from those more experienced, and we
saw numerous examples of how novices came to understand
how a particular practice was risky or unsafe, developing a shared
repertoire of safety knowledge (Iverson & McPhee, 2008).

Second, as evidenced by the fact that safety knowledge among
practitioners with varying levels of experience was described as
‘‘common sense,” we note that safety knowledge is more than
learning the steps to complete a task or operate machinery safely.
Rather, it is knowledge that becomes integrated with the profes-
sional identities of novices as they progress toward becoming a
legitimate member of a community of practice. Similarly, other
qualitative research has described how safety knowledge was
deemed ‘‘common sense” by experts in which such safe behavior
became second nature (e.g., fishermen; Thorvaldsen, 2013). As
such, the findings from the current study add to the existing liter-
ature on safety to demonstrate that safe practice comes from a
socially constructed understanding of safety knowledge that even-
tually becomes ingrained or almost like a reflex among experi-
enced individuals. This conceptualization of common sense
reflects a form of tacit knowledge that is, by definition, difficult
to articulate (Hayes & Maslen, 2015)—certainly more difficult to

teach in school or a training session—and is developed through
informal interactions with experienced peers who share stories
of their experience. These dynamics serve as a basis for safety cli-
mate (Zohar, 2010), a shared sense of how safety is enacted often
from the point-of-view of less experienced members (e.g., employ-
ees) reflecting on their observations of the practice of more expe-
rienced members (e.g., supervisors).

5.1. Directions for future research

Our work offers at least three directions for future research.
First, we suggest that future studies use a variety of organizational
contexts to see if the processes by which safety knowledge sharing
occurs have some generalizable features. This diversity can be fur-
ther strengthened by conducting longitudinal interviews to better
understand the process of learning and sharing safety knowledge
over time. For example, it might be important to follow novices
as they progress from peripheral members to legitimate members,
with safety knowledge sharing taking on different forms and func-
tions as novices become more experienced. In doing so, research
may be able to explore whether there are pivotal events that
novices encounter (e.g., sustaining injuries, seeing others injured),
and whether particular learning devices (e.g., storytelling, legends)
are more useful than others for safety knowledge sharing at differ-
ent stages.

Second, future research may also seek to understand possible
barriers to sharing safety knowledge. One such barrier could be
time, with previous research finding a sense of time pressure can
reduce knowledge sharing among colleagues (Connelly et al.,
2014). Within the culinary industry, time pressure may be ampli-
fied within a busy restaurant setting; thus, it may be fruitful to
explore whether other potential barriers for sharing safety knowl-
edge exist, with the possibility of work conditions encouraging
safety knowledge hiding (Connelly, Černe, Dysvik, & Škerlavaj,
2019). Indeed, a poignant example of safety knowledge hiding
came up in the current interviews. An experienced chef described
watching a novice pare cauliflowers with an oversized knife,
instead of an appropriately sized paring knife. The experienced
chef could tell that the novice would eventually plunge the over-
sized knife through a cauliflower and cut his hand, but described
not warning him to teach him a lesson.

Third, an additional opportunity for future research is the inter-
section of one community of practice comprised of ‘‘common
sense” about safety and another community of practice in the din-
ing network, such as those involved in the front-of-house opera-
tions (e.g., food runners or serving assistants). Kitchen staff have
created a safety climate through safe practices learned during
training and tacitly through shared experiences; however, other
members of staff who form a part of the overall dining experience
enter the physical kitchen space without having the same ‘‘com-
mon sense.” Future research could explore how safety knowledge
is shared among members in the wider dining network of
restaurants.

5.2. Study limitations

The current study has several limitations worth noting. First,
what safety knowledge sharing looks like may differ across differ-
ent communities of practice. As described above, perhaps when
practitioners are under time pressure (e.g., working on a grill line
in a fast-paced kitchen), the social processes by which safety
knowledge is shared may vary. For example, ethnographic research
with fishermen from Thorvaldsen (2018) described that sharing
safety knowledge may be as simple as shouting ‘‘Watch out!” to
other crew members. This finding suggests that, under high pres-
sure, it becomes more challenging for novices to grasp the nature
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of the situation than it would be within a school setting when tasks
can be paused for experienced instructors to share safety knowl-
edge in a more considered way. The retrospective approach taken
in this study meant that participants were describing salient and
memorable examples of how safety knowledge was shared, which
has limited purview on the more mundane, taken-for-granted
ways that safety may be constructed.

Second and relatedly, safety is a socially desirable topic on
which to interview novice and experienced practitioners. Hence,
there is a low likelihood that informants would speak about safety
in a realistic way at first, instead emphasizing an overly positive
approach (e.g., ‘‘Of course safety is important!”). As such, our inter-
views with practitioners about safety knowledge sharing might
have been less revealing than they would have been if the knowl-
edge sharing concerned a less sensitive topic, such as sharing culi-
nary expertise (e.g., Sammells & Dubois, 2020).

Third, the current study drew on one-on-one interviews with
only 20 practitioners of varying experience, which might be (a)
insufficient for thematic saturation and (b) an inadequate approach
to describe social processes of a community of practice. Combining
interviews with ethnographic observation and approaches that
enable description of examples of safety knowledge sharing in
social interaction (e.g., group interviews/focus groups; Tucker &
Turner, 2013) might be a more appropriate means by which to col-
lect data on social processes.

5.3. Practical implications

The current findings have implications for classroom and other
formal approaches to training, especially for those who are consid-
ered novices (or peripheral members) in the field. Safety ‘‘common
sense” comes from continuous practice by practitioners of all expe-
rience levels; as such practitioners need to ensure that novices are
provided with ample opportunities ‘‘to do” and learn by participat-
ing. This can be accomplished by incorporating experiential learn-
ing (e.g., hands-on activities) during classroom and formal training
sessions, implicating a practice-based view on safety knowledge
sharing. More specifically, the themes arising herein suggest that
safety knowledge sharing includes the transfer and exchange of
difficult-to-articulate phenomena (Hayes & Maslen, 2015), which
are better taught through the practical accomplishment of work
tasks than through formal methods.

Practitioners can use methods of informal learning alongside
formal educational training to enable safety knowledge sharing—
for instance, creating space and allotting time for practitioners of
varying experience levels to interact. Formal approaches could
involve the emphasis of safety in shift handovers (e.g., ‘‘safety
moments” and opportunities for employees to rotate reflection
on near misses that happened during the shift); staff meetings to
enable structured opportunities for safety knowledge sharing,
which is common in medical contexts (e.g., Randell, Wilson,
Woodward, & Galliers, 2010); and networking events with practi-
tioners of varying experience to build and diversify professional
networks.

Other research in the broader area of knowledge sharing has
found that it often occurs within informal spaces (e.g., Waring &
Bishop, 2010) or in virtual forums, such as online communities
(e.g., Ardichvili, 2008), with sites for discussing workarounds and
injuries (e.g., Fubini et al., 2019). These informal spaces give mem-
bers an opportunity to reflect, learn, and come to a shared under-

standing of what safe practice means for their particular line and
context of work. By deliberately creating opportunities for social-
ization to occur, practitioners facilitate and encourage organiza-
tional members with varying levels of experience to engage with
each other, thus facilitating knowledge sharing.

More generally, the need to understand safety knowledge and
how it is shared has increased due to the COVID-19 pandemic,
which, at the time of this writing, has had immediate implications
for workplaces of all types for almost 18 months and will continue
to do so for the foreseeable future. Many employees for whom
safety at work was never salient are now directly exposed to safety
hazards in the workplace and bombarded with safety messaging
governing their everyday interactions. Additionally, the safety
practices of the culinary industry, along with those in contexts like
health care and long-term care, are now heightened, explicit in our
interaction in these contexts (e.g., regular handwashing, masks),
and no longer understood to be knowledge reserved for organiza-
tional insiders (Gulseren, Lyubykh, & Turner, in press). This rapid
expansion of safety knowledge and what it means to work safely
is a clear example of how becoming a legitimate practitioner
within a particular community of practice does not mean the end
of learning about safety as ‘‘common sense.”

6. Conclusion

The current study has explored how safety knowledge sharing
occurred among novices and more experienced members of a culi-
nary arts department. In line with a community of practice per-
spective (Lave & Wenger, 1991), our findings highlight the social
mechanisms through which safety knowledge is shared and
learned. They emphasize the differences in how safety knowledge
is shared in formal educational and industrial kitchen contexts, and
how identification with safety knowledge as ‘‘common sense”—
that is, the collective understanding of what constitutes safe work-
ing practices—happens through continued practice and everyday
collaboration among novices and experienced practitioners. More-
over, our work illustrates how common sense is also a currency
through which novices transition from peripheral practitioners to
more legitimate practitioners.
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Appendix

Example questions from interview protocol

Category Example main questions Examples follow-up questions

Background 1. Tell me about your role as a culinary instructor/industry
chef/student

1a. How many years have you worked in the culinary
industry?
1b. In which culinary program are you enrolled?
1c. What is your work and educational experience in
the culinary industry?

Safety
knowledge
sharing

2. How do/did you learn about safety in culinary?
3. How do you teach new trainees to be safe?

2a. Formal
education, mentors on the job, through experience
2b. Describe any workarounds employed that increase
safety
2c. How do others share their safety knowledge with
you (and in what forms—tacit, explicit, implicit)?
3a. Formal safety programs, storytelling, identifying
safe and unsafe behaviors as they happen
3b. How do students, co-workers, and kitchen
proprietors react to the safety knowledge you share?

Community
of practice

4. Tell me about people you have worked with who have
been very safe – what made them safe? Tell me about
people you have worked with who are not safe – what made
them unsafe?
5. Tell me a little about the ‘‘badge of honor” worn by some
chefs who have experienced accidents but kept working.
6. Tell me about the safety education and incidents that
have happened in your classroom this week.

4a. Do gaps exist between safety knowledge learned in-
class versus how safety exercised in practice?
4b. In what instances do you think safe work practices
are compromised (e.g., during busy periods)?
5a. How do these incidents and stories affect safety?
6a. Thinking about this past week only, what role has
safety played in the education that you are providing to
your students?
6b. How do these incidents and stories affect safety?
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a b s t r a c t

Introduction: Bicycle riding is a common activity for children, but they are prone to bicycle-related inju-
ries. It is well-established that injury prevention measures such as wearing a helmet and correctly riding
a bicycle can reduce the severity of an injury and the likelihood of having an accident. However, how to
increase bicycle injury prevention behaviors among children, who collectively fail to engage in injury pre-
vention behaviors, is less well understood. Self-efficacy is consistently predictive of injury prevention
behavior, making it an important approach to understanding injury prevention skills among this key pop-
ulation. The objective of this study was to explore and identify factors internal to the child as well as fac-
tors about his or her environment that predict a child’s self-efficacy for injury prevention skills. Method:
Two generalized linear mixed effects models were created from survey data collected from elementary
school students (n = 2,255) as part of a school-based bicycle education program. Models focused on
self-efficacy for riding a bicycle and self-efficacy for wearing a helmet correctly. Results: In both models,
road safety knowledge, opportunity for skill building through owning appropriate equipment (a bicycle
or helmet), and situation through perception of neighborhood safety were predictive. The analyses reveal
these variables as key factors for greater confidence, with feeling safe riding in the neighborhood, in par-
ticular, emerging as highly predictive of self-efficacy for injury prevention skills. Conclusions: These find-
ings highlight the interplay of individual and environmental factors within confidence for injury
prevention behavior. Given self-efficacy’s strong relationship to prevention behavior, these findings indi-
cate actionable strategies. Practical Applications: The key factors highlighted in this study can be used by
policymakers to target specific areas (e.g., neighborhood safety) to promote self-efficacy and thus
improve injury prevention. These factors can also inform strategies for establishing safety skills in
bicycle-safety education programs.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Bicycle riding is a common source of exercise, entertainment,
and transportation for all ages, especially children. Unfortunately,
children ages 5–14 experience a high rate of bicycle-related inju-
ries. In the United States, over 200,000 children in this age group
are treated in emergency rooms for bicycle-related injuries per
year — almost 600 per day, on average (National Electronic Injury
Surveillance System (NEISS), 2019). These injury rates are indica-
tive of the highest prevalence of bicycle-related injuries of any
age group. Elementary school children are at a key age for instilling
bicycle-related injury prevention behaviors, as a population in its
formative years for developing lifelong bicycle safety habits and

with susceptibility to bicycle-related injuries (Hooshmand et al.,
2014; Lachapelle et al., 2013). As a result, is important to under-
stand factors related to injury prevention behavior among this
population.

As demonstrated by the injury rates, children are clearly prone
to bicycle-related accidents and injury. This could be due to envi-
ronmental factors related to where children ride a bicycle and
because riding a bicycle is a skill that requires practice and atten-
tion to injury prevention behaviors (Embree et al., 2016; Li et al.,
1995; Macpherson et al., 2004). Despite high incidence of injury,
children, collectively, fail to engage in bicycle-related injury pre-
vention behaviors. For example, while helmet use is consistently
shown to reduce serious head injury and death, less than 50% of
children report that they always wear a helmet (Dellinger &
Kresnow, 2010; Høye, 2018). Furthermore, given that adults also
tend to not wear helmets, investigating injury prevention behav-
iors in children is important for triggering healthy habits earlier
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in life. What factors may be related to the lack of uptake of injury
prevention behavior among this particularly susceptible popula-
tion? Social cognitive theory models behavior as an interplay of
individual and environmental characteristics, with its construct
of self-efficacy viewed as a particularly relevant factor in injury
prevention behavior (Bandura, 1986; Karl et al., 2018; Strecher
et al., 1986).

Confidence in one’s ability to perform a behavior, self-efficacy,
is consistently predictive of preventative behavior, including injury
prevention (Bandura, 1986). Self-efficacy for a particular health
behavior is repeatedly used in theoretical models of health behav-
ior and approaches for health behavior change (Conner & Norman,
2007; McAuley et al., 2011; National Cancer Institute et al., 2012).
While it was historically viewed as an independent construct
within these models, it has emerged as a key determinant of
behavior (Bandura, 1986; McNeill et al., 2006; McAuley et al.,
2011; O’Leary, 1985; Strecher et al., 1986). That is, in social cogni-
tive theory, self-efficacy is an independent construct among other
individual constructs in the individual and environmental factors
within the model. However, given the predictive nature of self-
efficacy for actual injury prevention behavior, it may be more
important to identify individual and environment factors that con-
tribute to self-efficacy (McNeill et al., 2006; McAuley et al., 2011).
For example, in terms of bicycle-related injury prevention behav-
ior, Karl and colleagues (2018) evaluated the predictive nature of
self-efficacy within the health action process approach model of
health behavior change. They found self-efficacy to be strongly
predictive of helmet wearing intention. Therefore, self-efficacy as
an outcome for which researchers attempt to identify individual
and environmental predictive factors may be an additionally valu-
able way to examine injury prevention behavior.

Despite self-efficacy’s strong predictive nature for one’s ability
to perform preventative behaviors, research to date has neglected
to use self-efficacy as a measure for bicycle-related injury preven-
tion among children. Researchers frequently use knowledge of
bicycle safety and road rules, demonstration of safety skills (e.g.,
coming to a complete stop in a test), and attitude towards road
rules as measures of a child’s injury prevention behaviors
(Lachapelle et al., 2013; Macarthur et al., 1998; Richmond et al.,
2014). However, these measures turn up futile results for actual
injury prevention behaviors (Macarthur et al., 1998; Richmond
et al., 2014). That is, even when these measures indicate sufficient
injury prevention skills, there is a lack of evidence to show that this
corresponds to everyday injury prevention behavior. As such, self-
efficacy may serve as a better means through which to gauge
actual injury prevention behavior in this population.

The literature on injury prevention behavior with bicycles
among children is further limited by its dependence on frequency
of helmet use as the only substantially investigated outcome. Ask-
ing children whether or not they wear a helmet gathers prevalence
information, but it may be too simplistic, failing to be indicative of
whether or not the child can wear the helmet correctly. Education
programs attempt to increase helmet use, despite inconsistent
results among such interventions: there is evidence both for the
positive effect of education programs, as well as evidence for a lack
of effect of these programs (see Richmond et al., 2014 for review).
By contrast, interventions geared towards improving self-efficacy
may demonstrate more effective results (Karl et al., 2018). In line
with this, an extension of the research beyond factors influencing
helmet use prevalence is necessary.

The literature on helmet use does, however, provide prelimi-
nary information for the interplay of individual and environmental
factors that may correspond to injury prevention skills (Thompson
et al., 2002). Social cognitive theory describes the necessity of look-
ing at both these individual and environmental factors in health
behavior. Helmet use differs based on individual characteristics,

such as race and ethnicity, and age (Dellinger & Kresnow, 2010).
Further, characteristics of the child’s surroundings may be related
to injury prevention skills. For example, helmet use has been
linked to education level within the home, household income,
and socioeconomic status (Dellinger & Kresnow, 2010; Embree
et al., 2016). Therefore, there is a basis in the literature for individ-
ual and environmental factors being linked to injury prevention
skills among children.

This study extends this reasoning to examine self-efficacy for
injury prevention skills based on a variety of individual and envi-
ronmental factors. With self-efficacy’s predictive nature for injury
prevention behavior in mind, this study uses social cognitive the-
ory and strategies for increasing self-efficacy to identify factors
that contribute to self-efficacy for injury prevention skills. In an
extension beyond helmet use frequency, we created two models
with self-efficacy for injury prevention skills as outcomes: self-
efficacy for riding a bicycle and self-efficacy for wearing a helmet
correctly. Our models utilized the broad framework of social cogni-
tive theory by including variables falling into both individual and
environmental categories. Within this framework, we also
included additional factors from the theory and known processes
for increasing self-efficacy: behavioral capability, operationalized
as opportunity to learn the skill and knowledge; situation, opera-
tionalized as perception of the neighborhood; and vicarious learn-
ing, operationalized as seeing others riding in the neighborhood
(Conner & Norman, 2007; National Cancer Institute et al., 2012).
We hypothesized that the variables included in the models would
be predictive of self-efficacy based on social cognitive theory,
strategies for building self-efficacy, and documented differences
in injury prevention behavior based on demographics (Bandura,
1986; Conner & Norman, 2007; Dellinger & Kresnow, 2010;
Heslin & Klehe, 2006; National Cancer Institute et al., 2012;
Schunk & Zimmerman, 2007).

2. Materials and methods

2.1. Participants

Participants in this study were elementary school children who
agreed to be surveyed following their participation in a school-
delivered bicycle safety program in one state within the southeast-
ern region of the United States. De-identified survey data were
shared with research partners for this study. Forty-nine individual
participants were eliminated from the study because they
answered less than 10% of the questions on the survey. The
remaining 2,255 individuals were included in the study. Partici-
pants ranged in age from 8 to 12 years (M = 9.82, SD = 0.80). Non-
Hispanic White was the most frequently reported race or ethnicity
at 47.32%, followed by Non-Hispanic Other (19.29%), Non-Hispanic
Black (15.61%), and Hispanic (11.84%; 134 participants chose not to
provide this information). The sample was evenly split between
males (47.32%) and females (48.12%; 103 participants chose not
to provide this information). Descriptive characteristics of the sam-
ple are given in Table 1.

2.2. Materials

A 40-item questionnaire used in the program contained student
self-reported knowledge about bicycle safety and self-efficacy for
bicycle safety skills prior to and after the bicycle safety program
(Lachapelle et al., 2013). Students were instructed that completing
the questionnaire was voluntary. The questionnaire was completed
as a component of standard education programing, thus no parent
consent was required. The questionnaire contained two self-
efficacy questions that could be used by the present analysis as
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outcomes for our models: self-efficacy for riding a bicycle (Model
1) and self-efficacy for wearing a helmet correctly (Model 2). The
questions relevant to the present study were only those that asked
about knowledge and self-efficacy prior to the bicycle safety pro-
gram, as an evaluation of effectiveness of the program was not
the purpose of this study.

Four types of information were collected from the question-
naire: self-efficacy, bicycle skill knowledge, characteristics of one’s
neighborhood, and individual demographics. Students reported
self-efficacy from 0-10 in riding a bicycle and wearing a helmet
correctly: ‘‘Before bicycle skills clinic, I could ride a bicycle without
training wheels” and ‘‘Before bicycle skills clinic, I could wear a
helmet correctly.” Knowledge questions tested stop sign etiquette,
how to signal a turn, when to wear a helmet, and how to wear a
helmet correctly. Each question was multiple choice with four
options as well as a ‘‘Not sure” option. How to wear a helmet cor-
rectly (‘‘how do you think you should wear a helmet?”) and how to
signal a left turn (‘‘what do you think is the correct way to signal
turning left?”) required students to select the correct picture
depiction of these skills among the options. Answer options for
how to wear a helmet showed a person wearing a helmet: (a)
too far back, (b) without the strap clipped securely, (c) correctly,
and (d) too far forward; answer options for how to signal a turn
showed a human bicyclist figure from behind with (a) left arm out-
stretched straight signaling a left turn (correct), (b) left arm at an
upward-facing right angle signaling a right turn, (c) right arm out-
stretched straight, and (d) left arm at a downward-facing right

angle. Correct knowledge for when to wear a helmet (‘‘how often
do you think you should wear a helmet when riding a bike?”)
required students to respond ‘‘All of the time,” rather than ‘‘Most
of the time,” ‘‘Sometimes,” or ‘‘Never;” correct knowledge for what
to do at a stop sign (‘‘what did you think bicyclists should do at a
stop sign?”) required students to respond ‘‘Stop and look left right
and left again before going,” rather than ‘‘Slow down and signal to
let others know you are going through,” ‘‘Pull forward until drivers
can see you and signal for cars to go first,” or ‘‘Slow down and look
for cars, but keep going if no cars are coming.” Characteristics of
one’s neighborhood were comprised of the following two ques-
tions: ‘‘Would you feel safe riding a bike in your neighborhood dur-
ing the day?” and ‘‘Do you see many people ride bikes in your
neighborhood?” Students could respond ‘‘Never,” ‘‘Sometimes,”
‘‘Most of the time,” or ‘‘All of the time” to each of these questions.
Demographic questions asked about gender, ethnicity, and age.

The questionnaire was administered only after the program. It
thereby required students to reflect on their self-efficacy and
knowledge prior to the program with the insight gained from the
program (Sibthorp et al., 2007). The retrospective pretest is a tool
in behavioral research with self-report data (Nimon et al., 2011;
Sibthorp et al., 2007). Research shows that this methodology
reduces overestimation of pre-program knowledge and competen-
cies (Moore & Tananis, 2009). For example, students may not be
aware of their own incorrect knowledge (or lack of knowledge)
prior to the program, with this metacognition reliant on the inter-
vention itself (Moore & Tananis, 2009; Sibthorp et al., 2007).

2.3. Data analysis

We assessed the influence of individual factors and environ-
mental factors on self-efficacy for riding a bicycle (Model 1) and
self-efficacy for wearing a helmet correctly (Model 2) through
two generalized linear mixed effects models. A full list of variables
included in these models is given in Table 2. Age was dichotomized
into younger (8–10 years of age) and older (11–12 years of age)
students due to different drivers of behavior among younger and
older children (Morrongiello & Lasenby-Lessard, 2007). Given the
ordinal nature of the self-efficacy outcomes, the models utilized
a cumulative logit link and descending option to model likelihood
of higher self-efficacy. The models also accounted for the multi-
level nature of students at the same schools. Data analysis was per-
formed with SAS version 9.4. Values of p < .05 were considered
statistically significant.

3. Results

The analysis revealed numerous individual characteristics and
environmental factors related to self-efficacy for injury prevention

Table 1
Sample characteristics.

Variable n (%)

Age*
8–10 years of age 1781 (78.98)
11–12 years of age 409 (18.14)

Gender*
Male 1067 (47.32)
Female 1085 (48.12)

Race and Ethnicity*
Hispanic 267 (11.84)
Non-Hispanic Black 352 (15.61)
Non-Hispanic White 1067 (47.32)
Non-Hispanic Other 435 (19.29)

Knowledge, n(%) correct
What to do at a stop sign 1396 (61.91)
How to signal a turn 1050 (46.56)
When to wear a helmet 1474 (65.37)
How to wear a helmet correctly 1374 (60.93)

Own a bike, n(%) yes 1736 (76.98)
Own a helmet, n(%) yes 1365 (60.53)

*Values may not add to total sample size due to incomplete surveys among a
portion of the sample.

Table 2
Variables in models.

Model 1 Model 2

Outcome Variable Self-efficacy for riding a bicycle Self-efficacy for wearing a helmet correctly

Individual predictor variables
Demographics Age Age

Gender Gender
Ethnicity Ethnicity

Behavioral capability
Opportunity for skill building Owning a bicycle Owning a helmet
Knowledge Knowledge of what to do at a stop sign Knowledge of when to wear a helmet

Knowledge of how to signal a turn Knowledge of how to wear a helmet correctly

Environmental predictor variables
Situation Feel safe riding in the neighborhood Feel safe riding in the neighborhood
Vicarious learning/Modeling See others riding in the neighborhood See others riding in the neighborhood
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skills. Within the individual characteristics, male students tended
to show increased odds for expressing confidence relative to
female students. A child’s correct knowledge and having the oppor-
tunity to learn a skill also showed increased odds. Further, within
the environmental factors, feeling safe riding a bicycle in the
neighborhood emerged as highly indicative of increased odds for
confidence. In the following detailed results, we reported signifi-
cant increased or decreased odds of self-efficacy for the injury pre-
vention skills. Complete results are given in Tables 3 (Model 1) and
4 (Model 2) (Table 4).

3.1. Self-efficacy for riding a bicycle

In the case of self-efficacy for riding a bicycle, perceived situa-
tional factors emerged most predictive, followed by opportunity
to learn the skill, knowledge, and gender. Those who feel safe rid-
ing a bicycle in their neighborhood all of the time or most of the
time had 4.05 and 2.09 times the odds, respectively, of expressing

higher confidence in riding a bicycle relative to those who never
feel safe. Opportunity to learn the skill through owning a bicycle
and knowledge for bicycle safety rules were also highly predictive.
Those who own a bicycle showed 2.77 times the odds of expressing
higher confidence relative to non-owners and those who are cor-
rect in their answer of what to do at a stop sign (1.32) and how
to signal a turn (1.34) showed greater odds of expressing higher
confidence relative to those who incorrectly answered these ques-
tions. Finally, odds of higher confidence were also greater for males
(1.26) than females.

3.2. Self-efficacy for wearing a helmet correctly

A similar pattern was seen for self-efficacy for wearing a helmet
correctly, as situation, opportunity to learn the skill, knowledge,
and gender again emerged as predictive. Again, feeling safe riding
in the neighborhood was most influential, as those who stated they
feel safe all the time had 2.44 times the odds of expressing higher
confidence compared to those who stated they never feel safe.
Additionally, opportunity to learn the skill through owning a hel-
met showed that those with a helmet had 1.74 times the odds of
expressing higher confidence compared to non-owners. Further,
knowledge was again predictive and for both knowledge questions
included in this model, how to wear a helmet correctly and when
to wear a helmet. Those who correctly identified how to wear a
helmet correctly and correctly answered that one should always
wear a helmet had 1.64 and 1.85 times the odds, respectively, of
expressing higher confidence relative to those who incorrectly
answered the respective question. Similarly, gender was again
influential, with odds of higher confidence increasing by a factor
of 1.24 from female to male. In contrast to Model 1, these results
also revealed vicarious learning as predictive of self-efficacy.
Specifically, those who reported they see others riding in the
neighborhood all the time showed 1.44 times the odds of express-
ing higher confidence relative to those who reported never seeing
others riding in the neighborhood.

4. Discussion

This exploratory analysis aimed to identify factors internal to
the child, as well as factors about his or her environment, that pre-
dict a child’s self-efficacy for injury prevention skills. The results
revealed that both factors characterized as individual and environ-
mental contributed to the models. Within these categories, the
variables that emerged as predictive overlapped substantially with
self-efficacy for riding a bicycle and self-efficacy for wearing a hel-
met correctly. In both models, behavioral capability through
opportunity for skill building (owning a bicycle or helmet) and
knowledge, as well as perceived situation, were predictive, lending
support to our hypotheses. However, our hypothesis regarding the
influence of modeling or vicarious learning, through seeing others
riding in the neighborhood, was generally countered, as was
expected differences based on ethnicity. The results of this study
suggest a focus shift from prevalence information and knowledge
promotion to fostering self-efficacy in attempts to promote injury
prevention behavior among children. As such, identification of
these factors, and their dissemination so that they may be acted
upon, may help to increase self-efficacy for road safety skills and,
in turn, injury prevention behavior.

These results reaffirm the necessity to investigate both individ-
ual and environmental factors when examining health behavior, as
both categories emerged as predictive. In a divergence from typical
factors, however, perhaps the most novel and interesting finding is
the highly predictive nature of feeling safe riding a bicycle in the
neighborhood. In both the model for riding a bicycle and wearing

Table 3
Results for factors related to self-efficacy for riding a bicycle.

Variable Odds Ratio (95% CI) p-value

Age (younger*) 1.34 (1.00, 1.82) 0.054
Gender (female*) 1.26 (1.01, 1.56) 0.040
Race and ethnicity (Non-

Hispanic White*)
Hispanic 0.81 (0.57, 1.14) 0.224
Non-Hispanic Black 1.17 (0.84, 1.63) 0.351
Non-Hispanic Other 1.01 (0.75, 1.35) 0.960

Own a bicycle (no*) 2.77 (2.10, 3.63) <0.001
Stop sign correct (incorrect*) 1.32 (1.05, 1.65) 0.016
Signal turn correct (incorrect*) 1.34 (1.08, 1.67) 0.008
Feel safe riding in

neighborhood (never*)
Sometimes 1.40 (0.92, 2.12) 0.117
Most of the time 2.09 (1.38, 3.15) <0.001
All of the time 4.05 (2.73, 6.00) <0.001

See others riding in
neighborhood (never*)

Sometimes 1.08 (0.82, 1.42) 0.600
Most of the time 1.07 (0.74, 1.54) 0.722
All of the time 1.26 (0.84, 1.89) 0.265

*Reference category; CI: confidence interval.

Table 4
Results for factors related to self-efficacy for wearing a helmet correctly.

Variable Odds Ratio (95% CI) p-value

Age (younger age group*) 1.00 (0.80, 1.26) 0.974
Gender (female*) 1.24 (1.04, 1.48) 0.016
Race and ethnicity (Non-

Hispanic White*)
Hispanic 0.79 (0.58, 1.07) 0.124
Non-Hispanic Black 1.19 (0.90, 1.57) 0.234
Non-Hispanic Other 0.92 (0.73, 1.16) 0.443

Own a helmet (no*) 1.74 (1.42, 2.13) <0.001
When to wear a helmet correct

(incorrect*)
1.85 (1.53, 2.24) <0.001

How to wear a helmet correct
(incorrect*)

1.64 (1.37, 1.96) <0.001

Feel safe riding in
neighborhood (never*)

Sometimes 1.05 (0.71, 1.55) 0.822
Most of the time 1.17 (0.80, 1.71) 0.415
All of the time 2.44 (1.70, 3.50) <0.001

See others riding in
neighborhood (never*)

Sometimes 0.87 (0.69, 1.10) 0.250
Most of the time 0.94 (0.70, 1.27) 0.691
All of the time 1.44 (1.03, 2,01) 0.035

*Reference category; CI: confidence interval.
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a helmet correctly, feeling safe riding in one’s neighborhood all the
time was indicative of increased odds of self-efficacy. These find-
ings extend the research beyond environmental factors such as
socioeconomic status and reveal the influence of a perception of
safety in the immediate vicinity. That is, self-efficacy and, by
extension, injury prevention behavior, may be contingent on safety
policies and on psychosocial characteristics. In fact, perception of
neighborhood safety has been shown to be a more effective predic-
tor of physical activity than objective measures (e.g., crime rate;
Janssen, 2014). Within recreational bicycling literature, perception
was an important predictive factor, while objective measures of
the environment were not (Ma & Dill, 2016). In these ways, envi-
ronmental characteristics show a subjective component, reinforc-
ing social cognitive theory’s emphasis on the interplay of these
features. Future research should examine the features of the neigh-
borhood that influence a child’s perception of feeling safe or not
feeling safe riding in that environment, thereby complying with
the interaction of individual and environmental factors in driving
a person’s behaviors.

Prior research on the interplay of individual and environmental
factors in injury prevention skills led to our hypotheses regarding
the influence of demographic factors. However, previous research
revealed differences based on race and ethnicity — the demo-
graphic factor that did not emerge as predictive in either of our
models (Dellinger & Kresnow, 2010). Our analyses in this domain
are limited, as, while our sample has students from a variety of
racial and ethnic backgrounds, it is comprised mostly of students
identifying as White, which may have contributed to lack of evi-
dence for differences based on these factors. That said, prior
research that found racial and ethnic differences in helmet use
prevalence also had a disproportionate amount of White children
in the sample. These discrepancies may demonstrate the difference
between investigating factors related to reported behavior and fac-
tors related to reported self-efficacy for a skill and indicates a need
for additional research on reporting differences between these two
question types.

The findings have practical implications. Given that the use of
reported self-efficacy for wearing a helmet correctly and riding a
bicycle may be more indicative of everyday behavior, the fact that
factors were found to be linked to self-efficacy reveals actionable
strategies for advancing self-efficacy and injury prevention behav-
iors (Bandura, 1986; O’Leary, 1985; Strecher et al., 1986). First, the
results have implications for policymakers. Those intent on pro-
moting cycling and related injury prevention behavior among chil-
dren should look at neighborhood safety and perception of such
safety. Second, the results reinforce practices by bicycle safety edu-
cation programs and suggest alterations. There was a demon-
strated association between opportunity for skill building,
through ownership of a helmet or bicycle, and higher odds of con-
fidence. Such findings support practices by bicycle safety education
programs of giving students free helmets (Watts et al., 1997). The
adoption of this practice by more programs may not only result in
higher helmet prevalence, as documented in the literature, but also
relate to self-efficacy for wearing a helmet correctly. Alternatively,
the findings also suggest that injury prevention behavior is deter-
mined by more than knowledge, again asserting that knowledge
tests may not be the most appropriate gauge of everyday behavior.
Finally, the results demonstrate differences among students for
their starting points prior to education safety programs. For exam-
ple, the finding that boys show higher self-efficacy for wearing a
helmet correctly pre-program may indicate that, while girls need
more attention regarding helmet fit and buckles, boys are further
along in the behavior change process and more so require practic-
ing this skill. Importantly, the identification of these differences
pre-program can help program leaders implement more effective
programs by creating more targeted interventions. As such, the

results provide avenues for policymakers, educators, and future
research.

The present study is preliminary and not without limitations.
First, while the sample comes from 13 unique elementary schools
and is relatively diverse, the fact that all data were collected in one
geographic region limits its representativeness. It is a convenience
sample collected in varying locations and with different survey
administrators. Teachers within the schools acted as survey
administrators and, while they were provided with a detailed sur-
vey administration guide, the data collection environment was less
controlled than is ideal. Second, the analysis was limited to those
items addressed in the survey utilized by the bicycle safety pro-
gram. Therefore, there are additional potentially important factors
that further research should add to our investigation. For example,
parents have been shown to influence a child’s bicycle riding
prevalence and behaviors (e.g., Ross et al., 2014; Tal & Handy,
2008); however, we were not able to include parent behaviors in
our analysis. Similarly, while an aim of the study was to extend
the research in this area beyond reports of behavior prevalence,
it would be useful to have this item (i.e., self-reported use of a hel-
met). Instead, we were limited to the two outcomes reported in
this study and prevalence would be an interesting addition to the
study in order to directly examine the relationship between self-
efficacy for behaviors and reported behavior. Finally, this study is
limited by the observational data to an inability to suggest causal-
ity. For example, feeling safe riding in the neighborhood may not
cause an increase in self-efficacy for wearing a helmet correctly.
By contrast, the relationship we found may be mediated by known
additional factors related to promoting self-efficacy, such as a prac-
tice and experiencing with the skill in one’s everyday context (Yeo
et al., 2006; Zulkosky, 2009). Such limitations guide approaches for
future research.

5. Conclusions

The present study draws attention to the need to employ indi-
vidual and environmental factors in health behavior and to the role
of self-efficacy (i.e., as an outcome) among injury prevention
health behavior research. The identification of factors as con-
tributable to reported self-efficacy can aid policymakers in target-
ing specific areas (e.g., neighborhood safety) and inform strategies
used in bicycle-safety education programs. Importantly, these sug-
gestions exist within the refocused aim of concentrating policies
and programs on promoting self-efficacy, as perhaps the best
approach to understanding and reducing bicycle-related injury.
Doing so can keep a population particularly prone to these injuries
safer and healthier.
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a b s t r a c t

Introduction: Hit-and-run crashes are a criminal offense that leave the victim without prompt medical
care or the ability to receive financial compensation. Method: The purpose of the current study was to
quantify the factors associated with the probability that a driver leaves the scene of a fatal crash, using
multiple imputation to incorporate information from drivers who were never apprehended and thus
whose characteristics were unknown. Results: The results of this study show that in addition to driver,
vehicle, and environmental factors having significant impacts on the likelihood of a driver fleeing the
scene, economic and demographic factors are important as well. Practical Applications: This analysis
allows for a more holistic understanding of hit-and-run crashes and informs potential countermeasures
and future research.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Hit-and-run crashes are an issue for both traffic safety and law
enforcement. This crash type has been pervasive in the United
States and in recent years accounted for around 5% of total fatal
crashes and claimed approximately 1,800 lives per year, with
pedestrians accounting for 66% of those fatalities (Benson et al.,
2018). Deaths from hit-and-run crashes have been increasing at a
rate of 7.2% per year since 2009 and reached the highest number
on record in 2016 (Benson et al., 2018).

Developing a comprehensive understanding of the factors asso-
ciated with leaving the scene of a crash can be a challenge, as
approximately 50% of hit-and-run drivers are never identified. Of
those who are identified, drivers who flee fatal pedestrian crashes
tend to be younger and male (Solnick & Hemenway, 1994; Solnick
& Hemenway, 1995; MacLeod et al., 2012). In these same crashes,
drivers of older vehicles are about 45% more likely to flee the scene
of a crash than those with newer vehicles (Solnick & Hemenway,
1995; MacLeod et al., 2012). Another common characteristic of
identified hit-and-run drivers is a history of traffic violations,
including driving under the influence and driving without a valid
license. A past DWI conviction increases the odds of committing
a hit-and-run when considering pedestrian-involved fatal crashes
(Solnick & Hemenway, 1995; MacLeod et al., 2012; Kim et al.,
2008). An invalid license also significantly increases the odds of

fleeing, by as much as 400% in some studies (Solnick &
Hemenway, 1994; Solnick & Hemenway, 1995).

A consistent finding across a range of crash severities and victim
types is that hit-and-runs are more likely to occur at night (Solnick
& Hemenway, 1994; MacLeod et al., 2012; Tay et al., 2009; Aidoo
et al., 2013; Bahrololoom et al., 2016). The roadway functional
class and speed limit of the collision site are predictive of the like-
lihood of a hit-and-run crash, with less congested county and
municipal roads being more likely to host hit-and-run crashes
(Tay et al., 2009), as are roads with lower speed limits (Solnick &
Hemenway, 1995; MacLeod et al., 2012).

A study by Liu et al. (2018) appended Census tract-level data to
crash data to examine how the probability of a hit-and-run varied
in relation to sociodemographic characteristics of crashes in Michi-
gan. Results indicated that the extent to which driving under the
influence adds to the risk of a driver committing a hit-and-run var-
ied regionally. They also found that higher unemployment rates
and lower rates of college graduation per population were associ-
ated with greater probability that a driver would leave the scene
of a crash.

Given the recent increasing trend in hit-and-run fatal crashes in
the United States, a better understanding of underlying factors is
needed to inform future research and countermeasures. The pur-
pose of the current study was to quantify the factors associated
with the probability that a driver leaves the scene of a fatal crash,
using multiple imputation to incorporate information from drivers
who were never apprehended and thus whose characteristics were
unknown. In addition to updating previous research findings with
more recent data, the current study seeks to improve understand-
ing of factors associated with drivers leaving the scene of fatal
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crashes by: (a) examining all fatal hit-and-run crashes in the Uni-
ted States rather than only those that involved pedestrians; (b)
using the method of multiple imputation to take into account dri-
vers who left the scene and were never identified rather than only
those who were caught; and (c) incorporating Census tract-level
sociodemographic data from the places where crashes occurred.

2. Methods

The current study investigated driver, vehicle, and environmen-
tal factors associated with the probability that a driver who was
involved in a fatal crash would leave the scene. Multiple imputa-
tion was used to estimate the distributions of driver- and
vehicle-related variables among drivers who left the scene and
were never identified.

2.1. Data

Data on drivers involved in crashes that occurred on public
roads in the United States in the years 2010–2017 and resulted
in a death within 30 days of the crash were obtained from the
National Highway Traffic Safety Administration (NHTSA) Fatality
Analysis Reporting System (FARS). The original data files included
a total of 377,749 drivers. Drivers who died (n = 175,011) were
excluded from the study because such drivers could not plausibly
leave the scene.

Driver-related variables examined were the driver’s age, sex,
license status, driving under the influence convictions in the past
three years, moving violations in the past three years, distance
from the driver’s home to the location of the crash (linear distance
from the centroid of the driver’s ZIP code to the latitude/longitude
of the crash), and severity of the driver’s injuries. Vehicle-related
variables examined were the vehicle type, age, owner, and the
extent of damage. Crash-related variables examined were the
number of vehicles involved in the crash (1 vs. 2+) and whether
the crash involved any non-motorists (e.g., pedestrians or cyclists).
Environmental variables examined were Census region, season,
time of day, day of week, interaction of day and time, speed limit,
and lighting conditions. These variables were chosen because they
reflect the physical environment in which the crashes occurred. To
model sociodemographic characteristics of the places in which the
crashes occurred, census tract-level poverty rate, unemployment
rate, percent of residents ages 25 and older with at least a high
school diploma or equivalent, percent of residents who walk to
work, percent of residents who do not identify as non-Hispanic
white, and population density were obtained from the U.S. Census
Bureau’s American Community Survey 2012–2016 five-year data
set.

Among drivers who left the scene, a driver was assumed to have
not been identified if the driver’s age, state of residence, driver
license status, and previous driving record were all reported as
unknown and the driver was not reported as having been charged
with any violation.

2.2. Statistical analysis

Poisson regression was used to estimate the ratio of the
adjusted rate of leaving the scene associated with each of the
explanatory variables. Adjusted rate ratios (aRRs) were obtained
by exponentiating the regression coefficients. Rate ratios rather
than odds ratios were preferred because leaving the scene was rel-
atively common for some categories of some explanatory variables
(e.g., drivers who struck pedestrians; drivers who lacked a valid
license), thus odds ratios would overestimate rate ratios
(Cummings, 2009). Poisson regression has been shown to produce
unbiased point estimates but overestimate variances when used to
model binary outcomes, thus variances were corrected using the
robust variance estimator (Zou, 2004; Chen et al., 2018).

Continuous variables were plotted against the probability of
hit-and-run using linear, quadratic, and fractional polynomial plots
to select the functional form of each variable to include in the
model. The percent of residents who walk to work was modeled
using the percent and its square; Census tract population density
was modeled using the density and its square root; distance from
home was modeled using the natural log of the distance. All other
continuous variables were modeled as linear.

Drivers who left the scene of crashes and were not identified
(3.2% of all drivers) had missing values for most driver- and
vehicle-related variables; a small number of cases had missing val-
ues for other variables as well. Missing values were imputed using
multiple imputation by chained equations (van Buuren et al.,
1999). Continuous, ordinal, and categorical variables were imputed
using predictive mean matching with three nearest neighbors,
ordered logistic regression, and multinomial logistic regression,
respectively. Ten independent copies of the data set were created,
each with missing values replaced with imputed values.

The performance of the imputation model was assessed by sim-
ulating missing data from among complete cases, imputing them,
estimating aRRs from the data with the simulated missing values
imputed, and comparing them to aRRs obtained using the original
values. The procedure is described further and results are provided
in the Appendix.

Point estimates of statistics were estimated by computing the
statistic in each of the 10 imputed data sets separately and then
averaging them. Standard errors were estimated using the method
of Rubin (1987) to account for both the variability in the observed
data and the uncertainty in the imputed data.

Analyses were performed using statistical software Stata ver-
sion 15.0 (StataCorp LLC, College Station, TX).

3. Results

Hit-and-run drivers comprised 6.5% of all drivers who survived
fatal crashes over the study period. Of drivers who left the scene,
51% were subsequently identified. A majority (59.9%) of the hit-
and-run drivers struck non-motorists (Table 1).

Table 1
Surviving Drivers Involved in Fatal Crashes, by hit-and-run status and crash type, United States, 2010–2017.

Remained at scene
(n = 189,394)

Left scene, identified
(n = 6,676)

Left scene, not identified
(n = 6,405)

Total left scene
(n = 13,081)

Crash type Column %
Single-vehicle vs. nonmotorist
(s)

17.8 55.2 64.7 59.9

Single-vehicle only 8.7 7.9 1.7 4.9
Multiple-vehicle 73.5 36.8 33.6 35.3
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3.1. Description of sample

Hit-and-run drivers who were identified tended to be younger
than drivers that did not flee: 60% of those who fled were younger
than 35 years old, compared with 41% of drivers who remained at
the scene (Table 2). Males made up 79% of drivers who left versus
70% who stayed. More than one-third of identified hit-and-run dri-

vers lacked a valid license, compared with fewer than 10% of those
who remained at the scene. Hit-and-run drivers were also more
likely to have a history of previous DWI convictions and/or moving
violations.

Drivers who left the scene tended to drive older vehicles than
drivers who did not flee (e.g., 56% of vehicles that left the scene
were 10+ years old, compared with 44% of those that remained

Table 2
Percent of surviving drivers who left the scene of a fatal crash in relation to crash characteristics, United States, 2010–2017.

Remained at
scene
(n = 189,394)

Left scene,
identified
(n = 6,676)

Left scene,
not identified
(n = 6,405)

Total left
scene
(n = 13,081)

Remained at
scene
(n = 189,394)

Left scene,
identified
(n = 6,676)

Left scene,
not identified
(n = 6,405)

Total left
scene
(n = 13,081)

Column % Column %

Region Driver sex
Northeast 11.6 12.8 10.8 11.8 Female 29.1 19.0 0.5 10.0
Midwest 19.6 17.3 15.2 16.3 Male 70.8 79.1 4.6 42.6
South 47.7 41.7 45.9 43.7 Unknown 0.1 1.9 94.8 47.4
West 21.1 28.3 28.2 28.2 Driver license status

Season Valid 90.3 54.6 0.0 31.5

Spring 23.8 24.3 22.0 23.2 Expired/cancelled/denied 0.8 2.4 0.0 1.4
Summer 26.5 26.8 24.8 25.8 Suspended/revoked 4.4 16.8 0.0 9.7
Fall 27.0 26.4 28.2 27.3 Unlicensed 3.5 13.1 0.0 7.5
Winter 22.7 22.6 25.0 23.7 Unknown 1.0 13.1 100.0 49.9

Day DWI convictions past

3 years
Mon-Thurs 53.5 43.5 44.4 44.0 0 96.6 79.7 0.0 45.9
Friday 16.3 15.0 15.8 15.4 �1 1.8 6.2 0.0 3.6
Saturday 16.5 21.5 20.7 21.1 Unknown 1.6 14.2 100.0 50.5
Sunday 13.7 20.0 19.1 19.6 Moving violations past

3 years

Time 0 69.2 52.4 0.0 30.2

6–8:59 am 10.5 6.9 6.0 6.5 1 17.3 16.3 0.0 9.4
9–11:59 am 11.0 3.8 2.4 3.1 2 6.5 7.8 0.0 4.5
12–2:59 pm 15.3 5.6 3.0 4.3 �3 5.5 9.4 0.0 5.4
3–5:59 pm 18.9 8.7 5.7 7.2 Unknown 1.6 14.2 100.0 50.5
6–8:59 pm 17.4 19.7 19.3 19.5 Miles from driver’s

home
9–11:59 pm 12.8 23.8 26.2 25.0 <5 32.4 42.7 0.1 24.6
12–5:59 am 14.1 31.7 37.3 34.4 5–50 48.6 37.4 0.1 21.6

Speed limit >50 16.7 6.2 0.0 3.6

�25 mph 5.4 12.0 9.5 10.8 Unknown 2.2 13.7 99.9 50.2
30–35 mph 15.7 29.7 29.3 29.5 Vehicle type
40–45 mph 24.5 28.3 27.2 27.8 Car/pickup/van/minivan/

SUV
82.7 85.5 24.4 59.6

�50 mph 54.5 30.0 34.0 31.9 Large truck/bus 14.8 4.1 1.6 3.0

Lighting Motorcycle 1.7 0.8 0.2 0.6

Daylight 54.9 23.7 12.6 18.3 Other 0.3 0.3 0.1 0.2
Dawn/dusk 4.2 4.1 3.2 3.6 Unknown 0.6 9.3 73.7 36.6
Dark 41.0 72.2 84.2 78.0 Vehicle age (years)

Towed due to

damage

0–4 26.6 15.7 2.6 10.2

Yes 65.0 30.4 6.7 19.0 5–9 28.7 22.4 3.0 14.2
No 35.0 69.6 93.3 81.0 10–14 26.3 27.5 3.9 17.5

Driver age 15–19 12.7 16.0 2.5 10.3

<20 7.5 8.7 0.0 4.4 20+ 5.4 7.1 0.6 4.3
20–34 33.5 51.3 0.0 26.2 Unknown 0.4 11.3 87.3 43.5
35–49 26.4 23.2 0.0 11.8 Owner of vehicle
50–64 22.0 11.9 0.0 6.1 Driver is owner 52.2 38.3 0.5 22.3
65–79 8.4 2.6 0.0 1.3 Other private owner 30.4 41.7 2.6 25.1
80+ 2.0 0.6 0.0 0.3 Business/government

fleet
16.7 5.7 0.5 3.5

Unknown 0.2 1.9 100.0 49.9 Stolen vehicle 0.1 1.1 1.1 1.1

Driver injury

severity

Unknown 0.6 13.2 95.2 48.0

Not injured 49.2 73.8 43.2 58.8
Possible/

minor
injury

33.8 17.1 0.9 9.1

Incapacitating
injury

15.8 2.1 0.0 1.1

Unknown 1.2 7.1 55.9 31.0
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at the scene). Drivers who remained at the scene were more likely
to be driving their own vehicle or a vehicle registered to a business
or government fleet; drivers who left were relatively more likely to
be driving a vehicle registered to another party.

Drivers involved in crashes during evening/night hours and on
the weekends were much more likely to leave the scene than dri-
vers involved in crashes during daytime hours and on weekdays.
Drivers involved in crashes on lower-speed roads were more likely
to leave the scene than drivers involved in crashes on higher-speed
roads.

Crashes in which surviving drivers fled the scene tended to
occur in Census tracts with slightly greater poverty and unemploy-
ment rates, slightly lower rates of residents’ having completed high
school, higher proportions of residents of races other than non-
Hispanic white, higher proportions of residents who walk to work,
and higher population densities (Table 3). Directionally-similar dif-
ferences were observed between drivers who left the scene and
were identified versus those not identified.

3.2. Factors associated with leaving the scene in multivariable analysis

After imputation of missing values and adjustment for all fac-
tors examined in the study, several factors were significantly asso-
ciated with the proportion of surviving drivers who left the scene
(Table 4). Drivers who struck non-motorists were 66% more likely
to leave the scene than drivers involved in multiple-vehicle
crashes. The rate of leaving the scene decreased with increasing
driver age by an average of 12% per decade of driver age. Males
were 70% more likely to leave the scene than females. Drivers with
an invalid license or no license were more than twice as likely to
leave the scene as were validly licensed drivers. Drivers with at
least one previous DWI conviction were 54% more likely to leave
the scene than drivers with none. The proportion of drivers who
left the scene also increased with increasing number of previous
moving violations.

Drivers of rental vehicles or vehicles registered to other private
individuals were approximately twice as likely to leave the scene
as were drivers in their own vehicles; drivers in stolen vehicles
were more than three times as likely to leave the scene. Drivers
in vehicles registered to a business or government entity were sig-
nificantly less likely to flee. While drivers of older vehicles were
more likely to leave the scene in bivariate analysis, this was not
statistically significant after adjustment for other factors including
driver injury severity and vehicle damage (not shown).

Drivers who crashed on Saturdays and Sundays were 12% and
18% more likely to leave the scene, respectively, than were drivers
who crashed on Monday-Thursday. Drivers who crashed in the
evening or overnight hours were much more likely to leave the
scene than were drivers who crashed in the morning or early after-
noon. Drivers who crashed on roads with speed limits of 40–45 and
50+ miles per hour were 15% and 20% less likely to leave the scene,
respectively, than were drivers who crashed on roads with speed
limits of 25 miles per hour or lower. Drivers were 0.7% more likely

to leave the scene for each 1 percentage point increase in the
unemployment rate of the Census tract, and 0.2% more likely to
leave the scene for each 1 percentage point increase in the propor-

Table 3
Sociodemographic characteristics of fatal crash locations and whether a surviving driver leaves the scene of the crash, United States, 2010–2017.

Remained at scene
(n = 189,394)

Left scene, identified
(n = 6,676)

Left scene, not identified
(n = 6,405)

Total left scene
(n = 13,081)

Census tract of crash location Median (Interquartile range)
% below poverty level 13.4 (7.8–21.4) 17.1 (10.1–27.1) 20.2 (11.8–31.6) 18.6 (10.7–29.3)
% unemployed (ages 16 + ) 6.9 (4.6–10.2) 8.1 (5.3–12.0) 9.0 (5.9–13.3) 8.4 (5.6–12.6)
% High-school graduate (ages 25 + ) 87.5 (80.0–92.7) 84.9 (74.9–91.4) 81.5 (71.2–89.3) 83.3 (73.1–90.6)
% race other than non-Hispanic

white
27.5 (10.5–56.8) 45.6 (20.2–78.0) 66.6 (34.8–90.5) 55.6 (26.4–86.0)

% of workers who walk to work 0.4 (0–2.3) 1.4 (0–5.3) 2.4 (0.4–8.5) 1.8 (0.1–6.7)
population per square mile 450 (69–2,630) 2,099 (321–5,355) 3,169 (772–6,602) 2,617 (492–6,035)

Table 4
Adjusted rate ratios for leaving the scenes of fatal crashes among drivers who
survived, United States, 2010–2017.

Incidence Rate Ratio
(95% CI)

Driver age (+10 years) 0.88 (0.86–0.90)
Driver sex (male vs. female) 1.70 (1.53–1.89)
Natural log of driver’s distance from home 1.02 (0.98–1.06)
Previous DWI convictions (�1 vs. 0) 1.54 (1.44–1.64)
Previous moving violations (reference = 0)
1 1.13 (1.08–1.19)
2 1.20 (1.13–1.28)
�3 1.24 (1.16–1.32)

Driver license status (reference = valid)
Invalid 2.32 (2.19–2.44)
Unlicensed 2.52 (2.39–2.66)

Driver injury severity (reference = not injured)
Minor injury 0.61 (0.57–0.65)
Incapacitating injury 0.18 (0.15–0.21)

Owner of vehicle (Reference = driver is owner)
Other private owner or rental vehicle 1.98 (1.81–2.17)
Business/government fleet 0.59 (0.49–0.71)

Stolen vehicle 3.13 (2.74–3.58)
Vehicle type (reference = car/pickup/van/SUV)
Large truck/bus 0.80 (0.67–0.97)
Motorcycle 1.03 (0.88–1.21)

Vehicle age (+10 years) 1.03 (0.99–1.06)
Vehicle towed due to damage (yes vs. no) 0.33 (0.31–0.35)
Day of week (reference = Monday–Thursday)
Friday 1.03 (0.98–1.07)
Saturday 1.12 (1.07–1.17)
Sunday 1.18 (1.13–1.23)

Time of day (reference = 9:00–11:59 am)
12–2:59 pm 1.02 (0.90–1.14)
3–5:59 pm 1.04 (0.93–1.16)
6–8:59 pm 1.27 (1.13–1.43)
9–11:59 pm 1.62 (1.43–1.83)
12–5:59am 2.06 (1.83–2.33)
6–8:59am 1.42 (1.27–1.60)

Speed limit (reference < 30 miles per hour)
30–35 miles per hour 0.95 (0.90–1.01)
40–45 miles per hour 0.85 (0.80–0.91)
�50 miles per hour 0.80 (0.74–0.86)

Lighting conditions (reference = daylight)
Dawn/dusk 1.43 (1.30–1.58)
Dark 1.61 (1.49–1.73)

Crash type (reference = multiple-vehicle)
Single-vehicle vs. nonmotorist 1.66 (1.60–1.72)
Single-vehicle only 1.02 (0.94–1.11)

Census tract of crash location
% below poverty level (+1 pp) 1.000 (0.999–1.002)
% unemployed (+1 pp) 1.007 (1.004–1.010)
% High-school graduate (+1 pp) 1.000 (0.998–1.001)
% not non-Hispanic white (+1 pp) 1.002 (1.01–1.003)

Rate ratios adjusted for region of country; season; Census tract population density,
% of workers who walk to work in Census tract, and all other variables in table.
pp = percentage point.
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tion of Census tract residents who identified as a race other than
non-Hispanic white.

The proportion of drivers who left the scene also increased with
increasing population density across all but the densest Census
tracts, before decreasing steeply with further increases in popula-
tion density at densities greater than approximately 24,000 people
per square mile—roughly the densest 4% of all Census tracts
nationwide (Fig. 1). Similarly, the probability that a driver left
the scene increased with the proportion of workers in the Census
tract who walk to work across virtually the entire distribution of
walking share observed (Fig. 2). The walking share at which the
probability of a driver leaving the scene began decreasing was
within the top 0.5% of all Census tracts nationwide with respect
to the share of workers who walk. While both of these measures
are clearly correlated with pedestrian exposure and drivers who
strike pedestrians are more likely to leave the scene than drivers
involved in a crash with another vehicle, qualitatively similar rela-
tionships between population density, walking share, and the
probability of leaving the scene remained even in analysis
restricted to multiple-vehicle crashes (not shown).

4. Discussion

The current study sought to quantify the relationships between
driver, vehicle, and environmental factors and the probability that
a driver who was involved in a fatal crash (and survived) would
leave the scene. In addition to confirming the results of several past
studies, the use of multiple imputation to enable the inclusion of
drivers who were never identified, and the incorporation of exter-
nal sociodemographic data characterizing the places in which the
crashes occurred produced several new insights. It was found that
drivers of vehicles registered to others were approximately twice
as likely to leave the scene as were drivers operating their own
vehicles. Unsurprisingly, drivers of stolen vehicles were yet more
likely to leave the scene, and drivers of vehicles registered to a
business or government entity—likely the driver’s employer—were
least likely to flee.

Previous studies have examined the associations of driver- and
vehicle-related factors with the odds of leaving the scene among
drivers who were eventually identified (MacLeod et al., 2012).
However, nearly half of the drivers who left the scenes of fatal

crashes were never identified. While it is possible that drivers
who are eventually identified after having left the scene of a fatal
crash are representative of all drivers who leave the scenes of fatal
crashes, it is important to allow for the possibility that they might
not be. Thus, the current study used multiple imputation to esti-
mate the distributions of driver- and vehicle-related variables
among drivers who left the scene and were never identified,
enabling the inclusion of this group of drivers in the analysis as
well. The imputation approach used in the current study accounted
for relationships of driver- and vehicle-related data with numerous
other variables characterizing the circumstances of the crashes and
the places where they occurred, among drivers who left the scene
and as well as those who remained, thus avoiding the strong distri-
butional assumptions that implicitly underlie complete-case anal-
ysis. Nonetheless, results were broadly consistent, at least
directionally, with previous studies that only examined drivers
who were identified (e.g., (MacLeod et al., 2012), finding that indi-
cate that drivers who are younger, male, have recent moving viola-
tions or DWI convictions, or lack a valid license have elevated
probability of leaving the scene of a fatal crash. We also find that
drivers were most likely to leave the scene in crashes that occurred
at night, on weekends, on lower-speed local streets or roads, in
higher-density areas (with the exception of the very densest ones),
in areas where more people walk to work, and in areas with higher
rates of unemployment.

Using Census tract data, the current study found that economic
and demographic attributes are predictive of fatal hit-and-run
crashes. Similar to findings in Liu et al. (Liu et al., 2018), drivers
involved in crashes in areas with higher rates of unemployment
are more likely to leave the scene. These findings are in line with
studies that more broadly show negative traffic safety outcomes
being associated with indicators of lower socioeconomic status.
For example, racial disparities in pedestrian injuries and deaths
are well- documented (Hamann et al., 2020; Kaufman & Wiebe,
2017); the current study finds that drivers are more likely to leave
the scene of a fatal crash in Census tracts in which a greater pro-
portion of the population is non-white. In addition, previous
research has found lower levels of education associated with
higher rates of motor-vehicle crash fatalities at the individual level
(Yu, 2014). Another study found that area-level poverty was
strongly associated with rates of traffic injuries for vehicle occu-
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Fig. 1. Adjusted rate ratio for leaving the scene of a fatal crash in relation to population density of Census tract in which crash occurred, relative to Census tract with
population-weighted median density for all Census tracts (2109 persons per square mile), adjusted for driver, vehicle, and crash factors. Dashed lines represent 95%
Confidence Intervals.
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pants as well as for cyclists and pedestrians, and concluded that
much of the increased risk was associated with differences in the
roadway environment in poorer versus wealthier areas (Harper
et al., 2015). In the current study, tract-level education and poverty
rates were associated with hit and run in univariate but not multi-
variate analysis. Interestingly, the current study also found that
among drivers who left the scene of a fatal crash, those who
crashed in areas with poorer economic indicators were also more
likely to remain at large.

Previous research found that drivers were more likely to leave
the scenes of fatal crashes in urban areas than in rural areas
(MacLeod et al., 2012). The current study expands upon this by
examining the probability of leaving the scene in relation to Census
tract density rather than dichotomous classification as urban ver-
sus rural. Interestingly, the association of hit-and-run with density
appeared to be non-monotonic, increasing with density for all but
the densest Census tracts, but then decreasing in the few very
densest tracts. The reasons for the reversal of trend among the very
densest tracts is unclear; one possibility is that the densest tracts
experience greater levels of traffic congestion, making fleeing more
difficult. A similar pattern was identified with respect to the pro-
portion of workers who walk to work; the reasons for this are
unclear. Notably, this was not fully explained by an increasing pro-
portion of fatal crashes in which the victims were pedestrians—a
scenario in which the driver is independently more likely to
flee—as the model adjusted for victim type, and a similar pattern
was observed in analysis restricted to multiple-vehicle crashes.

Another common finding that our study shares with previous
research is that having an invalid license is one of the strongest
predictors that a driver will flee (MacLeod et al., 2012). That invalid
licenses are a major contributor to hit-and-run has also been
demonstrated by research showing that easing the barriers to
obtaining a driver’s license reduces the proportion of crash-
involved drivers who leave the scene (Lueders et al., 2017). Like
license status, past DWI convictions are a reliable predictor of leav-
ing a fatal crash, both here and in all previous research.

4.1. Limitations

The current study used the method of multiple imputation to
model the distributions of missing variables among drivers who
left the scene, which made up nearly 50% of hit and run drivers.
Although the imputation model was developed using data from a

large number of drivers and included many variables correlated
with the probability that a driver left the scene, the results could
be biased if the imputation model failed to account for correlations
between the values of imputed variables and the probability that
their values were missing. This could occur if drivers who fled
but were caught differed from drivers who fled and remained at
large even after controlling for the other variables in the model.
While there is no reason to believe that the age or sex distribution
of these groups would differ, it is quite possible these groups might
differ in other ways that are difficult to model. For example, factors
like the presence of passengers in the fleeing vehicle may influence
the decision to stay, but that information is unknown. Another lim-
itation is that this study only examined fatal hit-and-run crashes,
and therefore its findings cannot be generalized to non-fatal hit-
and-run crashes.

5. Conclusions

This research gives an updated accounting of the factors associ-
ated with hit-and-run and an early attempt to understand the civil
environment in which these crashes happen by incorporating eco-
nomic and demographic information into the analysis. Hit-and-run
crashes are a criminal issue that current legislation does not seem
to be effectively addressing. Future research could focus on under-
standing the effects that license suspension/revocation and state-
level penalties for hit-and-run have on rates of hit-and-run, with
the goal of identifying effective countermeasures. Another area that
needs more research is understanding why people choose to flee,
which could eventually informmore effective countermeasures.
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Appendix

Validation of multiple imputation model

The performance of the imputation model was assessed by sim-
ulating missing data from among drivers with no missing values
for any of the analysis variables, imputing them, estimating aRRs
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Fig. 2. Adjusted rate ratio for leaving the scene of a fatal crash in relation to percentage of employed residents who walk to work, relative to median walking percentage of all
Census tracts in United States, adjusted for driver, vehicle, and crash factors. Dashed lines represent 95% Confidence Intervals.
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from the data with the simulated missing values imputed, and
comparing them to aRRs obtained using the original values.

The original dataset included 163,738 drivers with no missing
values for any of the variables included in the imputation model,
including 4,935 who left the scene of the crash but were eventually
identified. To simulate the pattern of missing data typically present
among drivers who left the scene and were never identified,
approximately 50% of those who were caught were selected at ran-
dom, and all of their driver- and vehicle-level variables (age, sex,
injury severity, license status, previous DWI convictions, previous
moving violations, vehicle age, vehicle type, distance from home,
and ownership of vehicle) were deleted. After deletion of these
variables, they were then imputed using the same imputation
model as in the main analysis.

Poisson regression with robust variance was used to estimate
the aRRs for hit and run associated with each variable in the data-
set that contained the imputed values of the simulated missing
variables. The performance of the imputation model was assessed
by comparing these aRRs to those obtained from the original set of
all complete cases. The aRRs rather than the values of variables for
individual drivers were compared because the purpose of the
imputation was to enable the inclusion of drivers with missing val-
ues in the estimation of the aRRs, not to recover the values of the
variables for any individual driver.

The above-described simulation procedure was performed 50
times independently. Table A1 shows the median and the
interquartile range of the aRRs obtained for all analysis variables
in each of the 50 simulations, as well as the corresponding actual
values from the complete data. aRRs estimated using the imputed
values of the deleted observations for half of the hit-and-run dri-
vers generally agreed well with the ‘‘true” values estimated from
the original data for most variables. Among variables in which
there was any nontrivial discrepancy, aRRs estimated from the
deleted-and-imputed data were usually closer to 1 than the true
values.
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Table A1
Adjusted rate ratios for leaving the scene of a fatal crash in 50 simulations in which all
variables in table were deleted and imputed for a random 50% of drivers who left the
scene, compared with values obtained from complete case analysis of the original
data.

50% of Hit and Run Drivers
Deleted & Imputed

Complete
Data

Median (25th, 75th
Percentile)a

Age (+10 years) 0.86 0.87 (0.86, 0.87)
Sex (male) 1.54 1.51 (1.48, 1.55)
Minor injury vs. none 0.68 0.77 (0.75, 0.79)
Incapacitating injury vs. none 0.16 0.24 (0.22, 0.25)
Invalid license vs. valid license 3.37 2.93 (2.88, 2.97)
No license vs. valid license 3.68 3.55 (3.47, 3.63)
Previous DWI (�1) 1.77 1.89 (1.83, 1.95)
Previous moving violations � 1 1.12 1.19 (1.17, 1.21)
2 1.22 1.26 (1.23, 1.30)
�3 1.37 1.28 (1.25, 1.31)
Other’s vehicle vs. own vehicle 1.29 1.36 (1.33, 1.37)
Business/govt vehicle vs. own

vehicle
0.81 0.90 (0.86, 0.94)

Stolen vehicle vs. own vehicle 5.69 4.14 (3.92, 4.37)
Large truck vs. car 0.61 0.59 (0.56, 0.62)
Motorcycle vs. car 1.00 0.91 (0.85, 0.98)
Vehicle age (+10 years) 1.13 1.13 (1.12, 1.14)
Miles from home (natural log) 0.94 0.96 (0.95, 0.96)

a. Median, 25th percentile, and 75th percentile values of adjusted rate ratio from 50
simulations in which all variables in table were deleted and replaced with imputed
values for 50% of drivers who left the scene.
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Introduction: Recently the Federal Railroad Administration (FRA) released a new model for accident pre-
diction at railroad grade crossings using a Zero Inflated Negative Binomial (ZINB) model with Empirical
Bayes (EB) adjustments for accident history (2). This new model is adopted from the work that was con-
ducted by the authors (3–6). The unique feature of the new FRA model is that it has a single equation for
all three warning devices (crossbuck, flashing light, and gates) and uses the same variables regardless of
the warning devices at the crossing. Since the New FRA model incorporates the warning device category
as one of the variables in its model equation, the predicted accident frequency is higher when a crossing
has crossbucks than flashing lights, and higher when it has flashing lights than gates. While this model is
significantly better than the old USDOT model (7), its shortcoming is that the single equation does not
accurately represent the field condition. Method: This paper presents the ZINEBS model (Zero Inflated
Negative binomial with Empirical Bayes adjustment System). The ZINEBS model gives three different
equations depending on the type of warning device used at the crossings (gates, flashing lights, and cross-
bucks). The three equations use variables, some of which are common across all warning devices, while
other variables are specific to a warning device. The predicted values for the ZINEBS model show a closer
agreement with the field data than the new FRA model. This observation was true for all three warning
device types analyzed. Practical Applications: Based on the results of this study, the ZINEBS compliments
the new FRA model and should be used when the single equation is not adequately representing the role
of traffic control device types and relevant variables associated with that device type.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

A measure of the safety, perhaps the most important one, of a
railroad grade crossing is the expected number of accidents at that
grade crossing. The expected crash frequency has been used to
rank the sites for engineering improvements. The expected number
of crashes is estimated based on initial crash prediction values that
are adjusted using accident history (the observed number of acci-
dents at that location). To improve the initial estimate, accident
history is used. For over four decades, the practice was to use the
USDOT accident prediction formula (Ogden & Cooper, 2020). This
formula was developed in the 1980s and only the normalization
coefficients of the formula were adjusted periodically. Recently
the Federal Railroad Administration released a new model for acci-
dent prediction at railroad grade crossings using a ZINBmodel with
EB adjustments for accident history (Broad & Gillen, 2020). This

new model is adopted from the work that was conducted by the
authors (Mathew et al., 2019; Medina & Benekohal, 2015;
Medina et al., 2016; Mathew & Benekohal, 2020) but used only
one model for all three traffic control devices (gates, flashing lights,
crossbucks). The new FRA model improved upon the USDOT model
by multiple measures. Since the New FRA model incorporates the
warning device category as one of the variables in its model equa-
tion, the predicted accident frequency is higher when a crossing
has crossbucks than flashing lights, and higher when it has flashing
lights than gates.

This paper presents the ZINEBS model (Zero Inflated Negative
binomial with Empirical Bayes adjustment System). This model
uses the Zero Inflated Negative Binomial (ZINB) model for the ini-
tial prediction followed by the Empirical Bayes method to account
for the accident history of the location. The main differences
between the ZINEBS model and the new FRA model include: (a)
separate models for crossings with different warning device types,
(b) the data used in the model development, (c) filters used on the
data to create a meaningful dataset, and (d) the variable selection
criteria used.

https://doi.org/10.1016/j.jsr.2021.09.003
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The ZINEBS model is developed using data from Illinois and the
model is validated using an independent dataset from Texas. A
comprehensive set of filters (including more filters than what
was used in the new FRA model development) is used to filter
the data, which results in a meaningful database for use in this
analysis. Variable selection in the ZINEBS model is based on for-
ward selection of the variables, ensuring that the selected variables
and their coefficients and meaningful and significant. The ZINEBS
model gives three different equations depending on the type of
warning device used at the crossings (gates, flashing lights, and
crossbucks). The predicted values for the ZINEBS model show a clo-
ser agreement with the field data than the new FRA model.

After developing and validating the ZINEBS model, it is com-
pared to the commonly used USDOT accident prediction formula
(1) (which will be called the USDOT model (old) henceforth) as
well as the new FRA accident prediction model (2). The predicted
values from the three models are compared to the observed acci-
dent counts to see how close the predicted value matches the field
data. A better model should give predicted values that are closer to
the observed number of accidents.

The rest of the manuscript gives a review of the literature on
accident prediction models, a description of the data and method-
ology used in this research, validation of the methodology, and the
comparison made of the ZINEBS model to the USDOT model (old)
and the new FRA model.

2. Literature review

2.1. Models developed by the Federal Railroad Administration

The most commonly used accident prediction models in the
United States is the USDOT accident prediction formulas. These for-
mulas are given in the Highway Rail Grade Crossing Handbook
(FHWA, 2007). These formulas were developed in the 1980s and
are credited to Mengert (1979). Further details about the model
are given in the Summary of DOT Rail-Highway Crossing Resource
Allocation Procedure-Revised (Farr, 1987).

The accident prediction using the USDOT formula involves three
steps. In the first step, the initial accident prediction value ‘‘a” for
crossings is computed by

a ¼ K � EI � DT �MS �MT � HP � HL ð1Þ
The equations for EI, DT, MS, MT, HP and HL for crossings with

different warning device types are given in Table 1.
Please note, the coefficients in the initial accident prediction

formula for calculating ‘‘a,” in the USDOT formulas as mentioned
in the Highway Rail Grade Crossing Handbook (FHWA, 2007) are
different from the coefficients given in the Summary of DOT Rail-
Highway Resource Allocation Procedures-Revised (Farr, 1987).
The FRA uses the coefficients mentioned in the Summary of DOT
Rail-Highway Resource Allocation Procedures in their Web Acci-
dent Prediction System (Federal Railroad Administration, 2020).

In the second step, a ‘‘B” value is computed, which is a weighted
average of ‘‘a” value and the accident history at the crossing.

B ¼ T0
T0þT � aþ T

T0þT � N
T

� � ð2Þ

T0 ¼ 1
0:05þa ð3Þ

where B is called the adjusted accident prediction value and N is the
number of observed accidents in T years and ‘‘a” is the initial
accident prediction value. In the third step, the adjusted accident
prediction value is normalized as shown in the equation below.

A ¼ k
0 � B ð4Þ

The current normalization coefficients used by FRA are given in
Table 2.

In October 2020, the Federal Railroad Administration (FRA)
released a new model to predict accident counts at highway rail
grade crossings (Broad & Gillen, 2020). This method is an adapta-
tion of the methodology proposed by the authors in an earlier
report (Mathew et al., 2019) discussing the preliminary version
of our current work; where the authors used the Zero Inflated
Negative Binomial model with Empirical Bayes adjustment to cal-
culate the predicted accident count at a crossing. However, one of
the main differences is that the FRA model uses only one equation
for all three warning device types, while the authors proposed a
different model for each traffic control type. The FRA equation is
given below.

E a½ � ¼ e�8:35992þ0:19023�lExpo�0:28478�D2�0:85770�D3þ0:39346�RurUrbþ0:13182�XSurfaceID2þ0:68760�lMaxTtSpdþ0:10626�lAadt
1þe1:17084�1:01088�lTotalTr

ð5Þ

where:

lExpo = Exposure, equal to average annual daily traffic times
daily trains
D2 = If warning device type is lights = 1, 0 otherwise
D3 = If warning device type is gates = 1, 0 otherwise
RurUrb = If Rural = 0, if Urban = 1
XSurfaceID2 = Timber = 1, Asphalt = 2, Asphalt and Timber OR
Concrete OR Rubber = 3, Concrete and Rubber = 4
lMaxTtSpd = Maximum timetable speed
lAadt = Average annual daily traffic
lTotalTr = Total number of daily trains

The variables that start with l (Expo, MaxTtSpd, Aadt, TotalTr)
have been transformed as follows: lx = ln(1 + ax), where x is the
original variable and a is a factor. The factor a was selected so that
for the median value of x, ln(1 + ax) = ln(x)

A few points to be noted about the new FRA model are

1. The filters that they used to clean the dataset includes only
seven conditions. The filters include: (1) Public, (2) At grade,
(3) Remove closed, (4) Remove missing AADT, (5) Remove miss-
ing highway lanes, (6) Remove missing daily trains, (7) Remove
missing total tracks. These filters are not comprehensive and
may not clean the data adequately (we will present a compre-
hensive list of filters in Table 3 of this manuscript).

2. They used fewer number of variables than the old USDOT
model in their model. They used a graphical (visual) approach
to select the variables in the model by plotting the normalized
accident count (normalized over exposure and type of warning
device) and checking if there is a difference in accident counts.
Statistical criteria like AIC were not used in model variable
selection.

3. They use one equation for all three warning device types (de-
vice type was handled using dummy variables). This
approach is not as flexible in variable selection at building
a model for each device separately, as it was used in the
Old UDOT model.

2.2. Other models for accident analysis

Several studies have been conducted by researchers to develop
models for crash data. The Poisson model and the Negative Bino-
mial model are typically used to model accident count data in traf-
fic safety analysis. Various researchers have proposed other
methods, including variations on the Poisson model and Negative
Binomial model to model crash counts. Lord et al. (2005) in their
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study (Lord et al., 2005) compared the Poisson, Negative Binomial
(Poisson-Gamma model), and Zero Inflated models of motor-
vehicle crashes. Park and Lord (2009) proposed the finite mixture
regression model for both Poisson mixtures and Negative Binomial
mixtures. Geedipally et al. (2012)) used the negative binomial gen-
eralized linear model with Lindley mixed effects (NB-L GLM) for
analyzing traffic crash data. Zou et al, (2013) developed a two com-
ponent finite mixture negative binomial model with varying
weight parameters using crash data from two datasets; (1) crash
data collected at signalized intersections in Toronto, Canada and
(2) vehicle crash data that occurred on 4-lane undivided rural seg-
ments in Texas. Hallmark et al. (2013) used the Negative Binomial-
Lindley generalized linear models to do a before-and-after study to
evaluate the impact of paved shoulders on crashes in Iowa. Shirazi
et al. (2016) proposed a multi-parameter Negative Binomial gener-
alized linear model with randomly distributed mixed effects

characterized by the Dirichlet process (NB-DP) to model crash data.
Shaon and Qin (2016) used the Negative Binomial-Lindley (NB-L)
and Negative Binomial-Generalized Exponential (NB-GE) on data
from South Dakota Department of Transportation. Shaon et al.
(2018) proposed a combination of the random parameter negative
binomial and negative binomial-Lindley model to account for
underlying heterogeneity and address excess over-dispersion
(called RPNB-L model).

Studies have been conducted to develop accident prediction
models at railroad grade crossings also. Austin and Carson (2002)
developed an highway-rail crossing accident prediction model,
using negative binomial regression. Oh et al. (2006) developed sta-
tistical models to analyze highway rail grade crossing accidents in
Korea. This study selected the gamma model among the models
after comparing the Poisson, Negative Binomial and Zero Inflated
Poisson model. Park et al. (2005) (Park & Saccomanno, 2020;
Park & Saccomanno, 2005) presented a sequential modeling
approach based on data mining and statistical methods to estimate
the main and interactive effects of introducing countermeasures at
individual grade crossings in Canada. Yan et al. (2010) used hierar-
chical tree-based regression (HTBR) to predict train vehicle crash
frequency at passive highway-rail grade crossings in the United
States. Lu and Tolliver (2016) examined the accident data in North
Dakota, USA between 1996 and 2014 and proposed the use of Ber-
noulli, Conway-Maxwell-Poisson and Poisson Hurdle models to

Table 1
Initial accident prediction value in USDOT accident prediction formulae.

Warning Device Type K EI DT MS MT HP HL

Crossbucks 0.0006938 Aadt�TotalTrnþ0:2
0:2

� �0:2942 DayThruþ0:2
0:2

� �0:1781 e0:0077�ms 1 e�0:5966�ðhp�1Þ 1

Flashing Lights 0.0003351 Aadt�TotalTrnþ0:2
0:2

� �0:2942 DayThruþ0:2
0:2

� �0:1781 1 e0:1917�MainTrk 1 e0:1826�ðTraficLn�1Þ

Gates 0.0005745 Aadt�TotalTrnþ0:2
0:2

� �0:2942 DayThruþ0:2
0:2

� �0:1781 1 e0:1512�MainTrk 1 e0:1420�ðTraficLn�1Þ

where:
Aadt is the annual average daily traffic at the crossing.
TotalTrn is total number of trains using the crossing.
DayThru is number of daytime thru trains at the crossing.
MainTrk is the number of main tracks at the crossing.
TrafficLn is the number of highway lanes at the crossing.
ms is the maximum timetable train speed at the crossing.
hp indicates if the highway is paved or not.

Table 2
Normalization coefficients for the USDOT accident prediction formula.

Class April 2013 Constants (k’)

Passive 0.5086
Flashing Lights 0.3106
Gates 0.4846

Table 3
Filters Used on Grade Crossing Inventory Dataset.

Variable Description Filter Description of Filter Number of Crossings after
filter (Illinois)

None Before any filters 26,089
TypeXing Crossing Type Select ‘‘3” Select public crossings only 17,054
PosXing Crossing Position Select ‘‘1” Select at grade crossing only 13,703
ReasonID Reason for Update Remove 16 Remove closed crossings 7925
TotalTrain Total number of trains >0 Select crossings with 1 or more trains operating per day 7183
TotalTrack Total number of tracks >0 Select crossings with 1 or more tracks at the crossing 7090
TraficLn Number of highway

lanes
>0 Select crossings with 1 or more highway lanes at the crossing 6774

Aadt Annual average daily
traffic count

>0 Select crossings with AADT > 0 6763

AadtYear Annual average daily
traffic Year

>2000 Select crossings with year of AADT > 2000 6673

HwySpeed Posted highway speed
limit

>0 Select crossings with posted speed limit > 0 6625

MaxTtSpd Maximum timetable
train speed

>0 and <=79 Select crossings with maximum timetable train speed
between 0 and 79 mph

6624

WdCode Warning Device Code Select ‘‘3”, ”7”, ”8” and ”9” Select crossings with crossbucks, flashing Lights, four quad
gates and all other gates

6476

XSurfaceID Crossing Surface Remove ‘‘17”, ‘‘19”, ‘‘20” and
unknowns

Remove crossings with metal, unconsolidated, other or
unknown crossing surfaces

5883
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assessing grade crossing accident data with under dispersion. Khan
et al. (2018) used binary logit regression model to analyze acci-
dents in North Dakota, United States.

Borsos et al. (2016) developed negative binomial models for
grade crossings in Hungary. Liang et al. (2016) developed accident
prediction models for level crossings in France for active crossings
with flashing lights and two barrier gates.

Studies were conducted to model accident severity as well.
McCollister and Pflaum (2007) developed logistic regression mod-
els to predict the probability of accidents, injuries, and fatalities
resulting from collisions between trains and vehicles at highway
rail crossings in the United States. Hu et al. (2010) used a general-
ized logit model with stepwise variable selection instead to iden-
tify explanatory variables (factors or covariates) that were
significantly associated with the severity. Eluru et al. (2012) mod-
eled the driver injury severity at railroad grade crossing in the Uni-
ted States crashes using a latent segmentation based ordered
response model. Hao and Daniel (2014) used ordered probit mod-
els to study the influence of time of day on driver injury severity.
Liu et al. (2015) modeled injury severity of crashes at highway rail
grade crossings with the objective of exploring the differences in
crash outcomes at passive crossings (crossings with stop signs or
crossbucks) and active crossings (crossings with flashing lights,
gates, highway signals, audible warnings). Zhao and Khattak
(2015) used random parameters logit model to identify factors
associated with driver injuries after considering the ordered probit
model, multinomial logit model, and random parameter logit
model.

2.3. About ZINB models

Lord et al. (2005) argued in this paper that crash data character-
ized by a preponderance of zeros is not indicative of an underlying
dual-state process. According to the authors, one or more of four
conditions lead to excess zeros in crash data: (1) sites with a com-
bination of low exposure, high heterogeneity, and sites categorized
as high risk; (2) analyses conducted with small time or spatial
scales; (3) data with a relatively high percentage of missing or
mis-reported crashes; and (4) crash models with omitted impor-
tant variables. In a later paper, Lord et al. (2007) further elaborates
on the issues of using zero inflated models. The assumption in a
zero inflated model is that an entity (highway segment) exists
either in an inherently safe or non-safe state. Based on this, they
ask the following questions: (1) What are the boundary conditions
delimiting the two states? (2) If the site-specific traits that classify
the two states are unobserved (i.e., not present in the observed
data), what might they be? (3) Why use a single model if one could
define the dual-state data generating process. A similar argument
was also provided against the use of zero-inflated models by
Warton (2005) in his study of ecological datasets.

The responses to these arguments are:

a. At crossings with very low exposure, (i.e., rural locations
with very low number of daily trains and highway vehicles
using the crossings), the opportunity for an interaction
between a train and a highway vehicle may rarely arise. This
is not saying that such crossings are inherently safe, but
rather saying that the probability of such a crossing to have
no accidents as a result of very low exposure is high. There-
fore, the boundary condition is that a crossing may have no
vehicle-train interaction, thus leading to zero accidents or
may have interactions and the number of accidents could
be modeled as a count process. This boundary is unobserved
in the available data as the data does not provide informa-
tion on interaction between a train and a highway vehicle
at a crossing.

b. Previous studies (Oh et al., 2006) have concluded that the
zero inflated models offer a better goodness of fit than tradi-
tional NB or Poisson models. Therefore, it is worth exploring
if that is true in the context of crashes between highway
vehicles and trains.

c. The zero inflated model is a parametric model and it is easily
interpretable. There is a parametric expression for the
expectation and variance using the model, which makes
the model mathematically convenient.

2.4. Summary of literature review

In summary, several studies on accident prediction models at
HRGC were identified in the literature review. Poisson regression
model was commonly used as a starting point in these studies. In
most of the studies, different models were developed based on
the warning device types except, Park et al. (Park & Saccomanno,
2020; Park & Saccomanno, 2005) and Khan et al. (2018) (who used
warning device type as an explanatory variable in the model that
they developed), and Austin et al. Austin and Carson (2002) (who
used the method of instrumental variables to develop new features
[probability of gates, probability of flashing lights, probability of
crossbucks, etc.]) in their developed model. Only a few models
were identified that used accident history in their accident predic-
tion models (the USDOT accident prediction formulae is one of
them). One major shortcoming of the studies identified in the liter-
ature review was a lack of validation by comparing the developed
models to the observed accident counts at the grade crossing loca-
tions. Other deficiencies identified in the past studies include the
lack of categorization of the model based on the warning devices
(highway traffic at crossings with active warning devices is
expected to behave differently from highway traffic at crossings
without active warning devices), age of the commonly used USDOT
model, and absence of any adjustments to the model to account for
the observed accident count.

In this study, we address the shortcomings identified from the
literature review. Recent data are used to develop a new accident
prediction model for highway rail grade crossings. Separate models
are developed based on the warning device type used at the cross-
ing. During the research, the authors were interested in questions
like (1) is there a new model that is as good as, if not better than
the USDOT model and the new FRA model in identifying high-
risk grade crossing locations? (2) would the variables that were
used in the USDOT model over 30 years ago still make sense now
and are there variables that was not included in the USDOT model
that are relevant to accident prediction? (3) Can a different model
format and accident history adjustment procedure from the USDOT
model be used to estimate expected accident count at railroad
grade crossings? The new model developed in this paper was com-
pared to the USDOT formula and the new FRA model and the com-
parisons are done to identify a better prediction model that offers a
better selection of crossings in terms of the observed number of
accidents. In this way, the paper compares the models in its ability
to identify crossing with a high likelihood of accidents.

3. Data

The databases maintained by the Federal Railroad Administra-
tion (FRA) (FRA, 2019) were used in this study. Three separate
databases used for this study are: (a) the Highway Rail Accident
database, (b) the Grade Crossing Inventory database, and (c) the
Grade Crossing Inventory History database.

The Highway Rail Accident database contains information about
‘‘any impact, regardless of severity, between a railroad on-track
equipment consist and any user of a public or private crossing site”
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(Federal Railroad Administration, 2011). All grade crossing colli-
sions are reported to the FRA regardless of the monetary value of
damage caused. The database contains a variety of information,
including data about the type of highway vehicle involved, speed
of the train at collision, and environmental factors such as time
of day and weather conditions.

The Grade Crossing Inventory database includes information
reported to the FRA by each state DOT about the condition of each
crossing. This includes information about the highway (i.e., annual
average daily traffic (AADT), number of traffic lanes, posted high-
way speed; and the rail line [i.e., timetable speed, daily number
of trains]).

The Grade Crossing Inventory History database includes data
about the changes to the crossing inventory database. This data-
base was used to filter out the crossings that had a change in its
warning device type during the analysis period.

The Crossing Inventory Database for Illinois had 26,089 records.
This list contains crossings that are on both public and private
highways, some crossings with old data that may not have been
updated, crossings with missing or incomplete data, and so forth.
Therefore, this database was filtered based on the filters given in
the Table 3 below to obtain a meaningful dataset for at grade cross-
ings on public roads. The researchers recommend the application
of such filters before using the dataset for any analysis so that
the analysis is done on a meaningful dataset.

During the filtering, it was also ensured that no crossing had
any variables with missing entries in the dataset. After applying
the filters in Table 3, there were 5,883 crossings remaining. Fur-
thermore, the warning device in the crossing were compared to
the warning device of the corresponding crossing as given in the
Grade Crossing Inventory History dataset. This way, crossings that
had a change in its warning device were also eliminated from the
study. This removed 786 more crossings due to changes in the
warning device type. All these efforts resulted in a data base that
has 5,097 crossings that can be used in accident prediction model-
ing. The data for the state of Texas was used to validate the models
built. The same filters were used on the crossings in Texas. The
Texas dataset reduced from 27,023 to 5,195.

Using the crossing ID as the key, the filtered grade crossing
inventory database and the grade crossing accident database were
merged. Three separate databases were created, one for each warn-
ing device category. The number of crossings in Illinois (after the
filters) and the number of accidents observed in the 5-year span
(2012–2016) is given in Table 4.

4. Model building

4.1. Zero inflated negative binomial model format

Zero inflated negative binomial model format is used to build
the accident prediction model for highway rail grade crossings.
One reason for this selection was that the previous studies
(Mathew et al., 2019; Medina & Benekohal, 2015) compared three

different count models (Poisson, Negative Binomial (NB) and Zero
Inflated Negative Binomial Models (ZINB)) and found a better
goodness-of-fit with the ZINB model as compared to the Poisson
or the NB models. Furthermore, the ZINB model is a parametric
model giving parametric expressions for the expected accident
counts and the variance of the expected accident counts. The last
reason for selecting ZINB model was the convenience of calculat-
ing its parameters (the mean and variance) that are required for
using Empirical Bayes method to account for accident history.
In developing the models, a forward regression approach was
used to select model variables that resulted in selecting some
variables that are not included in the USDOT models or the
New FRA model.

The zero inflated negative binomial model is a two-part model.
The first part is the zero-inflation part that is based on the assump-
tion that the possibility of accidents in certain locations is so close
to zero that these locations would have zero accident counts. The
second part is the count part of the model, which gives the distri-
bution of the accident frequency as a count (Negative Binomial)
process. The variables annual average daily traffic (Aadt) and Total
Train were used as the variables representing the zero-inflation
part of the ZINB model. It is reasonable to use the traffic variables
(i.e., Aadt and Total Train) in the zero-inflation part of the model as
a crossing with very low train and highway traffic has very low
possibility of an accident between them. This goes hand in hand
with the assumption that a crossing with low volume will have
very low opportunities for a crash, which leads to the inflated
number of zeros in the dataset. Therefore, the variables Ln(Aadt)
and the Total Train variables were used in the zero-inflation part
of the model. The log transformation of the variable Aadt is done
as the variable is strictly positive and reduced the range of values
within the variable. Furthermore, using the log transformation
gave a better goodness of fit for the model in terms of Akaike Infor-
mation Criteria (AIC) than models fitted without the log transfor-
mation. The remaining eight variables were used in all possible
combinations in the count part of the model (resulting in 255 or
28-1 fitted models). This included models with only one variable,
up to a model including all eight variables. These fitted models
were sorted using AIC (Akaike, 1974; R-project.org) as the basis
of their goodness of fit. The model with the lowest AIC value was
the first choice.

Selecting the final model was based on three indicators:

(1) Select the model with the lowest AIC
(2) Check the coefficients of the variables in model with the

lowest AIC to ensure they were reasonable.
(3) Compare the fit of this model with a model that would have

one more (or one less) variable. These models were also con-
sidered before making the final recommendation as long as
it didn’t drastically increase the AIC values.

The model format for a ZINB model can be written as

E a½ � ¼ l 1� pð Þ ð6Þ

V a½ � ¼ l 1� pð Þ 1þ l pþ að Þð Þ ð7Þ

where

E[a] is the expected value of accident count
V[a] is the variance of the expected value of accident count
l is the mean of the negative binomial process
p is the probability of the entity being in the ‘‘always 0” case in
the finite mixture model
a is the over dispersion parameter of the negative binomial
model (=1/b, theta is an estimated parameter for the model)

Table 4
Number of Crossings and Accidents in Illinois & Texas (2012–2016).

Warning Device
Type

Number of
Crossings

Number of Accidents
(2012–2016)

Illinois Gates 2755 234
Flashing Lights 960 42
Crossbucks 1382 52

Texas Gates 3573 468
Flashing Lights 346 60
Crossbucks 1276 62
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The models selected for each device will be discussed following
the discussion of Empirical Bayes method which is given in the fol-
lowing section.

4.2. Empirical Bayes method

To improve the initial estimate, accident history is used. Acci-
dent history is used in additive format in several hazard models
in the literature (Oregon, Utah, Detroit formulae) (Farr, 1981).
However, the USDOT accident prediction formula employs a
method that is a weighted average of the accident history and
the initial model estimate. Another way to include the accident
history in order to improve this initial estimate is Empirical Bayes
method (Hauer et al., 2002). The Empirical Bayes method uses two
clues to estimate the safety at railroad grade crossings. The first
clue is the initial estimate of the expected number of accidents
at the railroad grade crossing. This is estimated based on a refer-
ence population that shares the same traits as the crossing in con-
sideration. ‘‘A reference population of entities is the group of
entities that share the same set of traits as the entity in the safety
of which we have an interest’’ (Hauer, 1997). The initial estimate of
the expected number of accidents could be calculated based on the
observed number of accidents at the grade crossings in the refer-
ence population. The second clue is the accident history (number
of accidents recorded) at the railroad grade crossing.

The two clues are combined as follows (Hauer, 1986) to com-
pute the adjusted accident prediction value (which is B).

B ¼ k � E a½ � þ 1� kð Þ � N ð8Þ

k ¼ 1
1þVar a½ �

E a½ �
ð9Þ

where E[a] is the estimate of the expected number of accidents
based on the reference population, Var[a] is the variance of this ini-
tial estimate. N is the number of accidents observed at the crossing.
The duration for which the number of accidents (N) is observed at
the crossing is equal to the duration of accident counts used to esti-
mate E[a]. E[a] can be estimated for a crossing using the multivari-
ate regression method and would depend on the traits of the
crossing.

A few observations based on equation above can be made.

1. The adjusted accident prediction value is related to the number
of observed accidents in the before period and the initial esti-
mate of the expected accident count based on the crossing
parameters.

2. The duration of the before period is the same as the duration of
accident counts used in the estimation of E[a].

3. The adjusted accident prediction value depends on the variance
of the initial estimate of the expected accident count Var[a].

4. If Var[a] is 0, the adjusted accident prediction value is equal to
the estimated value for the accident count at the crossing. This
means that, if the variance of the estimated expected accident
count is 0, the expected number of accidents could be solely
predicted based on the crossing parameters.

5. If Var[a] is very high, the adjusted accident prediction value for
the crossing is influenced more by its accident history observed
than the initial estimate based on crossing characteristics.

6. The Empirical Bayes method is very similar to the USDOT
method of adjustment for accident history in the sense that
they both involve the calculation of a weighted average of an
initial accident prediction value and the recorded accident his-
tory over a given period of time. Even though the time param-
eter (‘‘T”) is not explicitly included in the Empirical Bayes
equation, it should be noted that it is implicitly included as
the number of recorded accidents is selected for the same dura-
tion as the years used in building the ZINB model.

The combination of the zero inflated negative binomial model
with the Empirical Bayes accident history adjustment is called
ZINEBS, which is short for Zero Inflated Negative Binomial Empir-
ical Bayes System.

5. Description of the fitted models for each device type

5.1. Gates

Among the fitted models, the model with the lowest AIC
(AIC = 1466.5) was the one involving four variables: total tracks,
number of highway lanes, whether the highway was paved or
not, and the angle of crossing. A smaller model with three out of
the four variables (total tracks, number of highway lanes and the
angle of crossing) had very similar AIC (1467.4), indicating that
the variable indicating whether or not the highway is paved has
a smallest contribution compared to other three variables. It
should be noted that the USDOT model uses the variables total
tracks and number of highway lanes, but not the others (angle of
crossing and whether or not the highway is paved).

Since the smaller model doesn’t cause a drastic change in the
AIC, has more variables in common with the USDOT formula, and
the simplicity that comes from having lesser variables, the smaller
model is recommended as the ZINEBS model for gates. The coeffi-
cients of the count part and the zero-inflation part of the model are
given in Table 5.

The equation for the model is given as

E a½ � ¼ e�2:47þ0:27�TotalTrackþ0:28�HwyLanes�0:66�Angle
1þe4:97�0:05�TotalTrain�0:48�ln Aadtð Þð Þ ð10Þ

Table 5
Zero Inflated Negative Binomial Coefficients for Model for Gates.

Table 5(a): Coefficients of the zero-inflation part of the model

Estimate e^Estimate Std. Error z value Pr(>|z|)

Intercept 4.97 144.330 0.86 5.77 0e + 00
Total Train �0.05 0.947 0.02 �3.48 5e-04
ln(Aadt) �0.48 0.615 0.11 �4.36 1e-05

Table 5(b): Coefficients of the count part of the model

Estimate e^Estimate Std. Error z value Pr(>|z|)

Intercept �2.47 0.084 0.37 �6.65 0.00000
Total Track 0.27 1.314 0.09 2.96 0.00306
Number of highway lanes 0.28 1.328 0.07 4.03 0.00006
Angle category>60 �0.66 0.515 0.16 �4.16 0.00003
Ln(theta) 0.56
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where

TotalTrack is the sum of the number of main tracks and number
of other tracks at the crossing
HwyLanes is the number of traffic lanes at the crossing
Angle is 1 if the angle between the highway and the rail line is
over 60 degrees
TotalTrain is the sum of the number of the daily thru trains,
number of nighttime thru trains and the total number of
switching trains at the crossing
Aadt is the annual average daily traffic at the crossing.

The model indicates that baseline odds of being among a cross-
ing that wouldn’t have an accident is 144.3 (which is given by
e4.97). The odds is decreased by 0.947 for every one unit increase
in total train and it decreases by 0.615 for every one unit increase
in ln(Aadt) at the crossing. The baseline number of accidents is
0.084 among those crossings that have a chance of accidents. A
unit increase in total tracks increase it by 1.314 times. An increase
in the number of highway lanes increase the baseline number of
accidents by 1.328 times, whereas crossings with angle over 60
degrees decreases it by 0.515 times.

5.2. Flashing lights

Among the fitted models, the model with the lowest AIC
(AIC = 320.32) was the one that had included the variables: posted
highway speed limit and whether the highway was paved or not.
Adding the variable angle category to this model slightly increases
the AIC to 321.70.

Furthermore, on examination of the coefficient of angle cate-
gory in the fitted model, crossings with angle over 60 degrees
increases the baseline number of accidents, which is counter intu-
itive. A crossing with wider angle should have better visibility,
therefore a lower accident count would be expected. The coeffi-
cient of the variable indicating if the highway was paved or not
showed crossings on unpaved highways decreased the baseline
number of accidents, which is also counter intuitive. This, however,
may be because of the larger exposure between the trains and
highway vehicles at crossings on paved highway.

A smaller model with the lowest AIC is the model that includes
the variable posted highway speed limit (AIC = 320.66). Since the
smaller model doesn’t cause a drastic change in the AIC and has
no variables with counter intuitive coefficients, it is chosen as
the ZINEBS model for Flashing Lights. The coefficients of the count
part and the zero-inflation part of the model are given in Table 6.

The equation for the model is written as

E a½ � ¼ e�3:59þ0:04�HwySpeed

1þe14:8944�0:253�TotalTrain�1:848�ln Aadtð Þð Þ ð11Þ

where

HwySpeed is the posted highway speed limit
TotalTrain is the sum of the number of the daily thru trains,
number of nighttime thru trains and the total number of
switching trains at the crossing
Aadt is the annual average daily traffic at the crossing.

The model indicates that baseline odds of being among a cross-
ing that wouldn’t have an accident is 2941290.56. This may be
because only 39 crossings had any accidents in the years 2012–
2016 (years used in model development) among the 960 crossings
with flashing lights. The odds are decreased by 0. 777 for every one
unit increase in total train and it decreases by 0.158 for every one
unit increase in ln(Aadt) at the crossing. The baseline number of
accidents is 0.037 among those crossings that have a chance of
accidents. A unit increase in posted highway speed increase it by
1.037 times.

5.3. Crossbucks

Among the fitted models, the model with the lowest AIC
(AIC = 426.89) was the one that included the variables posted high-
way speed limit and the type of crossing surface. However, as per
that model, the baseline number of accidents is reduced at a cross-
ing on a highway at a higher speed limit, which is counter intuitive.
A smaller model is the model including only the variable indicating
the surface type at the crossing (AIC = 426.93) and the AIC of this
model is not significantly different from the lowest value. There-
fore, the smaller model is recommended as the ZINEBS model for
crossbucks, and the coefficients are given in Table 7.

The equation for the model is

E a½ � ¼ e�2:34þS

1þe7:39�0:42�TotalTrain�1:07�ln Aadtð Þ ð12Þ

where

S is the factor for type of surface and takes values as follows
Asphalt = 0
Concrete = 0.47
Rubber = 0.04
Timber = -0.83
Unconsolidated = -0.1

TotalTrain is the sum of the number of the daily thru trains,
number of nighttime thru trains and the total number of switching
trains at the crossing

Aadt is the annual average daily traffic at the crossing.
As per the fitted model, for crossings with crossbucks, baseline

odds of being among a crossing which wouldn’t have an accident is
1627.7 and this is reduced by 0.657 times for each unit increase in
total number of trains and by 0.343 times each unit increase in in
ln(Aadt). The baseline number of accidents expected based on the

Table 6
Zero Inflated Negative Binomial Coefficients for Model for Flashing Lights.

Table 6 (a): Coefficients of the zero-inflation part of the model

Estimate e^Estimate Std. Error z value Pr(>|z|)

Intercept 14.8944 2941290.56 7.779 1.914 0.0556
Total Train �0.253 0.777 0.185 �1.362 0.1730
ln(Aadt) �1.848 0.158 1.066 �1.733 0.0830

Table 6(b): Coefficients of the count part of the model

Estimate e^Estimate Std. Error z value Pr(>|z|)

Intercept �3.59 0.028 0.697 �5.142 2.72e-07
HwySpeed 0.04 1.037 0.016 2.200 0.0278
Ln(theta) 1.2060
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model is 0.097 accidents at a crossing. This number is increased by
1.605 at concrete surfaces and by 1.040 at rubber surfaces and is
decreased by 0.437 at timber surfaces and by 0.909 at unconsoli-
dated surfaces.

The variables Maximum timetable train speed and distance to
nearby HW intersection were not selected in any of the model
equations in the ZINEBS model.

6. Variables in ZINEBS model

The new ZINEBS model uses the following variable: (a) Total
Tracks, (b) Angle Category, (c) Number of Highway Lanes, (d)
Posted Highway Speed Limit, and (e) Crossing Surface. Some of
the variables were also used in the USDOT model or the new FRA
model, but not all of them. Table 8 shows the variables used in
the three different models.

6.1. Total Track

This variable is obtained as the sum of the number of main
tracks and the number of other tracks present at the crossing.
The ZINEBS model uses this variable in its equation for gated
crossings.

Fig. 1 shows the mean of the number of accidents recorded with
respect to the number of tracks at a crossing. From Fig. 1(a) (cross-

ings with Gates), we see an increase in accident count at gated
crossings with increase in the number of tracks. This trend is not
seen in Fig. 1(b) (crossings with Flashing Lights) and Fig. 1(c)
(crossings with Crossbucks). This confirms that the variable Total
Track should be included in the model for gates.

6.2. Angle category

The grade crossing inventory database provides the smallest
angle between the rail tracks and the highway lane as a categorical
variable divided into <30, 30–60, and >60. Due to limited number
of entries in the category <30 (�3% of entries), it was combined
with the 30–60 category. A crossing with a tight angle may create
visibility issues for drivers and may lead to a higher proportion of
accidents at the crossings with tight angle. Fig. 2 shows the mean
of the number of accidents recorded with respect to the angle
category.

As there are only two angle categories, a t-test was performed
to verify if there is a significant difference in the mean accident
count with respect to the angle category. Table 9 shows the results
of the t-test.

From Table 9, it can be seen that the angle category is significant
(p-value < 0.05) for gated crossings and not significant for the other
two warning devices. This confirms the inclusion of angle category

Table 7
Zero Inflated Negative Binomial Coefficients for Model for Crossbucks.

Table 7(a): Coefficients of the zero-inflation part of the model

Estimate e^Estimate Std. Error z value Pr(>|z|)

Intercept 7.39 1627.734 2.1 3.51 0.000441
Total Train �0.42 0.657 0.18 �2.29 0.022248
ln(Aadt) �1.07 0.343 0.38 �2.85 0.004397

Table 7(b): Coefficients of the count part of the model

Estimate e^Estimate Std. Error z value Pr(>|z|)

Intercept �2.34 0.097 0.28 �8.43 <2e-16
Surface Category = Concrete 0.47 1.605 0.42 1.13 0.2585
Surface Category = Rubber 0.04 1.040 1.04 0.04 0.9700
Surface Category =Timber �0.83 0.437 0.38 �2.19 0.0287
Surface Category = Unconsolidated �0.1 0.909 0.47 �0.2 0.8389
Ln(theta) 1.41

Table 8
Variables used in USDOT model, new FRA model and ZINEBS model.

Variable Name Comments on Variable Is variable used in
USDOT model?

Is variable used in
new FRA model?

Is variable used
in ZINEBS model

Annual Average Daily Traffic Numeric Variable Yes Yes Yes
Total Train Sum of DayThru, NgthThru and TotalSwt Yes Yes Yes
Maximum Timetable Train Speed Numeric Variable Yes Yes No
Posted Highway Speed Limit Numeric Variable No No Yes (Flashing Lights)
Surface Category Data consolidated into 5 categories

a) Timber
b) Asphalt
c) Concrete
d) Rubber
e) Unconsolidated

No Yes Yes (Crossbucks)

Angle Category Data consolidated into 2 categories
a) <=60 degrees
b) > 60 degrees

No No Yes (Gates)

Number of Highway Lanes Numeric Variable Yes No Yes (Gates)
Total Track Sum of MainTrk + OtherTrk Yes No Yes (Gates)
Highway Paved? Indicates whether the highway was paved or not Yes No No
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in the ZINEBS model equation for gates. Therefore, number of high-
way lanes should be included in the model for gates.

6.3. Number of highway lanes

The variable number of highway lanes is included in the ZINEBS
model for gates. As seen in Fig. 3, at gated crossings, an increase in
the number of accidents is seen with an increase in the number of
highway lanes. This is in tune with the sign of the variable in the
equation in ZINEBS model for gates.

6.4. Highway speed

The variable highway speed indicates the posted highway speed
near the crossing. This variable is included in the ZINEBS model
equation for crossings with flashing lights. The plot of the mean
accident count given the highway speed is plotted in Fig. 4. The fig-
ure also shows the regression line obtained between the mean
accident count and Highway Speed. The number adjacent to each
point represents the number of crossings within that point.

Fig. 4 shows a decreasing relationship between the highway
speed and accident counts for crossings with gates and crossbucks.
On the other hand, accident count increases with highway speed
for crossings with flashing light.

To test the significance of highway speed (a continuous vari-
able), the regression line obtained between the accident count
and highway speed is explored. Table 10 shows the coefficients
of regression and their significance.

From Table 10, only the coefficient of highway speed for flash-
ing lights is significant. The coefficient is not significant for gates
and crossbucks. Therefore, the variable highway speed should be
included in the equation for Flashing Lights.

6.5. Crossing surface

Crossing surface is divided into five categories (asphalt, con-
crete, rubber, timber, and unconsolidated). The ZINEBS model
includes the crossing surface in its equation for crossbucks. Fig. 5
shows the mean accident count with respect to the type of crossing
surface at crossings with different warning device categories.

Fig. 5(c) shows the trend of accident counts for crossbucks with
respect to the surface category. This trend is captured in the
ZINEBS model for crossbucks. Therefore, the variable Surface Cate-
gory should be included in the model for crossbucks.

7. Agreement between predicted values and field data

One of the points raised in the new FRAmodel (2) is that separate
models based on warning device types may result in inconsistent

Fig. 1. Accident Count vs Number of Tracks.
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outcomes in the predicted values. The new FRA model incorporates
the warning device type into its model, thereby ensuring the
consistency in the predicted value outputs. This section checks if
the consistency in model outputs is reflected in the field data.

To do that, the predicted values before a warning device
upgrade is compared to the predicted values after the upgrade.
This is done for two cases.

1. crossings with crossbucks when upgraded to flashing lights.
2. crossings with flashing lights when upgraded to gates.

7.1. Upgrade from crossbucks to flashing lights

Fig. 6 shows the new FRA model predicted value for crossbuck
locations, as well as the same locations once it has been upgraded
to Flashing Lights. The values are plotted against ln(AADT). As
expected, the predicted values for crossbucks (given in blue trian-
gle) are higher than the predicted values for flashing lights (given
in orange circle).

In order to compare the predicted values from the new FRA
model to the field data, Fig. 7 is plotted to show the field data ver-
sus log(AADT). The plot shows the average number of accidents at

a location given the AADT, for crossbucks (blue) and flashing lights
(orange).

As highlighted in Fig. 7, there are several locations with flashing
lights that higher accident counts than locations with crossbucks.
Several crossings, especially at higher values of AADT, show that
the observed accident counts at flashing light locations are higher
than the observed accident counts at crossbuck locations. This is
not seen in the new FRA predicted model (Fig. 6). On the other
hand, the predicted values from the ZINEBS model (Fig. 8) shows
that there are several locations with flashing lights that have a
higher predicted value than when the location had crossbucks.
These locations are highlighted in Fig. 8. The predicted values from
the ZINEBS model shows a closer agreement with the field data
than the new FRA model.

A similar trend is seen if the predicted values are plotted against
the total train counts. Fig. 9 shows the plot of the predicted acci-
dent count for crossings with crossbucks, and the crossings once
they have been upgraded to flashing lights using the new FRA
model. The predicted value for locations with crossbucks is higher
than the predicted value for locations with flashing lights in all the
cases, as seen in Fig. 9. This is expected as such a layering is incor-
porated into the new FRA model equation.

Fig. 2. Accident Count vs Angle Category.

J. Mathew and R.F. Benekohal Journal of Safety Research 79 (2021) 211–236

220



Fig. 10 shows the plot of the field data vs log(AADT). The plot
shows the average number of accidents at a location given the
AADT, for crossbucks (blue) and flashing lights (orange). Please
note that if both crossbuck locations and flashing light locations
had no accidents, it isn’t plotted in Fig. 10.

As highlighted in Fig. 10, there are several locations with flash-
ing lights that had a higher accident count than locations with
crossbucks. This trend is not seen in the new FRA predicted model
(Fig. 9). On the other hand, the predicted values from the ZINEBS
model (Fig. 11) shows that there are several locations with flashing
lights that have a higher predicted value than when the location
had crossbucks. These locations are highlighted in Fig. 11.

By comparing Figs. 10 and 11, predicted values from the ZINEBS
model shows a closer agreement with the field data than the new
FRA model.

Plots using the combination of AADT and Total Train values
were also made to further show the similarity of the ZINEBS model
to the field data. This is shown in Fig. 12.

The locations where the number of accidents at a flashing light
location is higher than the number of accidents at a crossbuck loca-
tion is highlighted using the red arrows in Fig. 12. In the plot for
the predicted value using the new FRA model (Fig. 12(a)), the
crossbuck locations consistently have a higher predicted value
than the flashing light locations. This is not the case in the plot
for the predicted value using the ZINEBS model (Fig. 12(b)) and
field data (Fig. 12(c)).

7.2. Upgrade from flashing lights to gates

Fig. 13 shows the new FRA model predicted value for Flashing
Light locations (orange circles), as well as the same locations once
it has been upgraded to Gates (green diamonds). The values are
plotted against log(AADT). Fig. 13 shows that the accident predic-
tion value using the new FRA model for flashing lights is always
higher than the accident prediction value for gates.

However, from Fig. 14, which shows the plot for the observed
accident count for locations with flashing lights and gates, this
trend (crossings with flashing lights have lower accident count
than crossings with gates) is not consistently observed. In Fig. 14,
several locations are highlighted where, for a given value for AADT,

Table 9
Result of t-test on Accident Count vs Angle Category.

Warning Device t-statistic df p-value

Crossing with Gates 3.5389 514.62 0.0004382***
Crossing with Flashing Lights �0.13125 235.68 0.8957
Crossing with Crossbucks �0.69963 380.28 0.4846

Fig. 3. Accident Count vs Number of HW Lanes.
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the observed accident count for crossings with gates is higher than
the observed accident count for crossings with flashing lights.

Fig. 15 shows the predicted values from the ZINEBS model.
Fig. 15 shows that there are several locations with gates which
has a higher predicted value than when the location had flashing
lights, as highlighted using the red circles.

A similar trend is seen if the predicted values are plotted against
the total train counts. Fig. 16 shows the plot of the predicted acci-
dent count for crossings with crossbucks, and the crossings once
they have been upgraded to flashing lights using the new FRA
model. The predicted value for locations with crossbucks is higher
than the predicted value for locations with flashing lights in all the
cases.

However, the plot for the observed accident count against total
train values, as shown in Fig. 17, shows several locations where
crossings with gates had more accidents than crossings with flash-
ing lights. Fig. 17 highlights such locations in red circles.

Fig. 18 shows the predicted values from the ZINEBS model.
Fig. 18 shows that there are several locations with gates that have
a higher predicted value than when the location had flashing lights,
as highlighted using the red circles.

Plots using the combination of AADT and Total Train values
were also made to further show the similarity of the ZINEBS model
to the field data when the warning device is upgraded from flash-
ing lights to gates. This is shown in Fig. 19.

The locations where the number of accidents at a gated location
is higher than the number of accidents at a flashing light location is

highlighted using the red arrows in Fig. 19. In the plot for the pre-
dicted value using the new FRA model (Fig. 19(a)), the flashing
light consistently has a higher predicted value than the gated loca-
tions. This is not the case in the plot for the predicted value using
the ZINEBS model (Fig. 19(b)) and field data (Fig. 19(c)).

8. Validation of new model

The newly developed model was validated using (independent)
Texas data. The model predicted value was compared to the acci-
dent data (or field data). Figs. 20–22 show the plot of the cumula-
tive field data and the cumulative model predicted value. The
predicted risk at a crossing is quantified by the model predicted
output of the model for the crossing, and the field data (or
observed accident count at the crossing) represents the actual risk
at the crossing. The crossings are ranked based on the observed
number of accidents at the location.

Fig. 20 shows the cumulative risk predicted by the ZINEBS
model and the observed accident count for crossings with gates.
Fig. 20(a) shows all the crossings within the state while Fig. 20
(b) shows only the crossings with accidents. The shape of the curve
showing the cumulative predicted curve is similar to the shape of
the curve showing the observed accident count with a significant
rise in the cumulative risk predicted at crossings with accidents
and only a slight rise among other crossings. The model predicts
57% of field data at the crossings that observed an accident in Texas
with Gates.

Fig. 4. Accident Count vs Highway Speed.
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Fig. 21 shows similar observations for crossings with flashing
lights and no gates. The model predicts 56% of field data at the
crossings that observed an accident in Texas with flashing lights
and no gates.

Crossings with crossbucks also show a similar observation as
well. The model predicts 56% of field data at the crossings that
observed an accident in Texas with crossbucks.

9. Comparison of new model to FRA models

The ZINEBS model is compared to the USDOT model (old) and
the new FRA model. The comparison was done by comparing the
cumulative risk at crossings as predicted by models.

The predicted risk at a crossing is quantified by the model pre-
dicted output of the model for the crossing, and the field data (or
observed accident count at the crossing) represents the actual risk
at the crossing. The crossings are ranked based on the observed

number of accidents at the location. The cumulative predicted
value given by each model for the crossings is plotted. A better
model is the one that predicts accident counts closer to the actual
cumulative risk.

This comparison is done separately for crossings of each warn-
ing device types. The comparison is made for crossings in Illinois
(model development dataset) and crossings in Texas (model vali-
dation dataset).

9.1. Crossings with gates

From the Fig. 23 (a and b), the cumulative risk calculated by the
ZINEBS model can ‘‘pull” the model closer to the cumulative acci-
dent count values. There was a total of 234 accidents that were
observed at gated crossings in Illinois in the period 2012–2016.
The ZINEBS model estimated 233.877 as the cumulative risk at
all gated crossings in Illinois. The new FRA model, on the other

Table 10
Regression coefficients of Highway Speed vs Accident Count.

Warning Device Coefficient for Highway Speed Std. Error t value Pr(>|t|)

Crossings with Gates �0.0004285 0.0010382 �0.413 0.67985
Flashing Lights 0.0031864 0.0009561 3.333 0.000893 ***
Crossbucks �0.001174 0.001378 �0.852 0.3944

Fig. 5. Accident Count vs Crossing Surface.
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hand, estimated 176.198 as the cumulative risk over all gated
crossings in Illinois. The cumulative estimate based on the USDOT
model (old) was only 61.244. It is also noted that the ZINB model
was fit to the field data, so the total sum of accidents is expected
to be total actual observed accidents, as it is seen in Fig. 19(a).
The 234 accidents at crossings in Illinois happened across 200
crossings. Looking at only the crossings with non-zero accidents
(Fig. 23(b)), the ZINEBS model estimated a cumulative risk of
142.467 (60.88% of 234), while the new FRA model estimated
130.818 (55.90%) and the USDOT model (old) estimated 16.829
(7.19%).

For crossings in Texas, a similar result is obtained. There was a
total of 468 accidents that were observed at gated crossings in
Texas in the period of 2012–2016. The ZINEBS model estimated
358.836 as the cumulative risk at all gated crossings in Texas.
The new FRA model estimated 299.984 as the cumulative risk over
all gated crossings in Texas. The cumulative estimate based on the
USDOT model (old) was only 76.065 (Fig. 24(a)). The 468 accidents
in Texas happened across 350 crossings. Looking at only crossings
that had a non-zero accident count, (Fig. 24(b)), the ZINEBS model
estimated a cumulative risk of 266.790 (57.0% of 468), while the
new FRA model estimated 252.548 (53.96%) and the USDOT model
(old) estimated 25.415 (5.43%).

9.2. Crossings with flashing lights

From the Fig. 25(a and b), the cumulative risk calculated by
the ZINEBS is closer to the cumulative accident count values
than the other two models. There was a total of 42 accidents

that were observed at crossings with flashing lights in Illinois
in the period 2012–2016 across 39 crossings. The ZINEBS model
estimated 42.032 as the cumulative risk at all flashing lights
crossings in Illinois. The new FRA model estimated 31.780 as
the cumulative risk over all flashing light crossings in Illinois,
which is approximately 9 lower than ZINEBS model. The cumu-
lative estimate based on the USDOT model (old) was only
10.360. At the 39 crossings which reported non-zero accident
counts, (Fig. 25 (b)), the ZINEBS model estimated a cumulative
risk of 23.235 (55.32% of 42), while the new FRA model esti-
mated 22.414 (53.36%) and the USDOT model (old) estimated
1.632 (3.88%).

For crossings in Texas, a similar result is obtained. There was a
total of 60 accidents that were observed at crossings with flashing
lights in Texas in the period of 2012–2016. The ZINEBS model esti-
mated 46.39 as the cumulative risk at all gated crossings in Texas.
The new FRA model estimated 35.48 as the cumulative risk over all
gated crossings in Texas. The cumulative estimate based on the
USDOT model (old) was only 6.345 (Fig. 26(a)). The 60 accidents
in Texas happened across 48 crossings. Looking at only crossings
that had a non-zero accident count, (Fig. 26(b)), the ZINEBS model
estimated a cumulative risk of 33.703 (56.17% of 60), while the
new FRA model estimated 31.958 (53.326%) and the USDOT model
(old) estimated 2.384 (3.97%).

9.3. Crossings with crossbucks

From the Fig. 27(a and b), a similar result as seen for cross-
ings with Gates and crossings with Flashing lights is observed.

Fig. 6. Predicted accident count vs Ln(AADT) using the new FRA Model: Warning device changed from crossbucks to flashing lights.
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Fig. 7. Observed accident count vs Ln(Aadt): Warning device changed from crossbucks to flashing lights.

Fig. 8. Predicted accident count vs Ln(AADT) using the ZINEBS Model: Warning device changed from crossbucks to flashing lights.
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Fig. 9. Predicted accident count vs Total Train using the new FRA Model: Warning device changed from crossbucks to flashing lights.

Fig. 10. Observed accident count vs Total Train: Warning device changed from crossbucks to flashing lights.
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The cumulative predicted risk calculated by the ZINEBS for
crossbucks is closer to the cumulative accident count values
than the other two models. There was a total of 52 accidents
that were observed at crossings with crossbucks in Illinois in
the period 2012–2016 across 49 crossings. The ZINEBS model
estimated 52.003 as the cumulative risk at all crossings with
crossbucks in Illinois. The new FRA model estimated 34.434 as
the cumulative risk over all crossings with crossbucks in Illinois,
which is approximately 18 lower than ZINEBS model. The cumu-
lative estimate based on the USDOT model (old) was only
10.947. At the 49 crossings which reported non-zero accident
counts, (Fig. 27(b)), the ZINEBS model estimated a cumulative
risk of 28.2469 (54.32% of 52), while the new FRA model esti-
mated 26.932 (51.79%) and the USDOT model (old) estimated
only 2.0827 (4.00%).

For crossings in Texas, a similar result is obtained. There was a
total of 62 accidents that were observed at crossings with flashing
lights in Texas in the period of 2012–2016. The ZINEBS model esti-
mated 63.757 as the cumulative risk at all crossings with cross-
bucks in Texas. The new FRA model estimated 40.32 as the
cumulative risk over all gated crossings in Texas. The cumulative
estimate based on the USDOT model (old) was only 14.025
(Fig. 28(a)). The 62 accidents in Texas happened across 57 cross-
ings. Looking at only crossings that had a non-zero accident count,
(Fig. 28(b)), the ZINEBS model estimated a cumulative risk of
33.844 (54.58% of 62), while the new FRA model estimated
32.278 (52.06%) and the USDOT model (old) estimated 2.384
(3.84%).

10. Discussion regarding USDOT model, new FRA model and
ZINEBS model

The USDOT formula was developed over 40 years ago in the
1980s. This model used multiple logistic regression approach in
developing the initial accident prediction value. The accident his-
tory adjustment procedure used is a weighted averaging method
where the weights depend only on the initial accident prediction
value. This model has not changed except for the normalizing con-
stants that are updated every few years. Furthermore, from the
comparisons made in the previous sections, it can be seen that
the USDOT model underperforms in predicting the cumulative risk
at crossings and also while ranking crossings when compared to
the ZINEBS model.

The new FRA model adopted the ZINB methodology with EB
adjustments. However, there are several key areas of differences
when compared to the ZINEBS model.

1. The new FRA model is developed using national data. The
authors found that while filtering the data based on the filters
given in Table 3, several states lose a huge number of data
points. Some states like Colorado, Washington, etc. are only left
with 2% of the data after filtering is done. It is better to use
states that have better data available to develop the models.

2. The data used in the new FRA model is not filtered as compre-
hensively as the filters used in the development of the ZINEBS
model. The ZINEBS model development includes additional fil-
ters given below resulting in a more meaningful dataset.

Fig. 11. Predicted accident count vs Total Train using the ZINEBS Model: Warning device changed from crossbucks to flashing lights.
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i. Remove xings with AADT Year > year 2000
ii. Remove xings where the warning device has been changed.

3. Variable selection in the new FRA model adopts a visual
approach by plotting normalized accident counts against differ-
ent variables to see if there is a difference in accident counts.
The variables selected in the ZINEBS model were further ana-
lyzed to justify its incorporation in the appropriate model
equation.

4. The new FRA model uses a single equation for all warning
device types, while the ZINEBS model uses three separate equa-
tions for the three warning device types. Different warning
devices offer different levels of protection. For this reason, the
type of highway vehicle movement is expected to be different.
It is therefore reasonable to adopt different equations for differ-
ent warning device types, which also gives the flexibility of
selecting different variables for each warning device type.

5. The new FRA model always predicts a higher accident count for
crossbucks, followed by flashing lights and followed by gates.
However, this trend is not seen in the field data. The ZINEBS
model is more reflective of the field data.

11. Conclusion

The new FRA accident prediction model is based zero-inflated
negative binomial approach that has been used by other research-

ers (Medina & Benekohal, 2015; Medina & Benekohal, 2015;
Medina et al., 2016; Mathew & Benekohal, 2020). The unique fea-
ture of the new FRA model is that it has a single equation for all
three traffic control devices (crossbuck, flashing light, and gates)
and uses the same variables (AADT, Train Volume and Maximum
timetable train speed, Crossing surface, and a variable indicating
whether the crossing is located in a rural or urban setting) regard-
less of the traffic control devices at the crossing. While this model
is significantly better than the old USDOT model, its shortcoming is
that the single equation does not accurately represent the field
condition. Since the New FRA model incorporates the warning
device category as one of the variables in its model equation, the
predicted accident frequency is higher when a crossing has cross-
bucks than flashing lights, and higher when it has flashing lights
than gates. However, this outcome, even though true for some con-
ditions, is not in general supported by field data.

This study developed different models for each type of warning
device since the factors affecting accidents are not the same for all
device types. The models are called ZINEBS (Zero Inflated Negative
Binomial Empirical Bayes System). The model for gated crossing
includes the variables, total train, AADT, total tracks, number of
highway lanes, and the angle of crossing. The model for crossings
with flashing lights includes the variables total train, AADT, and
posted highway speed. For crossings with crossbucks, the model
includes the variables total train, AADT, and type of crossing sur-

Fig. 12. Plot of Accident Count vs ln(AADT) and Total Train: Warning device changed from Crossbucks to Flashing Lights.
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Fig. 13. Predicted accident count vs ln(AADT) using the New FRA Model: Warning device changed from Flashing Lights to Gates.

Fig. 14. Observed accident count vs ln(AADT): Warning device changed from Flashing Lights to Gates.
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Fig. 15. Predicted accident count vs ln(AADT) using the ZINEBS Model: Warning device changed from Flashing Lights to Gates.

Fig. 16. Predicted accident count vs Total Train using the New FRA Model: Warning device changed from Flashing Lights to Gates.
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Fig. 17. Observed accident count vs Total Train: Warning device changed from Flashing Lights to Gates.

Fig. 18. Predicted accident count vs Total Train using the ZINEBS Model: Warning device changed from Flashing Lights to Gates.
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Fig. 19. 3D Plot of Accident Count vs ln(AADT) and Total Train: Warning device changed from Flashing Lights to Gates.

Fig. 20. Validating model by comparing cumulative risk to observed accident count in Texas (Gated Crossings).
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Fig. 21. Validating model by comparing cumulative risk to observed accident count in Texas (Crossings with Flashing Lights and No Gates).

Fig. 22. Validating model by comparing cumulative risk to observed accident count in Texas (Crossings with Crossbucks).

Fig. 23. Cumulative Risk at Crossings with Gates (Illinois).
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Fig. 24. Cumulative Risk at Crossings with Gates (Texas).

Fig. 25. Cumulative Risk at Crossings with Flashing Lights and no Gates (Illinois).

Fig. 26. Cumulative risk at crossings with Flashing Lights and no Gates (Texas).
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face. The variables maximum timetable train speed and distance to
nearby HW intersection were explored, but they were not selected
by any of the models.

The models were developed using data from one state (Illinois)
and were validated using data from another state (Texas results are
included in this paper). The predicted values for the ZINEBS model
show a closer agreement with the field data than the new FRA
model. This observation was true for all three warning device types
analyzed. This comparison indicates that the crossings selected
using the ZINEBS model are more agreeable with an engineer
charged with selecting ‘‘high-risk” locations. Based on the results
of this study, the ZINEBS compliments the new FRA model and
should be used when the single equation is not adequately repre-
senting the role of traffic control device types and relevant vari-
ables associated with that device type.
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a b s t r a c t

Introduction: Given the tremendous number of lives lost or injured, distracted driving is an important
safety area to study. With the widespread use of cellphones, phone use while driving has become the
most common distracted driving behavior. Although researchers have developed safety performance
functions (SPFs) for various crash types, SPFs for distraction-affected crashes are rarely studied in the lit-
erature. One possible reason is the lack of critical distracted behavior information in the commonly used
safety data (i.e., roadway inventory, traffic, and crash counts). Recently, the frequency of phone use while
driving (referred to as phone use data) is recorded by mobile application companies and has become
available to safety researchers. The primary objective of this study is to examine if phone use data can
potentially predict distracted-affected crashes. Method: The authors first integrated phone use data with
roadway inventory, traffic, and crash data in Texas. Then, the Random Forest (RF) algorithm was applied
to assess the significance of the feature - phone use while driving - for predicting the number of
distraction-affected crashes on a road segment. Further, this study developed two SPFs for distraction-
affected crashes with and without the phone use data, separately. Both SPFs were assessed in terms of
model fitting and prediction performances. Results: RF results rank the frequency of phone use as an
important factor contributing to the number of distraction-affected crashes. Performance evaluations
indicated that the inclusion of phone use data in the SPFs consistently improved both fitting and predic-
tion abilities to predict distracted-affected crashes. Practical Applications: The phone use data provide new
insights into the safety analyses of distraction-affected crashes, which cannot be achieved by only using
the conventional roadway inventory and crash data. Therefore, safety researchers and practitioners are
encouraged to incorporate the emerging data sources in reducing distraction-affected crashes.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

As reported by the National Highway Traffic Safety Administra-
tion (NHTSA), 2,841 roadway users were killed, and distraction-
affected crashes injured about 400,000 people on American road-
ways in 2018 (NHTSA, 2020). Further, the reported distraction-
affected crashes account for 8% of fatal crashes and 15% of injury
crashes (NHTSA, 2020). Hence, distracted driving is indeed a signif-
icant factor contributing to crashes. Distraction occurs when dri-
vers divert their attention to a secondary task other than driving
(NHTSA, 2020). Among all types of secondary tasks, a recent
national-wide survey revealed that 52% of respondents reported
talking on a hand-held cellphone, 41% reported reading texts or

emails, and 32% reported typing texts or emails while driving
(Arnold et al., 2019). The previous studies have pointed out that
over 70% of those distractions are potentially preventable
(Beanland et al., 2013), which means that it is possible to prevent
distracted driving behaviors and reduce the number of distraction-
affected crashes through implementing effective countermeasure
(s). As such, distraction-affected crashes are identified as one of
the seven emphasis areas in the Strategic Highway Safety Plan in
Texas (TxDOT, 2019).

Safety researchers and roadway agencies have been making
continuous efforts to understand the nature of distracted driving
(Oviedo-Trespalacios et al., 2017, 2019; Iio et al., 2021) and the
occurrence of distraction-affected crashes (Lym & Chen, 2020;
Chen & Lym, 2021; Kong et al., 2021; Lym & Chen, 2021).
Oviedo-Trespalacios et al. (2017) found that distracted drivers
adapt their speed more in a complex road traffic environment.
Lym and Chen (2020) first examined the spatial influence on the
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frequency and severity of vehicle crashes by driving in distraction,
then analyzed the influences of the built environment on the fre-
quency and severity of distracted-affected crashes (Chen & Lym,
2021) and evaluated the role of the built environment on the
severity of vehicle crashes caused by distracted driving across 15
U.S. states (Lym & Chen, 2021). Although research and agencies
have studied distracted driving and the occurrence of distraction-
affected crashes, the annual number of distraction-affected crashes
is still continuously increasing in recent years (NHTSA, 2020). It is
necessary to conduct analytical studies on distraction-affected
crashes to assist roadway agencies in effectively reducing fatalities,
injuries, and property damage caused by distracted driving.

Statistical models are commonly used to predict roadway safety
measures, identify hotspots, evaluate the effectiveness of treat-
ments, and manage roadway network safety (Lord & Mannering,
2010). Although researchers have developed safety models for dif-
ferent roadway facilities and collision types (Caliendo et al., 2007;
Montella et al., 2008; Wegman, 2014; Sohrabi & Lord, 2019), pre-
dictive models for distraction-affected crashes are rarely reported
in the literature. To the best of the authors’ knowledge, no safety
prediction models have been developed specifically for
distraction-affected crashes. The following two reasons could
explain this. First, it is well known that distraction-affected crashes
are underreported in crash records (e.g., drivers refuse to acknowl-
edge that they had been distracted driving prior to or at the time of
the crash; Hanley & Sikka, 2012; Regev et al., 2017). Second, the
conventional safety data (i.e., roadway inventory, traffic, and crash
counts) for developing safety performance functions (SPFs) may
have missed important information associated with the occurrence
of distraction-related crashes (e.g., phone use frequency and type).

The above two points bring challenges for developing a reliable
distraction-affected crash model. Nevin et al. (2017) noted that
officers were unlikely to get a warrant for drivers’ phone records
in minor crashes, and the drivers rarely admit to distracted driving.
The underreporting of distraction-affected crashes is difficult to
address in a relatively short period. However, with the develop-
ment of advanced techniques (e.g., cellphones, precise locating sys-
tems, and fast mobile data bandwidth), emerging data sources are
becoming available to transportation researchers for making infer-
ences of distraction-affected crashes. Some private sectors tried to
capture phone using events through built-in gyroscopes on cell-
phones (Root, 2019; Zendrive, 2019). This data collection approach
is innovative, but reports from those private sectors are only
descriptive statistics. For example, the Root insurance company
published the Root Insurance Focused Driving Reports in 2019.
The report documented that about 45 cities in Texas are with 10
or more distracted driving events per 100 miles (Root, 2019). In
Zendrive’s 2019 distracted driving study, their users spent 8.85%
of their driving time on their phones per trip (Zendrive, 2019).
Although the descriptive statistics provided by these reports are
very informative and insightful, the reports lack a detailed descrip-
tion of methodologies.

A recent observational study (Iio et al., 2021) used phone use
data collected from a mobile app and revealed a negative correla-
tion between phone use events and driving speed. The study found
that roadway users drove on average, 3.26 mph slower during dis-
tractions than that under undistracted conditions. Another study
conducted by Kong et al. (2021) with a similar phone use while
driving dataset identified the strong association between the fre-
quency of a phone use event occurring and the distracted-crash
counts on the road segments. Using the same phone use data
source, this study examines the association between phone use
while driving data and distracted-affected crashes. Intuitively,
the phone use information while driving is closely related to the
occurrence of distraction-affected crashes. However, this type of

phone use data has not yet been used for predicting distraction-
affected crashes.

Thus, the primary objectives of this study are as follows. This
study (1) aims at examining if phone use frequency while driving
is a significant factor contributing to distraction-affected crashes;
(2) develops SPFs for distraction-affected crashes, and further
investigates if the inclusion of phone use information improves
the model performance. To achieve the objectives, this study first
integrates phone use data with commonly used safety data (i.e.,
roadway inventory, traffic, and distraction-affected crash counts)
in Texas; then deploys the random forest algorithm to identify
the importance of phone use information as well as other roadway
features on the number of distraction-affected crashes; finally, this
study develops SPFs for distraction-affected crashes with and with-
out phone use information separately, and compares the perfor-
mance (model statistics fitting as well as prediction accuracy) of
the two SPF models.

2. Methodology

SPF is a widely used approach to quantify the safety level of
roadway entities (i.e., segments and intersections). It is one of
the most important elements in roadway safety management
(AASHTO, 2011). Many statistical models have been proposed as
SPFs to estimate the average crash frequency by transportation
safety analysts and practitioners (Das et al., 2021; Khodadadi
et al., 2021). Among them, models based on negative binomial
(NB) distribution (also known as Poisson-gamma) are commonly
used for predicting crashes (Lord & Bonneson, 2007; Zou et al.,
2015; Wu et al., 2020; Guo, Wu, et al., 2020), and are recom-
mended in the first edition of the Highway Safety Manual (HSM)
(AASHTO, 2011) for developing SPFs. The NB distribution is essen-
tially a mixture of Poisson and gamma distributions. Assuming the
number of crashes y at a road segment at a specific time is Poisson
distributed with a Poisson mean k, the probability mass function
(PMF) is as follows:

f yjkð Þ ¼ kyexp �kð Þ
y!

; k > 0; andy ¼ 0;1;2; � � � ; ð1Þ

where, the mean response of the observation crash count, k, is
assumed to be Gamma distributed with a mean ¼ l, and a variance
¼ l2r2.

Then, following the Gamma distribution, the probability distri-
bution of kis:
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shape parameter of the Gamma distribution. Then, combining with
Eq. (1), the PMF of the NB distribution is,

f yjl;rð Þ ¼
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0
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�
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1
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� �
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� �
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which is equivalent to the following expression in terms of gamma
function (curious readers are referred to Hilbe (2011) for a complete
derivation of the NB model),

f yjl;rð Þ ¼ C yþ 1
a

� �
C yþ 1ð ÞC 1

a

� �� al
1þ al

� �y

� 1
1þ al

� �1
a

; ð4Þ

where, y is the response variable on a roadway segment during a
time period (typically one year), l is the mean response of crashes
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at the segment, and a is the dispersion parameter. The dispersion
parameter can also be interpreted as the inverse of the shape
parameter, as r2. The varying form of dispersion parameter, a, on
crash estimation for roadway segments is recommended by the
HSM (AASHTO, 2011). A commonly used function form (Cafiso
et al., 2010; Geedipally & Lord, 2008) of the dispersion parameter is,

a ¼ exp cþ log Lð Þð Þ ð5Þ

where, c is a model-specific parameter, a regression coefficient used
to determine the overdispersion parameter; L indicates the length
of the roadway segment in miles. Compared to the Poisson distribu-
tion, the NB distribution can allow for over-dispersion. If r! 0, the
crash variance equals the crash mean, that is, the NB model con-
verges to the Poisson model.

Research (Miaou & Lord, 2003; Meng et al., 2020) has shown
that the functional form is very important for SPFs. Lord and
Bonneson (2007) emphasized the significant characteristic associ-
ated with the development of statistical relationships is the choice
of the function form linking the crashes to the variables (curious
readers are referred to Chapter 6.5 of Lord et al. (2021) regarding
the functional form and varying dispersion parameter). In this
study, the authors intend to compare two SPFs for distraction-

affected crashes. One (i.e., bY �
i) contains a phone use related vari-

able and the other (i.e., bY i) does not. The selected function form
for the SPFs is,

bY i ¼ b0Li AADTið Þb1exp Pi¼n
i¼2bixi

� �
6ð Þ

bY �
i ¼ b0Li AADTið Þb1exp Pi¼n

i¼2bixi þ bPUxPU
� �

7ð Þ

8><>:
where bY i is a mean estimation, the estimated number of
distraction-affected crashes by the SPF per year at segment i, Li is
the length of the segment i in miles, AADTi is the flow of segment
i, xi is a series of road inventory-related variables (e.g., lane width),
xPU is a dedicated phone use related variable, and b0;b1; � � � ;bn; bPU

are coefficients to be estimated. All b0s in Eqs. (6) and (7) with the
c in Eq. (5) are estimated simultaneously using the method of max-
imum likelihood coded in R (Meng et al., 2020). The authors imple-
mented a log-likelihood function specifically for the varying
dispersion parameter crash model and used an R package ‘‘bbmle”
to obtain the MLE estimates.

Moreover, the variable selection process is also important for
SPFs. Mitra and Washington (2007) emphasized the negative influ-
ence of omitting significant variables in SPFs. Hence, it is important
to select the right set of variables for xi in Eqs. (6) and (7). Random
forest (RF) algorithm is widely applied among scientists for vari-
able selections, as it is a good indicator of the importance assigned
to the features (Díaz-Uriarte & Alvarez de Andrés, 2006; Genuer
et al., 2010; Han et al., 2016). In the field of transportation safety,
researchers (Siddiqui et al., 2012; Pu et al., 2020; Guo, Peng,
et al., 2020) adopted RF for variable selections. Guo et al. (2020)
implemented the mean decrease impurity (MDI) measured by
the Gini index from the RF model to select 13 key safety variables
out of 111 variables in the Highway Safety Information System
(HSIS) and the Highway Performance Monitoring System. In this
study, a similar process is taking place to check the importance
of phone use variable and select road inventory-related variables,
xi in Eqs. (6) and (7). However, RF in this study is used as a regres-
sion model for distracted-affected crashes, instead of a classifier.
The MDI for regression is still the total decrease in node impurities
for splitting on the variable averaged over all trees. Instead of Gini
index, the total decrease in node impurities is measured by resid-
ual sum of squares. Then, the MDI is as the mean square error
defined in Eq. (8).

Mean Decrease Impurity ¼ 1
N

XN

i¼1
pi � pð Þ2 ð8Þ

where N is the total number of instances, pi means one instance, p

indicates the mean given by 1
N

PN
i¼1pi. MDI is a measure of variable

importance. A higher MDI indicates higher variable importance.
Lastly, in this study, the Akaike information criterion (AIC) and

Root Mean Square Error (RMSE) are used as the measures of effec-
tiveness (MOE) for model fitting and model evaluation. The AIC is
commonly used by researchers to measure how well a model fits
the data (Akaike, 1974). AIC could locate the best-fit model if the
model explains the largest variation by using the fewest indepen-
dent variables. The best-fit model has the smallest AIC value.

AIC ¼ 2K � 2ln Lð Þ ð9Þ
where, K indicates the number of independent variables, and L is
the log-likelihood estimate of the model.

RMSE is a widely accepted method of measuring the difference
between the predicted values and actual observations (Hyndman &
Koehler, 2006). RMSE is an indicator of the accuracy of the model
predictions.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1 cyn � yn
� �2
N

s
ð10Þ

where, cyn is the predicted distracted crash count of each road seg-
ment; yn represents the actual distracted crash count of each road
segment; N is the total number of road segments in this study.

3. Data integration

In this section, two sets of data are first introduced, separately.
Dataset 1 contains the roadway inventory and distraction-affected
crash counts. It is extracted from the Roadway Highway Inventory
Network Offload (RHiNO) database managed by the Texas Depart-
ment of Transportation (TxDOT). Dataset 2 is phone use events. It is
extracted from a commercial mobile app. These two sets of data
from different data platforms are then integrated into a master
dataset for the development of SPF. Then, the master dataset is pre-
sented. Lastly, the selected variables are tabulated with their
descriptive statistics.

3.1. Roadway inventory and distraction-affected crash counts –
dataset 1

Conventionally, safety analysts develop SPFs using roadway
inventory and historical crash data. This study also collected both
of them. The TxDOT’s RHiNO (2018 Version) is used to gather the
segment layer dataset. The RHiNO database contains a variety of
roadway features, including traffic volume, truck percentage, func-
tion class, lane, shoulder, median, k-factor, speed limit, area type,
and so forth. Curious readers are referred to the TxDOT’s website
for a full list of the variables (https://www.txdot.gov/inside-
txdot/division/transportation-planning/roadway-inventory.html).
To fulfill the objective of this study, the authors selected rural and
urban on-system roadways separately. Each roadway is divided
into a number of homogenous segments based on roadway fea-
tures included in the RHiNO data.

For crash counts, this study collected distraction-affected
crashes from the TxDOT’s Crash Records Information System (CRIS)
in the most recent three years (i.e., 2017–2019). A distraction-
affected crash is defined as when the contributing factor descrip-
tion associated with the primary person is ‘‘distraction in vehicle,”
‘‘driver inattention,” or ‘‘cell/mobile phone use.” This definition is
consistent with the Texas Strategic Highway Safety Plan (TxDOT,
2019).
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3.2. Phone use events – dataset 2

To develop a SPF with phone use events, the authors examined a
pseudonymized dataset through a mobile app, SAFE 2 SAVE. This
mobile app was launched in 2016 with the motivation of encourag-
ing people in a positive way to stay off their phones while driving.
By the end of February 2020, the app had been downloaded more
than 340,000 times. The following is how the mobile app works
while its user is driving at a speed more than 15 mph:

� When the user handles a cellphone (e.g., texting, answering
phone calls with a hand-held cellphone), a phone use event is
recorded along with the user’s current geocoordinates (i.e., lon-
gitude and latitude in degrees), user’s pseudonymized ID, and
event time.

For this study, the authors studied 11,385,092 phone use events
from 29,620 users in Texas from January 1, 2019, to December 31,
2019. Since users are recorded by a pseudonymized user ID (ran-
dom integers), personal detail cannot be identified.

The critical step of data preparation is to count the total number
of phone use events per RHiNO segment ID, so that this phone use
dataset (i.e., Dataset 2) can be integrated with data (i.e., Dataset 1)
from the RHiNO database. As mentioned above, the mobile app col-
lected phone use events when a user handles a cellphone in a mov-
ing vehicle. The geocoordinates are recorded in each phone use
event, and they served as the key for spatially joining functions
from PostGIS to conflate with the RHiNO database. After conflation,
phone use events were snapped into the nearest roadway segment.
One problem with this conflation is that all points in the database
were snapped to their nearest roadways, even for these points far
from the on-system roadways. To eliminate these inaccurate con-
flations, points with a distance from the nearest snapped roadways
greater than 9 ft are excluded from the dataset. This conflation and
cleaning process generated an event-based dataset containing the
occurrence of a phone use event and its corresponding RHiNO seg-
ment ID. Then, the total number of phone use events per segment
can be obtained by aggregating all events within the same RHiNO
segment ID. This aggregated segment-based dataset contains
phone use event counts over unique RHiNO segment IDs.

3.3. Master dataset for SPF development

After converting Dataset 2 from an event-based to a segment-
based dataset, it was then integrated with Dataset 1 by matching
the unique RHiNO segment IDs. This integrated segment-based
dataset is then called the master dataset. Each row of the dataset
represents a roadway segment. The variables are the number of
distraction-affected crashes, number of phone used while driving,
and selected roadway features at each column. There are 72 vari-
ables in the master dataset. Some selected variables are listed in
Table 1. A number of 5,082 segments are filtered using the length
of segment length and frequency of phone use as criteria. To ensure
that the segments are neither too long nor too short, the authors
conducted re-segmentation work on the original RHiNO data, such
that each segment is between 0.1 mi and 2 mi (i.e., segments
shorter than 0.1 mi are excluded from the dataset; segments
greater than 2 mi are split into equal length sub-segments). In
order to get the most reasonable phone use event counts per seg-
ment, this study only kept those segments with phone use event
counts larger than 30 per year but smaller than 200 per year. Fur-
ther, in order to eliminate outliers with extremely wide lanes, the
authors only kept the number of lanes from 2 to 6. Moreover, out-
liers in truck percentage and lane width are removed. Thus, on
4,983 segments, there was an average of 1.43 distraction-affected
crashes (in three years) and an average of 74.88 phone use events.

The maximum number of distraction-affected crashes in the data-
set is 10, and the maximum number of phone use events is 200,
while the minimum numbers are 0 and 30, respectively.

4. Results

This section first introduces how the roadway variables are
ranked and selected using MDI. Then, roadway variables associated
with relatively higher MDI values are considered as those selected
variables for developing SPFs. Further, two SPFs, one without (i.e.,
SPFwoPU) and the other with phone use data (i.e., SPFPU), are devel-
oped using NB distribution with varying dispersion parameters for
the number of distraction-affected crashes. Their regression results
are compared and discussed. Finally, the mean estimations from
SPFwoPU and SPFPU are generated, and their values are compared
using two MOEs (i.e., AIC and RMSE) for the purposes of model sta-
tistical fitting and prediction accuracy.

A series of data cleansing and correlation tests were taken place.
The number of variables in the master dataset was decreased from
72 to 22. Furthermore, the MDI values of these 22 variables from
RF are ranked as shown in Fig. 1. A larger MDI value of a roadway
feature indicates that this feature plays a relatively more important
role in predicting observed distraction-affected crashes on a
segment.

Phone use while driving events rank as number four. This indi-
cates that the phone use data demonstrate the potential to benefit
from the development of SPFs for distraction-affected crashes. This
result met authors’ expectations, as it shows that the phone use
event is a significant factor in predicting distraction-affected
crashes. Moreover, this encourages authors to further investigate
the possibility of developing a SPF for distraction-affected crashes
by including the phone use event as a variable.

AADT and segment length ranked first and second in Fig. 1.
These agree with the variable selection recommended in HSM
(AASHTO, 2011) when modeling a segment SPF. Furthermore, truck
percentage, peak hour factor, and the speed limit are ranked third,
fifith and sixth, respectively, as shown in Fig. 1. These are also com-
monly used roadway features when researchers developed seg-
ment SPFs (Lord & Bonneson, 2007; Guo et al., 2019). In addition
to the above six top-ranked variables in MDI, other values with
MDI values larger than 500 are included to develop SPFs. Thus, a
total of 11 variables, including the frequency of phone use, are
selected using the MDI value to develop SPFs for the distraction-
affected crashes in this study. Their descriptive statistics are docu-
mented in Table 1.

Although the ranking of MDI has revealed the possible relation-
ship between phone use events and distraction-affected crashes, it

Table 1
Summary statistics of distraction-affected crash counts, phone use frequency and
selected observations (4,983 segments).

Variable Min Max Mean (SD)

3-yr Distraction-affected Crash Count 0 10 1.43 (2.30)
Phone Use Frequency 30 200 74.88 (43.16)
AADT (veh/day) 70 99,537 11,550 (12,383.07)
Segment Length (ft) 0.10 2.00 0.72 (0.55)
Truck Percentage (%) 0 42.5 11.10 (7.68)
Peak Hour Factor (%) 6.40 29.20 10.19 (2.03)
Outside Shoulder Width (ft) 0 44 6.18 (5.84)
Inside Shoulder Width (ft) 0 25 4.92 (4.16)
Lane Width (ft) 9 18 11.95 (1.31)
Number of Lanes (#) 2 6 2.93 (1.21)
Posted Speed Limit (mph) 25 75 56.33 (10.07)

Urban Segment Indicator Urban: 55.7%; Rural: 44.3%

Note: SD = standard deviation. Many unselected variables are not listed in this
table.
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is not obvious whether the inclusion of phone use events will
improve the SPF model performance. Hence, two NB-based SPFs
are developed with varying dispersion parameters. The SPF for
distraction-affected crashes without phone use event as a variable
is abbreviated as SPFwoPU, and its regression results are tabulated in
Table 2. The SPF for distraction-affected crashes with phone use
event is abbreviated as SPFPU, and its regression results are tabu-
lated in Table 3.

As the models in Tables 2 and 3 are performed on a randomly
selected training dataset (i.e., containing 3,239 segments out of
4,983 segments), the results may be different depending on the
selected training and test sets. In order to further verify the consis-
tency of results, this study repeated the process a total of 100
times. The MOE, AIC is applied to compare the goodness of fit for
these two SPFs, while the other MOE, RSME is used to compare
the performance of these two SPFs in terms of accuracy in predic-
tion. A summary of the AIC and RMSE values in the 100 experi-
ments is presented in Table 4.

5. Discussion

A few interesting observations are revealed from the regression
results of SPFwoPU in Table 2.

From Table 2, the variables for AADT and urban segment indica-
tor showed significant impacts on the number of distraction-
affected crashes with positive estimates. That is, an increased value
of these variables is associated with an increase in the number of
distraction-affected crashes. For instance, the estimated coefficient
for the urban segment indicator is 0.8539, statistically significant
at the 99.9% level. This means that the predicted number of
distraction-affected crashes is higher when a segment is urban
than that of a rural segment with similar characteristics. This same
finding is also observed in existing literature (Chen & Lym, 2021).
On the other hand, the posted speed limit is significant with a neg-
ative estimate. This indicates that the predicted number of
distraction-affected crashes is relatively higher on those segments
with a lower speed limit. Although when the speed limit is low, the
predicted number of distracted-affected crashes is high, existing
studies (Lym & Chen, 2021) found that the severity was also low.

Four variables (i.e., number of lanes, peak hour factor, outside
shoulder width, and inside shoulder width) are not significant at
the 95% level, but they are still kept in the model as the primary
purpose of the distraction-affected crash SPFs in this study is not
for prediction. Some variables, such as inside shoulder width and
outside shoulder width, may be correlated, making the parameter
estimates relatively unstable.

Fig. 1. Variable Selection for Developing Safety Performance Function.

Table 2
Regression results of SPF without phone use data.

Variable Estimate Std. Error z value Pr(>|z|) Significance

Intercept �5.0607 0.6468 �7.8244 <0.0001 99.9%
Log (AADT) 0.7967 0.0580 13.7292 <0.0001 99.9%
Lane Width 0.0643 0.0275 2.3347 0.0196 95%
Truck Percentage 1.1719 0.4744 2.4704 0.0135 95%
Number of Lanes �0.0645 0.0397 �1.6236 0.1045 –
Peak Hour Factor �0.0060 0.0234 �0.2549 0.7988 –
Outside Shoulder Width �0.0127 0.0089 �1.4229 0.1548 –
Inside Shoulder Width �0.0004 0.0122 �0.0304 0.9757 –
Posted Speed Limit �0.0447 0.0040 �11.0779 <0.0001 99.9%
Urban Segment Indicator 0.8539 0.1139 7.4952 <0.0001 99.9%
Parameter of Dispersion Function �0.7784 0.0736 �10.5820 <0.0001 99.9%

AIC 5,283.38

Note: ‘‘–” indicates not significant at 95% level.
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Moreover, as expected, the phone use variable has a 99.9% sig-
nificant level with a positive estimated coefficient of 0.3375 in
Table 3. The magnitude of the phone use variable is also relatively
large in Table 3. This indicates that the phone use variable is signif-
icant in the SPF model for distraction-affected crashes. Further,
such a significant contribution is with a positive coefficient, mean-
ing a segment with larger phone use is associated with a higher
number of distraction-affected crashes. Consistent with those
results in the SPFwoPU model (see Table 2), AADT and urban seg-
ment indicator again show significant positive impacts, while the
posted speed limit is significant with negative impacts on the num-
ber of distraction-affected crashes.

Another interesting finding is the dispersion parameter
(i.e., a in Eqs. (4) and (5)). In the two SPFs with and without phone
use information, the dispersion parameters are exp �1:8913þð
log Lð ÞÞ ¼ L=6:63, and exp �0:7784þ log Lð Þð Þ ¼ L=2:18, respec-
tively. For a segment with a certain length, the dispersion
parameter in the former SPF is significantly smaller than the latter
(the ratio between the two is 1:3). A smaller dispersion parameter
indicates a smaller variance of the predicted distraction-affected
crash number and higher accuracy. Additionally, the dispersion
parameter plays a significant role in the process of the empirical
Bayes (EB) estimate. Smaller dispersion parameter leads to more
reliable EB estimates. Hence the safety analyses (e.g., hotspot iden-
tification, safety effectiveness evaluation) based on the SPFPU are
superior to those based on the SPFwoPU model. From this perspec-
tive, phone use data greatly improves the performance of
distraction-affected SPFs.

The comparison between the two SPFs (i.e., SPFwoPU in Table 2
and SPFPU in Table 3) demonstrates that: (1) the phone use fre-
quency variable has a significantly positive impact on predicting
distraction-affected crashes; (2) the significant variables have the
same signs in SPF models with and without phone use. In addition

to the comparison between the regression results of the two mod-
els, the data fitting measurement (i.e., AIC) and the prediction
accuracy measurement (i.e., RMSE) are computed for the two mod-
els. The SPFwoPU has an AIC value of 5,283.38, while the SPFPU has
an AIC value of 4,414.52. AIC estimates the relative amount of
information lost in a given model. The less information a model
loses, the higher the quality of that model contains. This difference
of 868.86 in AIC clearly indicates that the SPFPU provides a better
model statistical fit than the SPFwoPU. However, researchers
(Meng et al., 2020) pointed out that some functional forms that
provided a better model statistical fit do not guarantee better
model prediction performance. In order to examine if the SPFPU
also has a better performance in model prediction, the RMSE values
of both SPF models are computed by measuring the differences
between the distraction-affected crash means predicted by SPF
models and the actual number of distraction-affected crashes
observed in the test set. The RMSE of SPFwoPU is 11.48, and the
RMSE of SPFPU is 7.99. As the RMSE is a measurement of prediction
accuracy, a smaller RMSE indicates a better model in prediction.
The RMSE of SPFPU is 30.43% smaller than the RMSE of SPFwoPU. This
indicates that the SPFPU model owns a higher prediction accuracy
than the SPFwoPU model.

Lastly, to verify the consistency of the above findings, this study
repeated the process, computed AIC and RMSE values for a total of
100 times with different random seeds. The AIC value of SPFPU in
every experiment is observed to be always smaller than the AIC
value of its corresponding SPFwoPU. The smallest difference in AIC
is 775.03, and the largest difference in AIC is 1,033.20. These
demonstrated that a SPFPU model always provides a better model
statistical fit than a SPFwoPU model for distraction-affected crashes.
Similarly, the observation on RMSE at the specific experiment has
been consistently observed in the 100 experiments. The RMSE
value of SPFPU in every experiment is smaller than the RMSE value

Table 3
Regression Results of SPF with Phone Use Data.

Variable Estimate Std. Error z value Pr(>|z|) Significance

Intercept �2.6224 0.5579 �4.7003 <0.0001 99.9%
Phone Use Frequency* 0.3375 0.0123 27.4734 <0.0001 99.9%
Log (AADT) 0.4520 0.0501 9.0259 <0.0001 99.9%
Lane Width �0.0040 0.0220 �0.1797 0.8574 –
Truck Percentage 0.2518 0.4080 0.6170 0.5372 –
Number of Lanes �0.1040 0.0321 �3.2348 0.0012 99.0%
Peak Hour Factor �0.0080 0.0207 �0.3861 0.6994 –
Outside Shoulder Width �0.0035 0.0075 �0.4675 0.6401 –
Inside Shoulder Width 0.0099 0.0103 0.9614 0.3363 –
Posted Speed Limit �0.0300 0.0034 �8.7566 <0.0001 99.9%
Urban Segment Indicator 0.6003 0.1033 5.8093 <0.0001 99.9%
Parameter of Dispersion Function �1.8913 0.1012 �18.6979 <0.0001 99.9%

AIC 4,414.52

Note: Phone Use Frequency is the annual frequency of phone use while driving per segment; ‘‘–” indicates not significant at 95% level.

Table 4
Evaluation results in AIC and RMSE.

Experiment No. AIC RMSE

SPF without Phone Use SPF with Phone Use Difference SPF without Phone Use SPF with Phone Use Percentage Difference

1 5,280.03 4,382.24 897.79 11.10 7.95 28.37%
2 5,304.02 4,405.87 898.15 12.23 7.89 35.46%
3 5,308.71 4,275.50 1,033.20 12.03 8.53 29.12%
. . . . . . . . . . . . . . . . . . . . .

99 5,292.75 4,425.62 867.13 10.95 7.50 31.49%
100 5,283.38 4,414.52 868.86 11.48 7.99 30.43%

Maximum – – 1,033.20 – – 36.22%
Minimum – – 775.03 – – 20.75%
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from its corresponding SPFwoPU. The minimum percentage differ-
ence is 20.75%, and the maximum percentage difference is
36.22%. These results reveal that a SPFPU model always has a higher
prediction accuracy than a SPFwoPU model for distraction-affected
crashes.

6. Conclusions and future research

Distracted driving is one of the most significant factors con-
tributing to crashes. However, out of the various safety models
for different roadway facilities and collision types (Caliendo
et al., 2007; Montella et al., 2008; AASHTO, 2011; Wegman,
2014), models for distraction-affected crashes are rarely reported
in the literature. Therefore, in this study, the authors integrated
the following two datasets at the segment level: (1) user-
generated phone use events collected by a mobile phone app; (2)
roadway inventory and reported distraction-affected crash counts
from RHiNO and CRIS, both managed by TxDOT. In this study, the
authors first examined and demonstrated that phone use informa-
tion is an important factor affecting the number of distraction-
affected crashes. Then, this study further developed two SPFs for
distraction-affected crashes with and without phone use informa-
tion. Two measures of effectiveness, AIC, and RMSE, were com-
puted to compare the SPFs from the perspective of model fitting
and prediction accuracy. Results showed that a distraction-
affected crash SPF model with phone use information always pro-
vides a better model statistical fit than a distraction-affected crash
SPF without phone use information. Out of 100 experiments with
100 different random seeds, the AIC value of the SPF model without
phone use information was consistently larger than that with
phone use information. A minimum difference in AIC is 775.03,
and a maximum difference in AIC is 1,033.20. Not only in model fit-
ting, by including the phone use information, the prediction accu-
racy was also increased. The RMSE value of the SPF model with
phone use information in every experiment is smaller than that
without phone use information. The minimum percentage differ-
ence in RMSE is 20.75%, and the maximum percentage difference
is 36.22%.

There are a few limitations in this study, which call for potential
future studies:

� Since the phone use events are only collected when app users
drive while using a hand-held mobile phone, distracted driving
while using a hands-free mobile phone is not included in this
study. Nevertheless, studies (Oviedo-Trespalacios et al., 2018)
have shown that the distraction with a hands-free mobile
phone is less significant than with a hand-held mobile phone.

� Considering the mobile app launched with the motivation of
encouraging people in a positive way to stay off their phones
while driving, the phone use data collected by the app may be
to some extend biased. However, we would like to point out
that the app contains a relatively large user size (i.e., 29,620
unique users’ pseudonymized IDs) and a fairly large phone
use events out of those users (i.e., 11,385,092 points). That is,
an average of 384 phone use events per user during a year.
The authors believe that studied data could well capture phone
use distractions from the users and represent the general driver
population in the study area.

� Some secondary tasks (e.g., tapping a phone screen on a stable
phone holder or eating), which may result in distracted driving,
are not included in this study.

� Types of phone use (e.g., talking, texting) and the durations are
unavailable from the dataset.

Based on the findings from this study, the authors concluded
that the inclusion of phone use data in a SPF for predicting
distraction-affected crashes yields a better model statistical fit
and higher prediction accuracy. The authors would recommend
phone use data be included for safety analysis and predicting
distraction-affected crashes. Future studies that consider any inter-
active effect between an environmental variable and phone use
would make the prediction of the SPF model even better.
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a b s t r a c t

Introduction: With prevalent and increased attention to driver inattention (DI) behavior, this research
provides a comprehensive investigation of the influence of built environment and roadway characteris-
tics on the DI-related vehicle crash frequency per year. Specifically, a comparative analysis between DI-
related crash frequency in rural road segments and urban road segments is conducted. Method: Utilizing
DI-related crash data collected from North Carolina for the period 2013–2017, three types of models: (1)
Poisson/negative binomial (NB) model, (2) Poisson hurdle (HP) model/negative binomial hurdle (HNB)
model, and (3) random intercepts Poisson hurdle (RIHP) model/random intercepts negative binomial hur-
dle (RIHNB) model, are applied to handle excessive zeros and unobserved heterogeneity in the dataset.
Results: The results show that RIHP and RIHNB models distinctly outperform other models in terms of
goodness-of-fit. The presence of commercial areas is found to increase the probability and frequency
of DI-related crashes in both rural and urban regions. Roadway characteristics (such as non-freeways,
segments with multiple lanes, and traffic signals) are positively associated with increased DI-related
crash counts, whereas state-secondary routes and speed limits (higher than 35 mph) are associated with
decreased DI-related crash counts in rural and urban regions. Besides, horizontal curved and longitudinal
bottomed segments and segments with double yellow lines/no passing zones are likely to have fewer
DI-related crashes in urban areas. Medians in rural road segments are found to be effective to reduce
DI-related crashes. Practical Applications: These findings provide a valuable understanding of the DI-
related crash frequency for transportation agencies to propose effective countermeasures and safety
treatments (e.g., dispatching more police enforcement or surveillance cameras in commercial areas,
and setting more medians in rural roads) to mitigate the negative consequences of DI behavior.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Driver inattention (DI) has been a pervasive issue since people
have been driving cars (Caird and Dewar, 2007). It is reported that
DI is a major contributing factor in approximately 25%-35% of all
actual crashes on roadways (Campbell, Smith, & Najm, 2003;
Wang, Knipling, & Goodman, 1996). According to the National
Highway Traffic Safety Administration (NHTSA, 2001), the primary
factor (sole) and the primary factor (in combination) of DI account
for 16.7% and 5.2% in the total crash contributions, respectively. DI-
related crash counts increased by 8.40% from 2013 to 2017 in

North Carolina (NHTSA, 2014; NHTSA, 2018). The prevalence and
continuous increase in vehicle crashes caused by DI behavior has
posed a great potential threat to the health and safety of road traf-
fic participants. As a result, DI-related crashes have become a
major concern to national and local traffic agencies and
policymakers.

DI behavior is defined as insufficient, or no attention, to activi-
ties critical for safe driving (Regan, Hallett, & Gordon, 2011). DI can
be divided into five subtypes: (a) driver restricted attention (DRA),
(b) driver misprioritized attention (DMPA), (c) driver neglected
attention (DNA), (d) driver cursory attention (DCA), and (e) driver
diverted attention (DDA) (Beanland, Fitzharris, Young, & Lenné,
2013; Regan et al., 2011; Wundersitz, 2019). Note that driver dis-
traction (i.e., cellphone use, reading, eating, and chatting) is just a
subtype of DI, and it belongs to one type of DDA (Pettitt, Burnett, &
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Stevens, 2005; Regan et al., 2011). DRA describes circumstance
where attention is limited due to physical or biological factors,
such as drowsiness and glare. DMPA occurs when the driver is
excessively focused on less safety–critical aspects of driving. DNA
occurs when the driver fails to attend to activities critical for safe
driving, such as failing to look for oncoming vehicles. DCA occurs
when the driver attends superficially to activities critical for safe
driving and sometimes related to cognitive distraction (Beanland
et al., 2013). Several studies have investigated the driving perfor-
mance and environmental factors of DI (Beanland et al., 2013;
Campbell et al., 2003; Klauer et al., 2006; Sundfør, Sagberg, &
Høye, 2019; Wundersitz, 2019), especially for distracted driving
(Chen & Lym, 2021; Gershon et al., 2019; Lym & Chen, 2020,
2021; Tivesten & Dozza, 2014). However, a comprehensive under-
standing of the linkages between built environment/roadway char-
acteristics and DI-related crashes remains inadequate. To this end,
it is necessary to investigate the DI-related crashes from a post-
accident perspective based on a sufficient police-report crash data-
base, thus generating reliable results and conclusions.

The objective of this research is to improve our understanding
of the influence of built environment and roadway characteristics
on the frequency of vehicle crashes mainly contributing to DI from
a post-accident perspective. Specifically, the following three
research questions are addressed:

(1) To what extent the crash frequency of DI varies among var-
ious built environment and roadway characteristics on road
segments?

(2) What are the differences between the influence of built envi-
ronment and roadway characteristics on DI-related crash
counts in rural and urban road segments?

(3) How do built environment and roadway characteristics
influence annual DI-related crash frequencies by using a
hurdle methodological framework?

The remainder of the paper is organized as follows. Section 2
reviews the relevant literature. Section 3 and 4 introduce the data
and methodology. Section 5 presents the research results and dis-
cussion. Section 6 concludes and summarizes.

2. Literature review

2.1. General description of DI studies

A significant number of studies have concentrated on the inves-
tigation of the relationship between drivers’ characteristics, envi-
ronmental factors, and DI-related crash risks. Table 1 presents a
summary of recent studies on DI.

In terms of data source, most studies collected police-report
crash data (Campbell et al., 2003; Chen & Lym, 2021; Hendricks,
Fell, & Freedman, 2001; Lym & Chen, 2021), naturalistic driving
data (Gershon et al., 2019; Klauer et al., 2006; Tivesten & Dozza,
2014), and in-depth crash data (Beanland et al., 2013; Sundfør
et al., 2019; Wundersitz, 2019) to investigate DI behavior. Klauer
et al. (2006) analyzed crash risks of DI by collecting 100-cars nat-
uralistic driving data for one year, which captured drivers’ real-
time behavior, detailed pre-crash/crash information, and vehicle
dynamics. Tivesten and Dozza (2014) analyzed drivers’ eye glance
behavior in different contexts and phone tasks based on 1 million
kilometers’ naturalistic driving data. Although the main advantage
of using naturalistic driving data is the realistic information
regarding DI behaviors, naturalistic driving data are often costly,
time-consuming, and geographically biased (Beanland et al.,
2013; Tivesten & Dozza, 2014). Instead, in-depth crash data can
provide significant detailed information about pre-crash circum-

stances and detailed subtypes of inattention by drivers’ recall.
Wundersitz (2019) investigated the contribution of driver inatten-
tion within fatal and injury crashes by using 186 in-depth crash
data from South Australia. They found that driver inattention con-
tributed to 31.3% of crashes and the most common types of DI were
distractions and mispriortized attention (Wundersitz, 2019). How-
ever, the data size of in-depth crash data is usually relatively small
(less than 2,000). Another limitation of in-depth crash data is that
it relies on subjective reports, which cannot be validated by using
external data sources (Beanland et al., 2013). Police-reported crash
data has the advantage of low costs and large crash datasets. Many
current studies of DI are based on crash records. For example, Lym
and Chen (2021) analyzed the influence of built environments on
the severity of distraction-related crashes based on distraction-
related crash data from 15 U.S. states.

As for methods of DI studies, several studies applied simple sta-
tistical analysis for comparisons (Campbell et al., 2003; Klauer
et al., 2006; Wundersitz, 2019). Surveys and questionnaires
towards DI are also effective methods to obtain valuable informa-
tion (Beanland et al., 2013; Klauer et al., 2006; Sundfør et al., 2019).
In recent years, logistic regression with mixed effects (Gershon
et al., 2019) and generalized ordered logit models (Chen & Lym,
2021; Lym & Chen, 2021) were applied to model crash severities
of distraction-related crashes. To investigate the frequency of
distraction-related crashes, negative binomial regression and
Bayesian multivariate conditional autoregression models were
applied (Lym & Chen, 2020, 2021). However, the frequency analy-
sis of DI-related crashes (including all subtypes of inattention) on
segment-level, especially for annual counts, seems to be inade-
quate so far.

2.2. Influence of built environment and roadway characteristics on DI

Previous studies have investigated the effects of some environ-
mental and roadway characteristics on the crash risk of DI behav-
ior. Klauer et al. (2006) assessed the near-crash/crash risk of DI in
different environmental conditions (such as lighting, weather, road
types, road alignments, traffic density, and surface condition). They
showed that drowsy drivers (one type of inattention) are over six
times as likely to be involved in a crash or near-crash as an alert
driver on a straight roadway. Similarly, Tivesten and Dozza
(2014) revealed that drivers’ glance behavior may be sensitive to
weather conditions, and drivers exhibited shorter off-road glances
in rainy weather than in clear weather. Chen and Lym (2021)’s
study showed that the frequency of distracted driving crashes
tends to be much higher than that of non-distracted driving
crashes in the urbanized road environment. Roadways with medi-
ans and shoulders with an asphalt pavement were significantly
negatively associated with the distraction-related crash counts. A
rise in commercial land use would lead to an increased risk of all
severity levels of distraction-related crashes at census-tracts level
(Lym & Chen, 2020). These studies provide a solid understanding
of DI behavior in various environments. However, there is limited
understanding on the extent that crash frequency (as a result of
DI behavior) varies among built environment and roadway charac-
teristics on road segments. In addition, differences in the influence
of built environment and roadway features on DI-related crashes in
rural and urban regions need to be addressed because overall envi-
ronment of rural and urban regions are quite different.

2.3. Methods of handling excess zeros and unobserved heterogeneity in
crash frequency analysis

One methodological challenge often faced in analyzing crash
frequency is the presence of a large number of zeros. Due to rare
events and the random nature of DI-related crashes, the datasets
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contain excessive zero counts at the segment-level. However, the
standard count models (such as Poisson and negative binomial)
are often insufficient to account for the preponderance of zeros,
leading to biased model results (Cai, Lee, Eluru, & Abdel-Aty,
2016). Therefore, zero-altered models (namely zero-inflated (ZI)
model and hurdle model) are widely adopted to deal with the
excessive zeros in crash frequency analyses (Cai et al., 2016;
Dong, Clarke, Yan, Khattak, & Huang, 2014; Hosseinpour, Yahaya,
& Sadullah, 2014; Huang & Chin, 2010; Lee & Mannering, 2002;

Qiu, Logan, Oxley, & Lowe, 2020; Son, Kweon, & Park, 2011; Yu,
Wang, Quddus, & Li, 2019). In essence, the biggest difference
between the two zero-altered models is the generation process
of zeros. ZI models assume the zero counts are arising from both
structural zeros and sampling zeros. Structural zeros indicate that
the roadway segments are inherently safe, and sampling zeros
indicate that no crash occurred in the observation period
(Shankar, Milton, & Mannering, 1997). However, the assumption
of structural zeros of ZI models has been criticized by some

Table 1
Summary of the studies of DI.

Authors Types of inattention Region Data Method Major findings

Hendricks et al. (2001) Non-specified US Serious crash data selected
using the National Automotive
Sampling System (NASS)
protocol

Clinical analysis
method and a
multivariate
analysis sequence

Driver inattention was the most
dominant component of the
causal factor pattern in unsafe
driving acts and this factor should
receive high priority with respect
to countermeasure.

Campbell et al., (2003) Non-specified US Crash data from National
Automotive Sampling System’s
1997–2000 Crashworthiness
Data System (CDS) and 2000
General Estimates System
(GES)

Comparison
analysis and
cross-correlation
analysis

Driver inattention was the top
primary contributing factor for
single-vehicle off-road collisions,
rear-end collisions, and lane
change collisions.

Klauer et al. (2006) Secondary tasks, driving-related
inattention, drowsiness, non-
specific eyeglance

US Naturalistic driving data.
Crashes and near-crashes were
collected from 100 drivers of
instrumented vehicles driving
for 12 months

Comparison of
baseline database,
surveys,
questionnaires,
and performance-
based tests

Drivers engaging in visually and/
or manually complex tasks have a
three-times higher crash risk than
attentive drivers.

Regan et al. (2011) Driver restricted attention (DRA),
driver misprioritised attention
(DMPA), driver neglected attention
(DNA), driver cursory attention
(DCA), driver diverted attention
(DDA)

France A review of existing definition
and taxonomies of driver
distraction and driver
inattention

Literature review
and comparison
analysis

Driver distraction is just one form
of driver inattention, and driver
inattention means insufficient or
no attention to activities critical
for safe driving

Beanland et al. (2013) DRA, DMPA, DNA, DCA, and DDA Australia Crash data from the Austrian
National Crash In-depth Study
(ANCIS)

Statistical analysis
and survey

Over a half of crashes showed
evidence of driver inattention and
the most frequent subtype of
inattention was DRA, followed by
DDA

Tivesten and Dozza
(2014)

Distracted driving (visual-manual
phone tasks)

Sweden Naturalistic driving data of 100
cars for one year

Statistical analysis
and glance
metrics

Driving context (i.e. turning
maneuvers, presence of lead or
oncoming vehicles, vehicle speed)
influenced drivers’ glance
behavior

Gershon et al. (2019) Distracted driving US Naturalistic driving data
collected from 82 newly
licensed teenagers

Mixed-effects
logistic regression
models and
mediation
analyses

Manual cellphone uses and
reaching for objects were
associated with increased crash
risk

Sundfør et al. (2019) Non-specified Norway In-depth crash data from
Norwegian Public Roads
Administration

Statistical analysis
and survey

Inattention among at-fault drivers
of motor vehicles contributed to
one out of three fatal road crashes,
failure to check for information in
blind spots or behind other sight
obstruction is a typical form of
inattention

Wundersitz (2019) DMPA, DNA, DCA, DDA, and
unspecified inattention (U)

Australia In-depth crash data from fatal
and injury crashes in South
Australia

Statistical analysis
and comparison
between
inattention and
non-inattention
crashes

The most common subtype of
inattention was distractions, and
inattention crashes were most
likely to involve right turn/angle
or rear-end crash types and occur
at intersections, in metropolitan
areas, and lower speed zones

Chen and Lym (2021) Distracted driving US Crash data from the Ohio
Department of Transportation
(ODOT)

Negative binomial
regression model
and generalized
ordered logit
model

The frequency of distracted
driving crashes tends to be much
higher than that of non-distracted
driving in the urbanized road
environment

Lym and Chen (2021) Distracted driving US Crash data from fifteen states
of Department of
Transportation (DOT)

Generalized
ordered logit
regression model

A state-specific variability of the
influence of the built environment
on the severity of distracted
driving crashes
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scholars (Lord, Washington, & Ivan, 2005; Lord, Washington, &
Ivan, 2007). Conversely, the hurdle model assumes that all zeros
in the dataset are all sampling zeros. That is, it assumes that every
road segment is not inherently safe and has the probability of hav-
ing crashes, which is more consistent with realistic situations.
Additionally, hurdle models displayed good fit and provide reliable
results in current traffic safety studies (Hosseinpour et al., 2014;
Qiu et al., 2020; Yu et al., 2019).

It is also noted that the DI-related crash frequency data exhibit
a typical panel data structure, which calculated crash observations
at segment level every year. This suggests that there may be poten-
tial heterogeneity (i.e., caused by spatiotemporal correlations) in
the crash data, which is frequently discussed in previous studies
(Mannering, Shankar, & Bhat, 2016; Mannering & Bhat, 2014). To
deal with the unobserved heterogeneity, models with random
parameters (Hou, Tarko, & Meng, 2018; Huo, Leng, Hou, Zheng, &
Zhao, 2020) and random effects (Qiu et al., 2020; Yu et al., 2019)
are recommended to be applied. Thus, random intercept models
were introduced in this study as they allow for a site-specific dis-
turbance term.

As previously discussed in the literature review, studies on DI
have been dominated by investigations in inattention subtypes,
drivers’ characteristics, and distraction-related crashes. Hence, this
research aims to fill the gaps in knowledge from a different per-
spective by adopting a hurdle framework to improve our under-
standing of DI-related crashes.

3. Data

Data used in this study were obtained from the Highway Safety
Information System (HSIS) in North Carolina between 2013 and
2017. This study defined the DI-related crash as a crash caused
by at least one driver exhibiting inattention (i.e., the first contrib-
utory factor is DI). The database includes 29,539 and 60,569 DI-
related crashes between light vehicles (i.e., passenger cars, pickups,
sports utility, and taxicabs) on rural and urban road segments,
respectively. Fig. 1 presents the comparison of DI-related crashes
in all road types in this dataset. Overall, the share of DI-related
crashes that happened on road segments is much higher than other
road types. This finding is supported by a report of DI-related
crashes (Klauer et al., 2006). It is also clear that DI-related crashes
that occurred on road segments are annually increasing from 2013
to 2017.

After that, road segments with short lengths (less than 0.08
miles) and missing values of useful variables are deleted. Finally,
DI-related crash counts of 1,327 and 4,914 road segments from
rural and urban regions in each year from 2013 to 2017 are used
for the later modeling (Fig. 2 shows the road lengths of selected
rural and urban segments in this study). Approximately 78% and
74% of annual DI-related crash frequency of road segments are
zeros in the rural dataset and urban dataset, respectively, which
reflects the presence of excessive zeros. This is consistent with
the nature of DI-related crashes due to the strong randomness of
this type of crash happening on road segments (Wundersitz,
2019). However, DI-related crashes are also significantly influ-
enced by environmental factors (i.e., traffic density, road types,
and road alignments; Chen & Lym, 2021; Hosseinpour et al.,
2014; Klauer et al., 2006). Thus, various types of explanatory vari-
ables that represent different built environments and roadway
characteristics of road segments are considered in this study. Addi-
tionally, the same classification of built environment variables and
roadway features can be found in Song, Li, Fan, and Wu (2020) and
Song and Fan (2020). The statistic descriptions of the explanatory
category variables are shown in Table 2.

4. Methodology

4.1. Standard count models

The Poisson model is the fundamental model for crash fre-
quency analysis (Lord & Mannering, 2010). In a Poisson regression
model, the probability of roadway segment i having yit DI-related
crashes in the t year P yitð Þ is given by:

P yitð Þ ¼ EXPð�kitÞkyitit

yit!
ð1Þ

kit ¼ EXPðbixiÞ ð2Þ
where kit is the expected DI-related crash number of road segment i
in the t time period, xi is a set of explanatory variables, and bi is a
vector of estimated parameters. However, Poisson models can not
handle the over-dispersion problem in crash counts (i.e., variance
significantly exceeds the mean).

The negative binomial (NB) model is proposed to handle the
over-dispersion by adding an error term eit to the mean of the Pois-
son model as:

Fig. 1. Annual DI-related crashes by different road types (North Carolina, 2013–2017).
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kit ¼ EXPðbixi þ eitÞ ð3Þ
where EXPðeitÞ is a Gamma-distributed disturbance term with mean
1 and variance a. The probability of roadway segment i having yit
DI-related crashes can be given by:

P yitð Þ ¼ C 1
a

� �þ yit
� �
C 1

a

� �
yit!

1
a

1
a

� �þ kit

 !1
a

ð kit
1
a

� �þ kit
Þ
yit

ð4Þ

where Cð�Þ is a Gamma function. a is the over-dispersion parameter
of the NB model.

4.2. Hurdle models

Traditional standard count models (i.e., Poisson and NB models)
have limited capabilities in dealing with excessive zeros (Dong,

Richards, Clarke, Zhou, & Ma, 2014; Hosseinpour et al., 2014).
Instead, zero-altered models (i.e., ZI and hurdle models) are com-
monly applied to handle excess zero counts (Lee & Mannering,
2002; Qin, Ivan, & Ravishanker, 2004; Hosseinpour et al., 2014;
Cai et al., 2016; Yu et al., 2019).

The hurdle model was introduced by Cragg (1971) and then
developed by Mullahy (1986). It is a two-state model with a zero
state and a non-zero positive state. The first part of the model
can be modeled by a binary regression, such as logit or probit mod-
els. The second part is modeled by a left truncated Poisson or NB
distribution. The density function of a hurdle Poisson (HP) model
is given as follows:

P Y ¼ yitð Þ ¼
Pit yit ¼ 0

1� Pitð Þ e�kit k
yit
it

1�e�kitð Þyit ! yit > 0

8<
: ð5Þ

Fig. 2. Lengths of selected rural and urban road segments for DI-related crash frequency modelling during 2013–2017.

P. Wu, L. Song and X. Meng Journal of Safety Research 79 (2021) 199–210

203



where Pit is the probability of being zero counts of DI-related
crashes for road segment i in the t year, (1� Pit)is the probability
of non-zero DI-related crash counts for road segment i in the t year,
and kit is the average DI-related crash counts derived from the left-
truncated Poisson regression model.

To handle the over-dispersion in the crash frequency, hurdle
negative binomial (HNB) models can be used. Based on the hurdle
framework, the density function of HNB model is given as:

P Y ¼ yitð Þ ¼
Pit yit ¼ 0

1� Pitð Þ 1� 1

1þakitð Þ
1
að Þ

� �
C yitþ 1

að Þð Þ
C yitþ1ð ÞC 1

að Þ
� �

akitð Þyit

1þakitð Þyitþ
1
að Þ

� �
yit > 0

8<
:

where a is the over-dispersion parameter, Cð�Þ is a Gamma function,
and kit is the average DI-related crash counts derived from the left-
truncated NB model.

In the first state (i.e. zeros) of the HP and HNB model, a logistic
regression is adopted, as shown in:

Pit ¼ logit pitð Þ ¼ xT1id ð7Þ

where xT
1i is a vector of explanatory variables for the fixed parame-

ter d in the binary part.

In the second state (i.e. non-zeros) of the HP model, a Poisson
regression model is used, as shown in:

kit ¼ EXPðb2ix2iÞ ð8Þ
where x2i is a vector of explanatory variables for the fixed parame-
ters b2i in the count part. The NB regression model also can be used
in the second state, as shown in:

kit ¼ EXPðb2ix2i þ eitÞ ð9Þ
where EXPðeitÞ is a Gamma-distributed term in the count part of the
HNB model.

4.3. Hurdle models with random intercepts

The random intercepts hurdle model accounts for site-specific
factors and can provide better goodness-of-fit than the hurdle
model (Yu et al., 2019). It captures unobserved heterogeneity of
road segment i, which is constant within each roadway segment
and different across roadway segments. Based on the formulation
of HP and HNB models, the site-specific random intercepts of the
count part of hurdle models are considered as follows:

kit ¼ EXPðb2ix2i þ bipÞ ð10Þ

Table 2
Descriptive statistics of explanatory variables.

Variables Description Rural Urban

Exposure variables
Log of VMT Log of VMT (vehicle miles traveled per million) Mean: 0.183

S.D.: 0.630
Mean: 0.292
S.D.: 0.484

Built environment variables
Locality 1 Farms, woods and pastures* 659 (49.66%) 200 (4.07%)

2 Residential 296 (22.31%) 1,120 (22.79%)
3 Commercial 360 (27.13%) 3,512 (71.47%)
4 Institutional 9 (0.68%) 38 (0.77%)
5 Industrial 3 (0.23%) 44 (0.90%)

Road curve 1 Straight* 1,075 (81.01%) 418 (8.51%)
2 Curve 252 (18.99%) 4,496 (91.49%)

Road gradient 1 Level* 971 (73.17%) 4,098 (83.39%)
2 Grade 310 (23.36%) 646 (13.15%)
3 Hillcrest 33 (2.49%) 149 (3.03%)
4 Bottom 13 (0.98%) 21 (0.43%)

Route type 1 Interstate* 254 (19.14%) 306 (6.23%)
2 US route 295 (22.23%) 495 (10.07%)
3 State route 240 (18.09%) 447 (9.10%)
4 State secondary route 382 (28.79%) 140 (2.85%)
5 Local street 153 (11.53%) 3,442 (70.04%)
6 Public vehicular area 3 (0.23%) 70 (1.42%)

Functional class 1 Principal arterial* 621 (46.80%) 2,824 (57.47%)
2 Minor arterial 380 (28.64%) 1,626 (33.09%)
3 Collector 225 (16.96%) 384 (7.81%)
4 Local 101 (7.61%) 80 (1.63%)

Traffic control 1 No control present* 715 (53.88%) 3,169 (64.49%)
2 Signs 35 (2.64%) 229 (4.66%)
3 Signals 99 (7.46%) 1,321 (26.88%)
4 Double Yellow Line, no passing zone 474 (35.72%) 187 (3.81%)
5 Human control 4 (0.30%) 5 (0.10%)

Speed limit 1 �35 mph* 268 (20.20%) 1,779 (36.20%)
2 36–55 mph 759 (57.20%) 2,898 (58.97%)
3 56–70 mph 300 (22.61%) 237 (4.82%)

If freeways 1 Freeways* 324 (24.42%) 418 (8.51%)
2 Non-freeways 1,003 (75.78%) 4,496 (91.49%)

No. of lanes 1 �2* 719 (54.18%) 1,331 (27.09%)
2 3 and 4 476 (35.87%) 2,641 (53.74%)
3 >4 132 (9.95%) 942 (19.17%)

Median type 1 Undivided roadway* 895 (67.45%) 3,458 (70.37%)
2 divided roadway 432 (32.55%) 1,456 (29.63%)

Other environmental variables
Terrain 1 Flat* 184 (13.87%) 506 (10.30%)

2 Rolling 953 (71.82%) 4,275 (87.00%)
3 Mountainous 190 (14.32%) 133 (2.71%)

Note: * denotes the base of the explanatory variables.
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kit ¼ EXPðb2ix2i þ eit þ binbÞ ð11Þ
where bip is the random intercepts in the HP model, and binb is the
random intercepts in the HNB model. The random effects are both
assumed to be independent to each other and follow a normal dis-
tribution with mean zero and variance r2

b .

4.4. Model comparison and selection

To verify the existence of overdispersion in the DI-related crash
counts of urban road segments, a likelihood ratio test (LRT) is con-
ducted to compare the NB model and its Poisson counterpart, then
z-statistics test of the overdispersion parameter in the NB model is
also performed. Results of both LRT (v2 = 17285.2, df = 1,
p < 0.0001) and z-statistics (z = 41.65, p < 0.0001) confirm the pres-
ence of overdispersion in the DI-related crash counts in the urban
dataset. Thus, the NBmodel is preferred in the urban crash datasets
of DI.

For non-nested models (i.e., Poisson, HP, RIHP, NB, HNB, and
RIHP), comparisons are performed using the Vuong test (Vuong,
1989). Given that P1 yit jxið Þ and P2 yitjxið Þ are the predicted probabil-
ities of model A and model B, respectively. The Vuong test can be
given as:

V ¼ m
ffiffiffi
n

p
SDðmÞ ð12Þ

mit ¼ lnð
P

i

P
tP1 yitjxið ÞP

i

P
tP2 yitjxið ÞÞ ð13Þ

where m is the mean of mit , and SDðmÞ is the standard deviation of
mit . The V follows a standard normal distribution. If V is greater
than 1.96, then it favors the model B, and if V is lower than
�1.96, it favors model A. Otherwise, neither model is preferred over
the other.

To this end, the Akaike Information Criterion (AIC), the McFad-
den pseudo R2 and the Chi-square v2 test are also used to evaluate
the statistical fit of candidate models (i.e., Poisson, HP, RIHP, NB,
HNB, and RIHNB models) of DI-related crash counts:

AIC ¼ �2LL bð Þ þ 2K ð14Þ

R2 ¼ 1� exp½�2ðLL bð Þ � LLð0Þ=N� ð15Þ
where LL(b) is the log-likelihood at convergence, K is the number of
parameters and LLð0Þ is the log-likelihood with only the intercept
term. N is the total number of observations. The smaller AIC value
indicates a better fitted model. A simulation-based maximum like-
lihood method is implemented in the LIMDEP software (Greene,
2016) and Halton draws are employed to estimate parameters of
RIHP and RIHNB models (Bhat, 2003; Train, 2009).

5. Results and discussions

5.1. Model evaluation

In this study, DI-related crashes from rural road segments are
selected for Poisson, HP, and RIHP model estimation. DI-related
crashes from urban road segments are selected for NB, HNB, and
RIHNB model estimation. A backward stepwise regression tech-
nique is used and only variables with at least 90% confidence level
are kept in the model. Then, a correlation analysis for independent
variables is conducted. Most pairwise correlation coefficients were
less than 0.70 and no multi-collinearity among the included vari-
ables. The goodness-of-fit measures of the estimated models are
displayed in Table 3. First, across rural and urban road segments,
the hurdle models (i.e., HP, HNB, RIHP, and RIHNB) offer better
goodness-of-fit when they are compared with standard count
models (i.e., Poisson and NB) in terms of log-likelihood and AIC.
This result indicates the good performance of hurdle models in fit-
ting datasets with excessive zeros, which is consistent with previ-
ous studies (Son et al., 2011; Yu et al., 2019; Qiu et al., 2020).
Second, the RIHP and RIHNB model are the best model of
goodness-of-fit across all model structures based on the Macfad-
den R2. Among these models, the RIHP and RIHNB models have
the highest R2 (0.161 and 0.472) indicating the strong explanatory
ability of hurdle models with random intercepts. The Vuong test
also shows the RIHP and RIHNB models distinctly outperform the
standard count models (the Poisson and NB model) at the 95% sig-
nificant level. Therefore, in terms of our results, we can conclude
that the RIHP and RIHNB model offer the best statistical fit for
DI-related crashes in rural and urban road segments, respectively.

Tables 4 and 5 present the estimation results of three models of
DI-related crashes on rural and urban road segments, respectively.
Statistically significant variables are grouped into four categories:
exposure, built environment, roadway characteristics, and other
environmental variables. It can be seen that there are more signif-
icant variables of DI-related crashes in urban road segments than
those in rural road segments. This outcome reflects the complex
effects of land use and roadway characteristics in urban roads on
the occurrence of DI-related crashes. Two significant parameters
(the mean and variance rb of intercepts in the count part) in the
RIHP and RIHNB model indicate that unobserved location-specific
heterogeneity indeed exists.

The marginal effects of the RIHP model and RIHNB model for
rural road segments and urban road segments are presented in
Table 6. Note that marginal effects are the average effects of a unit
increase in an independent variable on the annual crash counts on
an average segment mainly caused by DI in this study. For brevity,
the following section analyzes the modeling results of the RIHP and
RIHNB model and discusses the similarities and differences
between DI-related crashes in rural and urban road segments.

Table 3
Comparison of goodness-of-fits between different models.

Measures Rural Urban

Poisson HP RIHP NB HNB RIHNB

No of parameters 11 13 14 24 31 32
Log-likelihood with constant only �4842.7 �4738.1 �5236.8 �32779.1 �32779.1 �44764.7
Log-likelihood at convergence �4738.1 �4431.7 �4393.1 �24136.4 �23630.3 �23630.5
Macfadden R2 0.022 0.065 0.161 0.264 0.279 0.472
AIC 9498.2 8889.4 8814.2 48320.9 47322.6 47325.1
Vuong test (p value) 2.55 (<0.05)a 2.66 (<0.05)b 11.83 (<0.05)c 0.79d 1.21e 15.86 (<0.05)f

Note: aVuong test for HP vs. Poisson, bVuong test for RIHP vs. HP, cVuong test for RIHP vs. Poisson, dVuong test for HNB vs. NB, eVuong test for RIHNB vs. HNB, and fVuong test
for RIHNB vs. NB.
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5.2. Binary part

The binary part of the RIHP model and the RIHNB model iden-
tified significant factors that influence the possibility of having
crashes caused by DI on rural road segments and urban road seg-
ments each year. A positive regression coefficient implies an
increase in the probability of DI-related crashes occurring. The esti-
mation results in the binary part of the final models are displayed
in Tables 4 and 5.

5.2.1. Traffic exposure
The log of VMT is found to have positive and statistically signif-

icant associations with DI-related crashes in the urban dataset.
This result reveals that higher VMT is associated with a higher
probability of DI-related crashes occurring in urban regions. The
VMT variable is often a measure of vehicle exposure and, as
expected, increases the likelihood of vehicle crashes (Cai et al.,
2016; Chen & Lym, 2021). This is probably because the likelihood
of DI-related crashes occurring increases with the likelihood of
total crashes occurring in the large exposure of vehicles and road-
way length.

5.2.2. Built environment
Among different built environments (i.e., residential, commer-

cial, institutional, and industrial land uses), the presence of com-
mercial areas is highly associated with the increased probability
of DI-related crashes happening in both rural and urban roads. This
finding is consistent with many previous studies (Kim &
Yamashita, 2002; Merlin, Guerra, & Dumbaugh, 2020; Ukkusuri,
Miranda-Moreno, Ramadurai, & Isa-Tavarez, 2012; Yang & Loo,
2016) because commercial areas are likely to have a large number
of passing vehicles, pedestrians, and non-motorized vehicles (i.e.,
bicycles, scooters, e-bikes). This complicated traffic environment
may increase the possibility of DI behavior. For example, vehicle
drivers may have more eyeglance of external traffic environment
and divert their attention from safe driving in commercial areas.
Drivers engaging in visually complex tasks have a three-times

higher near-crash/ crash risk than drivers who do not engage in
visually complex tasks (Klauer et al., 2006).

5.2.3. Roadway characteristics
Road characteristics are only found to have significant effects on

the occurrence of DI-related crashes in urban areas. Non-freeways
and roadways with multiple lanes (number of lanes is more than
three) are more likely to have a higher possibility of DI-related
crashes occurring in urban regions. This is expected because non-
freeway segments per kilometer have more access points than
freeway segments per kilometer, and these access points may dis-
turb the attention of drivers. Additionally, the study of distraction-
related crashes also found that roadways with relatively more
lanes would increase the crash risk (Chen & Lym, 2021).

5.2.4. Other environmental factors
Road segments in rolling terrains are expected to increase the

likelihood of DI-related crashes occurring in the urban regions. This
finding is slightly counterintuitive to our expectations. This could
be interpreted from two aspects: (i) DI-related crashes are likely
to happen in the road segments of the rolling terrain because
87% of selected urban road segments are located in rolling terrains;
(ii) rolling terrains possibly have unobserved natural environmen-
tal factors that easily cause the driving-related inattention behav-
ior of drivers.

5.3. Count part

The count part of the RIHP model and the RIHNB model reveals
the influencing factors for the DI-related crash frequency, where
positive regression coefficients indicate the increasing number of
DI-related crashes (non-zero crashes). The estimation results in
the count part of the final models are displayed in Table 4 and
Table 5.

5.3.1. Traffic exposure
The log of VMT is significant with a positive sign in both DI-

related datasets of rural and urban road segments. It indicates that

Table 4
Estimation results for DI-related crash counts of rural road segments per year.

Variables Poisson HP RIHP

Estimate Z-stat Estimate Z-stat Estimate Z-stat

Count part
Intercept �1.243*** �13.80 �0.806*** �5.75 �1.013*** �6.09

Exposure variables
Log of VMT (vehicle miles traveled per million) 0.388*** 7.27 1.315*** 14.12 1.452*** 12.48

Built environment variables
Commercial areas presence 0.239*** 4.13 0.473*** 4.35 0.441*** 3.38

Roadway characteristics variables
State secondary route �0.881 �1.31 �1.039*** �5.42 �0.954*** �4.43
Signals 0.142* 1.79 0.234** 2.25 0.255** 2.00
Speed limit of 36–55 mph �0.315*** �5.08 �0.808*** �8.78 �0.965*** �7.94
Speed limit of 56–70 mph �0.430*** �4.09 �1.19*** �7.62 �1.323*** �6.30
No. of lanes (>4) 0.313*** 4.01 0.614*** 5.40 0.593*** 4.37
Median presence �0.127* �1.82 �0.463*** �4.06 �0.543*** �4.02

Other environmental variables
Rolling terrain 0.164** 2.26 0.508*** 3.29 0.399** 2.40
Mountainous terrain 0.123 1.32 0.395** 2.07 0.318 1.53

Binary part
Intercept – – �1.318*** �37.25 �1.318*** �37.33

Built environment variables
Commercial areas presence – – 0.138** 2.06 0.138** 2.08
rb – – – – 0.810*** 17.54

Note: ***, ** and * denote significant at 1%, 5% and 10% level, respectively.
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DI-related crash counts increased with the VMT, which agrees with
our expectations and similar studies (Cai et al., 2016; Chen & Lym,
2021; Qiu et al., 2020). Large exposure of vehicles is significantly
correlated with high crash frequency, and the frequency of DI-
related crashes follows the same pattern as well. Besides, it has
been found that drivers who engage in secondary tasks are more
dangerous in the high traffic density environment (Klauer et al.,
2006). The coefficient of log VMT is larger than 1.0, indicating that
the increasing vehicle miles traveled can lead to more DI-related
crashes in the rural and urban environment at a higher rate than
linear growth. This result is also consistent with previous studies
of the relationship between VMT and crash counts (Xie, Ozbay, &
Yang, 2019).

5.3.2. Built environment
The built environment variable used the presence of farms,

woods, and pastures as a reference, and the presence of commer-
cial areas is statistically significant with positive coefficients in
the rural dataset. In contrast with the rural dataset, the presence
of residential areas, commercial areas, and industrial areas are all
significant with positive coefficients in the urban dataset. Addi-

tionally, the presence of commercial areas holds the largest esti-
mated coefficient in urban roads. These results indicate that the
frequency of DI-related crashes is highly associated with roads
with commercial areas in both rural and urban environments,
and DI-related crashes are easily influenced by more land-use
types in urban regions than rural regions. Kim and Yamashita
(2002) found that the majority of vehicle-to-vehicle crashes hap-
pened along with residential lands and commercial lands. Several
studies have also concluded the high crash risk of commercial, res-
idential, and industrial land uses (Huang, Wang, & Patton, 2018;
Kim & Yamashita, 2002; Lizarazo & Valencia, 2018; Merlin et al.,
2020; Xie et al., 2019). The increase in DI-related crashes in urban
road segments could reflect the increased traffic exposure, conflicts
between road users, and other visual interference of drivers around
commercial areas, residential areas, and industrial areas.

5.3.3. Roadway characteristics
The influence of road geometric alignments on DI-related crash

counts is also investigated. Interestingly, horizontal curved and
longitudinal-bottomed road segments are found to have decreased
the frequency of DI-related crashes in urban regions. The marginal

Table 5
Estimation results for DI-related crash counts of urban road segments per year.

Variables NB HNB RIHNB

Estimate Z-stat Estimate Z-stat Estimate Z-stat

Count part
Intercept �2.224*** �13.38 �2.606*** �15.06 �2.634*** �15.32

Exposure variables
Log of VMT (vehicle miles traveled per million) 0.644*** 19.45 1.164*** 37.36 1.165*** 39.90

Built environment variables
Residential areas presence 0.135 1.20 0.393*** 3.42 0.396*** 3.40
Commercial areas presence 0.336*** 3.11 0.676*** 6.10 0.680*** 6.07
Industrial areas presence 0.092 0.44 0.480** 2.31 0.479** 2.26

Roadway characteristics variables
Roads horizontal alignment (curved) �0.152 �1.34 �0.387*** �3.55 �0.388*** �3.50
Roads longitudinal alignment (bottom) �0.311 �0.97 �0.632** �2.05 �0.636** �2.03
State route 0.082 1.03 0.240*** 3.37 0.242*** 3.32
State secondary route �0.033 �0.23 �0.268* �1.90 �0.265* �1.85
Local street 0.327*** 5.35 0.509*** 9.44 0.511*** 9.32
Public vehicular area 0.309** 2.00 0.438*** 3.26 0.438*** 3.19
Minor arterial �0.179*** �4.13 �0.255*** �6.76 �0.256*** �6.65
Collector �0.290*** �3.11 �0.603*** �5.95 �0.603*** �5.88
Local �0.488*** �2.64 �0.852*** �3.79 �0.853*** �3.76
Signals 0.130*** 3.32 0.166*** 4.83 0.168*** 4.78
Double yellow line, no passing zone �0.199* �1.65 �0.512*** �4.10 �0.514*** �4.07
Speed limit of 36–55 mph �0.050 �1.24 �0.124*** �3.33 �0.124*** �3.26
Speed limit of 56–70 mph �0.285** �2.06 �0.526*** �4.27 �0.530*** �4.24
Non-freeways 0.493*** 4.85 0.745*** 8.43 0.745*** 8.31
No. of lanes (3 and 4) 0.172*** 3.53 0.231*** 5.17 0.234*** 5.15
No. of lanes (>4) 0.286*** 4.50 0.382*** 6.64 0.388*** 6.64

Other environmental variables
Rolling terrain 0.545*** 7.48 0.976*** 11.49 0.980*** 11.40
Mountainous terrain 0.281** 1.99 0.619*** 4.23 0.623*** 4.21

Binary part
Intercept – – �1.465*** �18.72 �1.465*** �18.73
Log of VMT (vehicle miles traveled per million) – – 0.061* 1.78 0.061* 1.77

Built environment variables – –
Commercial areas presence – – 0.080** 2.29 0.080** 2.29

Roadway characteristics variables – –
Non–freeways – – 0.146** 2.47 0.146** 2.48
No. of lanes (3 and 4) – – 0.114*** 3.00 0.114*** 3.00
No. of lanes (>4) – – 0.119** 2.36 0.120** 2.36

Other geographic variables
Rolling terrain – – 0.133*** 2.95 0.133*** 2.95
Over-dispersion parameter a 4.007*** 41.65 0.567*** 13.41 1.671*** 39.46
rb – – – – 0.055*** 3.58

Note: ***, **, and * denote significant at 1%, 5% and 10% level, respectively.
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effect of the roadway characteristics’ variables is summarized in
Table 6. A one-unit increase in the road horizontal alignment
(curved) and road longitudinal alignment (bottom) are associated
with the average crash frequency decreased by 0.114 and 0.161
if the cause of crashes were caused by DI. The explanation can be
that road segments with curves and bottomed grades usually
increase the complicity of driving tasks of drivers, and drivers are
likely to be more focused on safe driving. It is reported that the fre-
quency of drowsiness-related and secondary task-related crashes
on roads with straight-levels are dramatically higher than that of
other road alignment types (Klauer et al., 2006).

Road classes are also found to have significant influence on the
frequency of DI-related crashes. State secondary routes have fewer
expected DI-related crashes than other classes of roads in both
rural and urban regions. Conversely, other classes of roads (i.e.,
state routes, local streets, and public vehicular areas) significantly
increased the frequency of DI-related crashes in urban road seg-
ments. As shown in Table 6, state secondary routes have fewer
DI-related crashes (-0.829), and state routes, local streets, and pub-
lic vehicular areas have more DI-related crashes (+0.100, +0.162,
and +0.208, respectively). One possible reason for this might be
local streets and public vehicular areas in urban regions tend to
have more pedestrians and lower speed limits, which possibly
increases the frequency of non-specific eyeglance and secondary-
task behavior of drivers. This explanation has been supported by
Klauer et al. (2006) work, the odds ratio for engaging in complex
secondary tasks in a parking lot is very high and has increased
near-crash/crash risk.

In addition, principal arterials are used as the reference of func-
tional class of roads, minor arterials, collectors, and local roads are
all statistically significant with negative coefficients in the urban
dataset. In particular, minor arterials, collector, and local roads
are expected to have fewer DI-related crashes (�0.087, �0.159,
and �0.194, respectively) than principal arterials in Table 6. This
result is consistent with our intuition because minor arterials, col-
lectors, and local roads have lower traffic volumes than principal
arterials, which might decrease the frequency of DI-related

crashes. Similar results can also be reached in Chen and Lym
(2021) and Ukkusuri et al. (2012).

In terms of traffic control and management facilities, signals are
significant with a positive coefficient both in rural and urban data-
sets, which indicates that segments with traffic signals are more
likely to incur more crashes caused by DI. The positive estimated
coefficients indicate that the inattention behavior of drivers may
be generated in the complicated traffic environment (e.g., passing
vehicles and pedestrians) with signal control presents. On the con-
trary, road segments with double yellow lines and no passing
zones are found to incur fewer DI-related crashes in urban regions
in this study. Marginal effects in Table 6 indicate that segments
with double yellow lines or no-passing zones significantly decrease
the frequency of DI-related crashes by 0.140. This finding reflects
the significant and necessary set of double yellow lines and no
passing zones on certain road segments, and these yellow traffic
lines and signs may effectively improve the alertness of drivers.

The coefficient of speed limits of roadways larger than 35 miles
per hour would have a lower expected crash frequency caused by
DI in both rural and urban regions. This result is supported by a
recent study of DI-related crashes (Wundersitz, 2019); DI-related
crashes are likely to occur on roads with lower speed limits. A pos-
sible explanation for this might be that high speed limits probably
make drivers more focused on the primary driving task than when
they drive on roads with low speed limits. Similarly, non-freeways
are found to have a significantly positive effect on the DI-related
crash counts in urban regions.

More than four lanes of roadway are found to have a positive
relationship with DI-related crashes in both rural and urban areas,
which agrees with our expectations. Besides, urban roadways with
three or four lanes are also found to have a positive relationship
with DI-related crashes. This is related to risk exposure determi-
nants such as high traffic volumes. Similar results could also be
found in previous studies (Chen & Lym, 2021; Ukkusuri et al.,
2012).

Interestingly, it is found that fewer DI-related crashes are
expected in rural road segments with a median presence. As shown

Table 6
Marginal effects of significant variables of DI-related crashes in rural road segments and urban road segments of the RIHP and the RIHNB model, respectively.

Variables Rural Urban

Average ( tj j) S.E Average ( tj j) S.E

Exposure variables
Log of VMT (vehicle miles traveled per million) 0.138 (9.40) 0.015 0.450 (20.20) 0.022

Built environment variables
Residential areas presence – – 0.175 (2.82) 0.062
Commercial areas presence 0.077 (3.40) 0.023 0.231 (7.13) 0.032

Roadway characteristics variables
Roads horizontal alignment (curved) – – �0.114 (4.41) 0.026
Roads longitudinal alignment (bottom) – – �0.161 (3.07) 0.053
State route – – 0.100 (2.92) 0.034
State secondary route �0.060 (6.42) 0.009 �0.829 (2.18) 0.038
Local street – – 0.162 (9.98) 0.016
Public vehicular area – – 0.208 (2.50) 0.083
Minor arterial – – �0.087 (6.96) 0.012
Collector – – �0.159 (8.32) 0.019
Local – – �0.194 (6.51) 0.030
Signals – – 0.063 (4.56) 0.014
Double yellow line, no passing zone �0.140 (5.57) 0.025
Speed limit of 36–55 mph �0.092 (6.88) 0.013 �0.047 (3.14) 0.015
Speed limit of 56–70 mph �0.135 (4.60) 0.029 �0.144 (5.76) 0.025
Non-freeways – – 0.231 (10.03) 0.023
No. of lanes (3 and 4) – – 0.130 (5.82) 0.022
No. of lanes (>4) 0.070 (3.43) 0.020 0.220 (5.55) 0.040
Median presence �0.052 (3.70) 0.014 – –

Other environmental variables
Rolling terrain 0.034 (2.62) 0.013 0.263 (14.79) 0.018
Mountainous terrain – – 0.334 (3.00) 0.112
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in Table 6, the average DI-related crash frequency in rural areas is
significantly associated with 5.2% lower than if the road segment
has a median. This indicates that medians are an effective measure
for reducing the risk of crashes related to DI. One possible reason
could be that medians can decrease the visual disturbance from
the opposing direction of traffic, thus improving the safe driving
performance of drivers. This interpretation is supported by a study
that investigated the effect of the oncoming vehicles on drivers’
glance behavior. Drivers’ glance behavior is more sensitive to the
presence of oncoming vehicles on rural roads without a median
barrier (Tivesten & Dozza, 2014). Chen and Lym (2021) also con-
firmed the effectiveness of medians that can reduce the
distraction-related crash counts.

5.3.4. Other environmental factors
With regard to terrain types, rolling terrains and mountainous

terrains are highly associated with the increased DI-related crash
frequency both in rural and urban roads. Undulating terrains have
been found to be positively associated with head-on crash counts
as well (Hosseinpour et al., 2014). A possible explanation for this
result is that rolling and mountainous terrains may bring drivers
with some visual obstructions in their sight distances, which is
harmful to safe driving.

6. Conclusion

The prevalence of DI in vehicle crashes has received rising
attention from transportation agencies and policymakers. The
understanding of the influence of the built environment and road-
way characteristics on the frequency of DI-related crashes remains
limited. This study fills this gap by conducting an empirical assess-
ment using official crash records in North Carolina for the period
2013–2017 as an example. The relationship between built environ-
ments and the frequency of DI-related crashes in rural and urban
road segments is examined by using three types of models: Pois-
son/NB, HP/HNB, and RIHP/RIHNB. The comparison of these models
indicates that RIHP and RIHNB models distinctly outperform other
models in terms of goodness-of-fit.

The results of the binary part of RIHP and RIHNB models reveal
that the presence of commercial areas increases the probability of
DI-related crash occurrence in rural and urban regions. Non-
freeways, multiple lanes (more than three), and rolling terrains
have significant positive associations with the increase in DI-
related crashes’ occurrence in urban segments. The outcomes of
the count part of RIHP and RIHNB models suggest that a large
amount of VMT, commercial areas’ presence, signals, multiple
lanes (more than four), and rolling/mountainous terrains tend to
have more DI-related crash counts in both rural and urban seg-
ments. However, the DI-related crash frequency is likely to be
lower when the crashes occur in rural/urban state-secondary
routes with speed limits higher than 35 mph. Built environment
(including residential areas’ presence and industrial areas’ pres-
ence) and roadway characteristics (such as state routes, local
streets, public vehicular areas, and non-freeways) positively con-
tribute to increasing DI-related crash counts. However, curved/bot-
tomed road segments and double yellow lines/no passing zones are
negatively related to DI-related crash counts in urban regions. It is
interesting to find that road segments with medians are expected
to reduce DI-related crashes in rural regions.

Overall, the research findings provide the following policy
implications for improving traffic safety of DI behavior. Firstly, a
possible solution for improving roadway safety is dispatching more
police enforcement or surveillance cameras in commercial areas of
rural and urban regions with high DI-related crash frequency. Mak-
ing traffic signs more attractive is another possible solution

because disregarding signs and signals would also increase crash
injury severity (Song et al., 2020; Song & Fan, 2020). Second, the
removal of advertisements is suggested on roadway segments with
multiple lanes (more than three), large VMT, and signals because of
the negative influence of advertisements on attracting drivers’
attention (Hughes & Cole, 1986; Topolšek, Areh, & Cvahte, 2016;
Young et al., 2009). In addition, a driver assistance system (i.e., dri-
vers’ behavior real-time surveillance, safety voice alert, and speed
modification) could be applied to vehicles when they drive on
these segments with high DI crash risks. Third, improving road
designs and traffic managements, such as setting medians double
yellow lines/no passing zones, and variable speed limits could also
effectively reduce the frequency of DI-related crashes. Lastly, regio-
nal safety education (e.g., higher-order driving instructions)
toward drivers should be further enhanced in certain areas (e.g.,
counties with a high proportion of rolling and mountainous ter-
rains), which has the potential to reduce inattentive driving behav-
ior (Beanland et al., 2013; Watson-Brown, Scott-Parker, &
Senserrick, 2019; Zhao & Khattak, 2017).

One should note that this study has several limitations that
should be further improved in future research. It is worth noting
that DI behavior tends to be underreported in police-report crash
data. This study only reveals the statistical association between
crash frequency and the built/roadway environment factors based
on police-report crash data. Future research may consider incorpo-
rating different data sources, such as naturalistic driving data and
in-depth crash data, to further validate the conclusions in this
study.
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Introduction: This study explored the relationship between person–job fit and safety behavior, as well as
the mediating role played by psychological safety, from the perspective of social cognitive theory and
person–environment fit theory. Method: A total of 800 employees from petroleum enterprises were
recruited, with cluster random sampling used to collect data in two stages. Results: The results showed
that employees’ safety behavior is higher under the condition of ‘‘high person–job fit—high person–orga-
nization fit” than under that of ‘‘low person–job fit—low person–organization fit.” In other words, the
more congruent the level of person–job fit and person–organization fit for a given employee, the higher
their level of safety behavior. Practical Applications: Psychological safety plays a mediating role between
the congruence of both person–job fit and person–organization fit and employees’ safety behavior.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

Although occupational safety protocols have improved in recent
decades (Guo & Yiu, 2015), accidents and casualties still occur from
time to time in the workplace (Smith et al., 2018). Workplace
safety accidents are characterized by high mortality and disability
rates (Christian et al., 2009), which can have detrimental conse-
quences for both employees and their organizations. According to
the U.S. Bureau of Labor Statistics (BLS, 2017), 5,190 fatal work-
place safety accidents were reported in the United States in 2016
alone. Although most safety accidents were caused by the interac-
tion of multiple factors, individual behavior often plays a signifi-
cant role. According to a workplace survey, over 70% of safety
accidents were caused by individual mistakes or unsafe behavior,
resulting in tens of billions of economic losses every year
(Christian et al., 2009). Accordingly, improving employees’ under-
standing of safety protocols and reducing their risky behavior in
the workplace is an urgent issue for many enterprise managers.

According to Lewin’s field theory (Lewin, 1951), the life space
includes the individual and his or her psychological environment.
A person’s behavior (B) depends on the interaction between the
person (P) and his or her environment (E), that is, behavior
depends on the individual’s life space (B = f(P, E)). The idea of per-
son––environment fit (P–E fit) has always been regarded as an

important factor to explain and study employees’ behavior and
performance within organizations (Kristof-Brown, Zimmerman, &
Johnson, 2005; Lv & Xu, 2018). It embodies the idea of ‘‘the inter-
action between individuals and the environment.” According to
the theory of P–E fit (Kristof-Brown et al., 2005), working behavior
and employees’ working attitudes are influenced by the degree of
consistency between employees’ internal characteristics and the
characteristics of their organizations. In other words, when the
support of the environment is consistent with employees’ needs,
their motivation and engagement at work can be stimulated (Lv
& Xu, 2018). P–E fit also has a positive impact on employees’ inno-
vation behavior (Afsar, Badir, & Khan, 2015), voice behavior (Cheng
et al., 2013), organizational citizenship behavior (Cheng et al.,
2013) and other desirable behaviors. Thus, P–E fit is consistently
recognized as an important factor in improving employees’ behav-
ior (e.g., safety behavior) and organizational performance (e.g.,
safety performance; Edwards, 2008).

Research has shown that the key dimensions at play in P–E fit
include job, organization, occupation, group, and person (Kristof-
Brown et al., 2005). Person–job fit (P–J fit) emphasizes the consis-
tency between individual characteristics (e.g., knowledge, person-
ality traits), personal expectations and job requirements, reflecting
the complementary fit between individuals and job requirements
at the micro-level. Person–organization fit (P–O fit) indicates
whether individuals and organizations have similar characteristics
or complementary needs, reflecting a similarity fit at the
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macro-level (Kristof-Brown et al., 2005). Existing literature on the
relationship between P–E fit and safety behavior is still relatively
lacking. However, relevant studies have shown that both P–J fit
and P–O fit impact employees’ behavior and attitudes. For exam-
ple, a study by Afsar et al. (2015) demonstrated that high levels
of P–J fit and P–O fit promote innovative behavior among employ-
ees. Accordingly, we hypothesize that P–J fit and P–O fit will have
the same effect on safety behavior. P–J fit and P–O fit have, how-
ever, different mechanisms. Lauver and Kristofbrown (2001) com-
pared the effects of these two fit types on job satisfaction, job
performance, turnover intention, and peripheral performance,
and found that P–O fit better predicted job performance, turnover
tendency and peripheral performance, but did not predict job sat-
isfaction better than P–J fit. In short, although the relationship
between the two types of fit is close, and both are related to
employees’ work behavior, they are different in concept, measure-
ment, scope of application, and mechanism. Edwards (2008) posits
that although there are differences in the effects of P–J fit and P–O
fit on employees’ behavior and attitudes, there are situations in
which they work together. In light of this, the present study takes
P–J fit and P–O fit as two subordinate concepts of P–E fit to explore
the effects of the (in)congruence of the two P–E fit types on safety
behavior.

According to social cognitive theory, behavior is influenced by
the interaction of individual factors and environmental factors,
with cognitive factors representing an important part of personal
traits. Existing research has tended to focus on external factors
such as organizational support or other work-related factors
(Warr & Inceoglu, 2012) when exploring the mediating mecha-
nisms of P–E fit on employees’ behavior, while paying less atten-
tion to individuals’ subjective cognitive factors. Relevant studies
have shown that employees’ work behavior is affected by their
subjective cognitive feelings (Egan, Zigarmi, & Richardson, 2019),
and these subjective cognitive feelings are also influenced by the
fit between individuals and their environment (Cheng et al.,
2013). Psychological safety, for example, is an individual’s belief
and perception of safety in the face of a risky environment
(Edmondson, 1999). When individuals perceive that their safety
is guaranteed, they may interact more with the environment or
with others, and perform behaviors with high aspirations that
might be outside of their roles (Men et al., 2020), which are consis-
tent with the requirements of safety behavior. The present study
explores the mediating role of psychological safety in the relation-
ship between P–E fit and safety behavior.

In summary, the present study uses social cognitive theory and
P–E fit theory (Kristof-Brown et al., 2005) to explore the mecha-
nism by which P–J fit and P–O fit affects employees’ safety. Specif-
ically, this study positions P–J fit and P–O fit into a P–E fit
congruent condition (four kinds of fit conditions are shown in
Table 1), used to explore the effect of the congruence between P–
J fit and P–O fit on employees’ safety behavior. First, we examine
the impact of congruence (high and low) on safety behavior where
the two types of P–E fit are congruent. Second, we examine which
one (‘‘high P–J fit, low P–O fit” or ‘‘low P–J fit, high P–O fit”) affects
safety behavior when they are not congruent. Finally, the study
examines psychological safety as a potential mediating variable
underlying the mechanism by which P–E fit affects employees’
safety behavior.

1. Literature review and hypothesis

1.1. P–E fit and safety behavior

Safety behavior refers to behavior that employees perform to
comply with safety regulations and achieve an organization’s
safety objectives (Griffin & Neal, 2000). The generation of personal
safety behavior is not only related to an individual’s characteristics
but also closely related to their environment. If the environment is
consistent with individuals’ behavior, it will often promote gener-
ation of that behavior. In general, the consistency or compatibility
between individuals and their environment is defined as P–E fit. P–
E fit theory posits that people are born to adapt to the environ-
ment, and strive to find the environment that conforms to their
characteristics (Kristof-Brown et al., 2005).

In essence, P–E fit theory holds that there are potential similar-
ities between organizational characteristics and personal charac-
teristics, and that individuals’ attitudes and behavior are affected
by the similarity or degree of fitting between themselves and their
organizations (Edwards, 2008). According to social cognitive the-
ory (Lewin, 1951) and fit theory (Kristof-Brown et al., 2005), indi-
vidual behavior is affected by the environment. When there is a
good fit between employees and their organization, employees
experience certain emotional tendencies and attitudes towards it
which naturally affect their behavior. As shown by previous stud-
ies, P–O fit has a significant impact on important work attitudes
such as job satisfaction (Rauvola et al., 2020), organizational com-
mitment (Kooij & Boon, 2018), and turnover intention (Abdalla
et al., 2018). If employees realize that there is a good fit between
themselves and their workplace, meaning that the organization is
able to meet their needs, desires, and preferences (Kristof-Brown
et al., 2005), they will produce good results (e.g., trust, creativity,
job involvement, job commitment, and job satisfaction). These
results can be converted into a sense of belonging, or psychological
contract, which in turn will encourage employees to engage in
behaviors that are beneficial to their organizations. Previous stud-
ies have shown that the higher the P–O fit, the more positive the
work outcomes, such as higher job involvement (Lv & Xu, 2018),
higher organizational commitment (Kooij & Boon, 2018), better
work attitude (Mehlika et al., 2018), and lower turnover intention
(Abdalla et al., 2018). Meanwhile, research has shown that higher
P–O fit can increase employees’ intrinsic motivation and job
involvement, thus enhancing their organizational citizenship
behavior (Kim & Gatling, 2019). As mentioned above, safety behav-
ior is similar to organizational citizenship behavior, except with a
particular focus on safety (Griffin & Neal, 2000; Smith et al.,
2018). Thus, we hypothesize that P–O fit has a similar effect on
safety behavior as on organizational citizenship behavior.

When employees’ values, goals, personality, attitudes, knowl-
edge, skills, and abilities are fitted with factors related to an orga-
nization’s culture, climate, values, goals, norms, organizational
resources, and tasks, the degree of P–O fit is relatively high
(Griffin & Neal, 2000; Smith et al., 2018). If the degree of fit
between employees and organizations that emphasize safety is
high, meaning that they have consistency on safety issues, the
safety values and targets of the organization will have a positive
impact on employees’ safety behavior. Such consistency is con-
ducive to promoting the exchange of safety information between
employees and their organizations, increasing the likelihood of
employees complying with safety rules and regulations, enhancing
the internal safety motivation of employees (Panuwatwanich et al.,
2017), and reducing the possibility of being misunderstood by
leaders and colleagues, as well as reducing inner uncertainty when
performing out-of-role behavior such as making safety-related
suggestions. All of these will lead to greater participation in

Table 1
P–E Fit conditions.

P–E fit P–J fit

low high

P–O fit low congruent incongruent
high incongruent congruent
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safety-related activities. Accordingly, this study advances the fol-
lowing hypothesis:

H1: P–O fit is significantly positively correlated with safety
behavior.
P–O fit explains the fit between employees and the environ-
ment at the macro level, whereas P–J fit explains the fit
between employees and the environment at the micro level
(i.e., in terms of fitting an individual’s skills, knowledge, and
abilities to the particular characteristics of a job) (Edwards,
2008). The micro-working environment in which individuals
work and perform their duties plays a crucial role in predicting
work behavior. In the micro-working environment, position has
a stronger impact on employees than the organization, and the
fit between positions and employees can be directly perceived
by employees. Their suitability to the work environment and
work assignments can be compared against their values, knowl-
edge, skills, and needs (Cable & Judge, 1997; Arieli, Sagiv, &
Roccas, 2020). Research has shown that employees’ work
behavior and attitudes are directly affected by the fit between
personal interests and their attitudes towards work assign-
ments and the work environment (De Beer et al., 2016). When
P–J fit is high, it means that job characteristics, organization
demands, and resource availability are matched with employ-
ees’ ability and internal demands. This leads employees to be
satisfied with their positions and naturally comply with the
company’s rules and regulations regarding job safety. If the
company’s protocols emphasize the importance of safety,
employees will perform more safety behavior. However, it also
means that employees’ knowledge, skills, and abilities meet the
job needs, and they can respond more appropriately to the
external environment (Kristof-Brown et al., 2005; Kim &
Gatling, 2019). When employees are satisfied with their jobs,
they are likely to perform more out-of-role safety behavior,
such as proposing new ideas for safety management. Accord-
ingly, we advance the following hypothesis:
H2: P–J fit is significantly positively correlated with employees’
safety behavior;

As mentioned above, P–O fit and P–J fit belong to the macro and
micro levels of P–E fit, respectively, with both of them having a cer-
tain impact on employees’ attitudes and behavior. Some studies
have found situations where they work together (Cai et al.,
2018). The question thus arises as to whether a joint effect
between them affects employees’ safety behavior, and whether
there might be a situation in which the two types of fit are incon-
gruent as regards this joint effect. In other words, given the four
different fit permutations, which is more important to safety
behavior? As mentioned previously, the micro-environment is
more likely to affect employees’ perceptions of fit. Therefore, the
following hypotheses are proposed in this study from the perspec-
tive of P–E fit:

H3: Employees’ safety behavior is higher under the congruence
condition of ‘‘high person–job fit—high person–organization fit”
than it is under that of ‘‘low P–J fit—low P–O fit.”
H4: Employees’ safety behavior is higher under the congruence
condition of ‘‘high P–J fit—low P–O fit” than it is under that of
‘‘low P–J fit—high P–O fit.”
H5: The more congruent P–J fit and P–O fit are, the higher
employees’ safety behavior will be.

1.2. Mediating role of psychological safety

Psychological safety is a necessary condition for people to feel
supported and engaged in their work, thereby enabling them to

fully display their talents without worrying about a negative
impact on their image, status, or career (Kahn, 1990). This study
follows Kahn’s (1990) definition of psychological safety as a posi-
tive individual psychological trait that refers to the perception of
one’s own safety when a member of an organization contributes
beneficial actions or suggestions. According to social cognitive the-
ory (Lewin, 1951), the behavior of individuals is affected by their
cognitive factors. Psychological safety is the perception of interper-
sonal risk. Before reaching a decision to act, individuals in the
workplace will first deliberate on the potential responses of leaders
and team members to their behavior (Cai et al., 2018). When indi-
viduals perceive that their behavior may invite negative reactions
from others, they may choose not to engage in that behavior. How-
ever, when individuals believe that their safety is guaranteed, and
they have a sense of psychological safety, they may interact more
with the environment or others (Singh, Winkel, & Selvarajan,
2013; Hu, Zhu, et al., 2018), engaging in high-aspiration or extra-
role behavior (Cheng et al., 2013), both of which are consistent
with the requirements of safety behavior. When employees’ psy-
chological safety is high, and their enterprise emphasizes safety,
they will abide by the appropriate safety rules and regulations.
Furthermore, if individuals have a high level of psychological
safety, supervisors and colleagues will encourage and support
employees in taking risky, extra-role behavior, which motivates
them to contribute further safety advice.

From a fitting perspective, ensuring a fit of values enables indi-
viduals in a group to hold similar beliefs and norms, which in turn
promotes the loyalty of team members and trust in each other
(Arieli et al., 2020). In other words, employees are more likely to
experience friendliness and trust from managers and colleagues
when their values and needs are fitted to that of the organization.
In such trusting relationships, individuals perceive their work envi-
ronment as a safe environment where they can express their true
selves and promote their own psychological safety (Kahn, 1990;
Men et al., 2020). In contrast, individuals with incompatible values,
or those experiencing a mismatch between supply and demand in
the group, may experience psychological pressure, negative emo-
tions, and broken interpersonal relationships, thus reducing their
psychological safety (Men et al., 2020). Previous studies have
shown that P–E fit is positively correlated with the quality of the
working relationship (Liang et al., 2012). High-quality relation-
ships can increase trust and reduce fear and embarrassment
among people (Tepper et al., 2018). Meanwhile, research con-
ducted by Jiang et al. (2019) found that when individuals have con-
fidence in their team, they have reduced fears about the possible
negative consequences of their actions, thus increasing their psy-
chological safety. Given that P–E fit has a positive effect on individ-
ual psychological safety, we propose the following hypothesis:

H6: Psychological safety plays a mediating role between the
congruence of person–job fit and person–organization fit and
employee’ safety behavior.

2. Measures

2.1. Procedure and participants

The current study investigating employees’ safety behavior was
conducted with the employees of a large national oil enterprise.
We collected data in two stages. With the help of the human
resources department, we used a whole group random sampling
method to select 800 participants out of 1309 employees at the
organization for a questionnaire survey. All participants took part
in our study voluntarily and signed an informed consent form at
the beginning of the process. Additionally, all procedures con-
formed to the ethical standards of the research committee of
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Shandong Normal University and the 1964 Helsinki Declaration,
and other similar ethical standards.

The questionnaire presented at stage 1 included demographic
information (number, name of sub-unit, gender, age, marital sta-
tus, education level, position, working years, etc.), as well as the
person–job fit scale, person–organization fit scale and psychologi-
cal safety scale. Twenty days later, the questionnaires at stage 2
were collected, which included demographic information and the
safety behavior scale.

At stage 1, we distributed 800 questionnaires; 737 were
returned, comprising 698 valid questionnaires. At stage 2, we dis-
tributed 698 questionnaires and all were returned (including blank
questionnaires that were not filled out), comprising 636 valid
questionnaires. This resulted in a total response rate of 79.5%.
Fifty-three percent of the employees were males; 36.6% had a
junior college degree, and 34.0% had an undergraduate degree;
95.9% were married. Sample respondents were on average
39.58 years old (SD = 6.38), and had worked at the company for
an average of 17.78 years (SD = 8.51). Front-line employees (con-
struction staff, business organizers, etc.) accounted for 75.4%.

To explore whether the respondents who participated in stage 1
and stage 2 (group 1) and those who only participated in stage 1
(group 2) were homogeneous, we conducted nine independent
sample t-tests to compare the differences between the two groups.
The results showed that the two groups were generally
homogeneous.

2.2. Measures

2.2.1. Person–job fit
Some researchers have asserted that the measurement of per-

son–job fit should be measured locally: the working environment
should be divided into different aspects so as to enable comparison
of the consistency between different aspects of the working envi-
ronment and individuals’ requirements of that environment (e.g.,
Ironson, Smith, Brannick, Gibson, & Paul, 1989). This kind of mea-
surement, however, could lead to omission and bias due to varia-
tion of environments between different employees, thus failing
to accurately reflect the generalized phenomenon. An alternative
global form of measurement allows employees to evaluate how
well they fit with the overall working environment based on how
they feel about it (Cable & Judge, 1997). Existing studies have
shown that this global measurement provides a better prediction
of person–job fit (Lauver & Kristofbrown, 2001).

In light of this, person–job fit was measured by global measure-
ment using the 4-item questionnaire developed by Singh and
Greenhaus (2004), and revised by Weng (2010). Employees rated
these items on a 5-point Likert scale ranging from 1 (completely
disagree) to 5 (completely agree). The higher the score, the higher
the degree of person–job fit. One sample item was ‘‘The require-
ments of my new job match my experience, specific talents and
skills.” The Cronbach’s alpha for this scale in the study was 0.88.

2.2.2. Person–organization fit
Person–organization fit was measured using the 7-item ques-

tionnaire developed by Cable and Judge (1997), and revised by
Huang and Cao (2008). Items were rated on a 5-point Likert scale
ranging from 1 (strongly disagree) to 5 (strongly agree), with
higher scores indicating a higher degree of person–organization
fit. One sample item was ‘‘I think my personality traits match the
company’s image traits well.” The Cronbach’s alpha for this scale
in the study was 0.91.

2.2.3. Psychological safety
Psychological safety was assessed using a three-item scale

adapted by He (2010) from the instrument developed by

Edmondson (1999). The second and third items were reverse-
coded. Employees rated items on a 6-point Likert scale ranging
from 1 (strongly disagree) to 6 (strongly agree), with higher scales
indicating a higher level of psychological safety. One sample item
was ‘‘Working with members of this team, my unique skills and
talents are valued and utilized.” The Cronbach’s alpha for this scale
in the study was 0.78.

2.2.4. Safety behavior scale
Safety behavior was assessed using an 11-item questionnaire

developed by Neal and Griffin (2006), and revised by Ye et al.
(2014). Employees rated items on a 7-point Likert scale ranging
from 1 (strongly disagree) to 7 (strongly agree), with higher scales
indicating a higher level of safety behavior. One sample itemwas ‘‘I
strictly abide by the safety rules and regulations in my work.” The
Cronbach’s alpha for this scale in the study was 0.96.

2.3. Analysis and design

Polynomial regression was used in the current study to test the
hypotheses. This included linear terms (e.g., X and Y), n-degree
polynomial terms (e.g., X2 and Y2), and interaction terms (e.g.,
X � Y) that could test not only the linear effects of variables, but
also the non-linear relationships (e.g., quadratic, cubic nonlineari-
ties). According to Edwards and Cable (2009), applying difference
scores may cause spurious correlations, as well as low reliability
and validity. Hence, we tested the consistency in fit by using quad-
ratic polynomial regression and response surface methodology.
The steps were as follows:

First, following the method of Edwards and Parry (1993), we
established the regression equation: Z = b0 + b1X + b2Y + b3X

2 + b4-
X � Y + b5Y

2 + e, where Z represents safety behavior; X and Y
respectively represent person–job fit and person–organization fit;
e is a random disturbance term; b0 is the constant term, and b1
to b5 are the regression coefficients of each item respectively.

Second, the independent variables were standardized or cen-
tralized to construct the product term (X � Y) and quadratic term
(X2 and Y2) of the regression equation.

Next, we calculated the coefficients of regression equation (b1 to
b5), the slope (a1 = b1 + b2) and curvature (a2 = b3 + b4 + b5) of the
congruence line (X = Y), and the slope (a3 = b1 � b2) and curvature
(a4 = b3 � b4 + b5) of the incongruence line (Y = �X).

If the slope of the congruence line is significant and the coeffi-
cients are positive, it indicates that safety behavior is higher in
the case of ‘‘high P–J fit—high P–O fit” than for ‘‘low P–J fit—low
P–O fit.” In contrast, if the slope of the incongruence line is signif-
icant and the coefficients are positive, it indicates that safety
behavior is higher in the case of ‘‘high P–J fit and low P–O fit” than
for ‘‘low P–J fit—high P–O fit.” Moreover, if the curvature of the
congruence line is significantly positive and the curvature of the
incongruence line is significantly negative, it indicates that the
higher the degree of person–job fit and person–organization fit,
the higher the level of employee’s safety behavior.

Finally, as regards mediation, we explored the relationship
between psychological safety on person–environment fit and
safety behavior. The independent variable was conceptualized as
the interaction between person–job fit and person–organization
fit. It would be inappropriate to directly analyze the moderating
effects of the two variables separately. Instead, a block variable
should be constructed to represent person–environment fit. Fol-
lowing the standard recommended by Edwards and Cable (2009),
we multiplied the regression coefficients of the equation with the
original values of the corresponding variables (i.e., X, Y, X2, X � Y,
and Y2) and then added them to obtain the block variable and eval-
uate the hypotheses via path analysis.
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3. Results

3.1. Validity of measures

To obtain discriminant validity, we used Mplus 8.0 to conduct a
confirmatory factor analysis (CFA) on the self-reported question-
naires of person–job fit, person–organization fit, psychological
safety, and safety behavior. We compared the hypothesized four-
factor model, three-factor model, and two-factor model. The
results of a Chi-square difference test indicated that the four-
factor model displayed a better model fit (v2/df = 4.46,
RMSEA = 0.07, CFI = 0.93, TLI = 0.92, SRMR = 0.04) than the alterna-
tive models (see Table 2). All results showed that the other three
models provided a worse fit than the four-factor model, suggesting
that our measures had desirable discriminant validity. Based on
Podsakoff, MacKenzie, Lee, and Podsakoff’s (2003) standard, the
one-factor model displayed the worst fit, indicating that there
was no serious problem with common method biases.

3.2. Descriptive statistics

Table 3 displays the means, standard deviations, and intercorre-
lations of the four main variables and demographic variables, from
which we observed that person–job fit and person–organization fit
are positively correlated with safety behavior (r = 0.26, p < 0.01;
r = 0.14, p < 0.01), and psychological safety also correlates posi-
tively with safety behavior (r = 0.33, p < 0.01). This analysis thus
supports hypothesis 1 and hypothesis 2.

3.3. Hypothesis testing

Polynomial regression was used to test hypotheses 3 to 5, com-
bined with response surface methodology to analyze the curva-
tures and slopes. Before the polynomial regression analysis, the
pairing condition of the samples was tested (Shanock et al.,
2010); that is, the consistent and inconsistent proportions of P–O
and P–J were counted. If the proportions are greater than the
threshold value of 10%, it indicates that further analysis is neces-
sary; if less, it indicates that polynomial regression is not required.
Since person–job fit and person–organization fit belong to two dif-
ferent scales, it is not possible to compare them directly. Therefore,
z-score conversion was carried out for the scores of the two scales,
and then the degrees of consistency of the z-scores were compared.
The specific results are shown in Table 4.

As shown in Table 4, the consistent sample proportion of per-
son–job fit and person–organization fit is 59.43%; samples involv-
ing a higher person–job fit than person–organization fit account for
24.37% of the total, while samples involving a higher person–orga-
nization fit than person–job fit account for 16.19%. The data
threshold of this study is greater than the threshold standard pro-
vided by Shanock et al. (2010). Therefore, further polynomial
regression analysis can be conducted, with the results shown in
Table 5.

In model 1, the direct impact of person–job fit on safety behav-
ior is not significant (b1 = 0.41, n.s.), but person–organization fit
significantly predicts safety behavior (b2 = 0.12, p < 0.05). At the
same time, compared with model 1, in model 2, person–job fit
has a significant direct impact on safety behavior (b1 = 0.09,
p < 0.1), as does person–organization fit (b2 = 0.12, p < 0.01). How-
ever, the square of person–job fit has no significant direct impact
on safety behavior (b1 = �0.08, n.s.). The interaction of person–job
fit and person–organization fit has a significant predictive effect
on safety behavior (b4 = 0.33, p < 0.05), as does the square of per-
son–organization fit (b5 = �0.14, p < 0.1). Additionally, compared
with model 1, which includes only linear terms, the second-order
polynomial terms explain significant incremental variance in
safety behavior (DR2 = 0.03, p < 0.001), indicating that response
surface analysis can be conducted in the next step (Edwards &
Parry, 1993). Following up on these results, we used Origin Pro
2018 software to plot a three-dimensional response surface graph
in order to more intuitively present the relationships between per-
son–job fit, person–organization fit, and safety behavior. This sur-
face is shown in Fig. 1.

From Table 5 and Fig. 1 we can see that the response surface is
roughly concave. Under the condition of the consistency of person–
job fit and person–organization fit, the slope of the surface along
the congruence line is significantly positive (a1 = 0.21, p < 0.001).
This means that the level of safety behavior is higher in the condi-
tion of ‘‘high P–J fit and high P–O fit” than in the condition of ‘‘low
P–J fit and low P–O fit,” thus supporting Hypothesis 3. When there
is incongruence between person–job fit and person–organization
fit, the slope of the surface along the incongruence line is not sig-
nificant (a3 = �0.03, n.s.), indicating that there is no difference in
the level of safety behavior between ‘‘high P–J fit and low P–O fit”
and ‘‘low P–J fit and high P–O fit,” a finding that opposes our
Hypothesis 4. Moreover, the curvatures of the congruence line
and incongruence line are significantly positive and negative,
respectively (a2 = 0.12, p < 0.05; a4 = �0.55, p < 0.001), demon-
strating that the more consistent person–job fit and person–orga-
nization fit, the higher the level of employee’s safety behavior.
This finding thus supports Hypothesis 5.

To explore why Hypothesis 4 was not supported, we used the
results of the response surface analysis and plotted a two-
dimensional graph depicting inconsistencies between person–job
fit and person–organization fit, as shown in Fig. 2. From this figure
it can be seen that when the score of either person–job fit or per-
son–organization is low, the corresponding level of safety behavior
is not high. As long as both parties maintain a high level, the level
of employees’ safety behavior will be high. These results corre-
spond precisely with Hypothesis 5.

Note: Z-score is used for conversion, with 0 representing the
average score of person–job fit and person–organization fit. A score
of 2 means that the score is 2 standard deviations above the mean;
a score of �2 represents two standard deviations below the mean.

For Hypothesis 6, we used SPSS’s PROCESS macro to test the
mediating effect of psychological safety. Following previous find-
ings related to safety behavior (Christian et al., 2009), we con-

Table 2
Models ft results for confirmatory factor analyses (N = 636).

Models v2 df Dv2 RMSEA CFI TLI SRMR

four-factor model a 1172.72 263 — 0.07 0.93 0.92 0.04
three-factor model b 2290.68 272 1117.96*** 0.11 0.85 0.83 0.05
two-factor model c 2972.99 274 1800.27*** 0.12 0.80 0.78 0.08
one-factor model d 6789.50 275 5616.78*** 0.19 0.51 0.46 0.23

Note: a: hypothesized model; b: pooling person–job fit and person–organization fit into a single factor; c: pooling person–job fit, person–organization fit, and psychological
safety into a single factor; d: pooling all four factors into a single factor.
*** p < 0.001, two-tailed test.
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trolled for two variables related to safety behaviors: gender
(r = 0.12, p < 0.05) and working lifetime (r = 0.18, p < 0.01). We
used 5,000 bootstrap samples to examine all paths of mediation,
with specific results shown in Table 6. The results show that block
variable (i.e., person–environment fit) plays a significant and pos-
itive role in psychological safety (b = 0.92, p < 0.001, 95% CI =
[0.65, 1.20]). In addition, when person–environment fit and psy-
chological safety were both added to the regression equation, psy-
chological safety emerged as having a significant positive influence
on safety behavior (b = 0.25, p < 0.001, 95% CI = [0.18, 0.32]). Fur-
thermore, person–environment fit still had a significant and posi-
tive impact on safety behavior (b = 0.61, p < 0.001, 95% CI = [0.35,
0.88]), indicating that psychological safety played a partial mediat-

ing role in the relationship between person–environment fit and
safety behavior. Finally, the mediation effect size value of the per-
son–environment fit on safety behavior through psychological
safety was 0.23 (95% CI = [�0.322, �0.013]), which accounted for
27.47% of the total effect.

4. Discussion

This study has empirically examined the potential impact of
two fit types, namely person–job fit and person–organization fit,
on safety behavior. The results have shown that both person–job
fit and person–organization fit are significantly and positively
related to employees’ psychological safety and safety behavior. In
addition, we found that when person–job fit and person–organiza-

Table 3
Descriptive statistics and intercorrelations among study variables.

Variable Mean SD 1 2 3 4 5 6 7 8 9 10

1. Gender – – 1
2. Age 39.58 6.38 0.03 1
3. Education – – 0.01 �0.46** 1
4. Marital status – – �0.01 �0.07 0.06 1
5. Position – – �0.05 �0.07 �0.24** 0.01 1
6. Working years 17.78 8.51 0.08 0.88** �0.52** �0.05 �0.06 1
7. Safety behavior 6.28 0.86 0.12* 0.09 �0.06 0.01 �0.02 0.18** (0.96)
8. Person–organization fit 3.73 0.67 0.11* �0.01 0.07 0.01 �0.02 �0.02 0.14** (0.91)
9. Person–job fit 3.64 0.70 0.07 �0.02 �0.01 �0.08 0.01 �0.02 0.26** 0.52** (0.88)
10. Psychological safety 4.72 0.78 0.15** 0.06 0.03 0.04 �0.09 0.05 0.33** 0.52** 0.47** (0.78)

Note. N = 636; gender coded as (1 = male, 2 = female); education coded as (1 = junior high and below, 2 = high school or technical school, 3 = junior college, 4 = undergraduate,
5 = master or above); marital status coded as (1 = married, 2 = unmarried, 3 = others [divorce, etc.]); position coded as (1 = senior management, 2 = middle management,
3 = first-line management, 4 = first-line employees, 5 = others [labor dispatch, etc.]).

* p < 0.05.
** p < 0.01.

Table 4
Frequency table of the congruence between person–job fit and person–organization fit.

Categories P–J < �1 �1 � P–J < 0 0 � P–J < 1 1 � P–J Proportion%

P–O < �1 54(8.49%) 21 7 1 13.05
�1 � P–O < 0 26 92(14.47%) 94 4 33.96
0 � P–O < 1 8 31 175(27.52%) 28 38.05
1 � P–O 0 3 35 57(8.96%) 14.94
Proportion% 13.84 23.11 48.90 14.15 100%

Note: N = 636; P–J means person–job fit; P–O means person–organization fit. This classification is based on the Z-score of each case across the two variables. The diagonal
presents the number and proportion (59.43% in total) with the same P–J and P–O scores.

Table 5
Polynomial regression results for safety behavior.

Variables Safety behavior

Model 1 Model 2

Intercept (b0) 6.34*** 6.34***
P–J fit (b1) 0.41 0.09+

P–O fit (b2) 0.12* 0.12*
The square of P–J fit (b3) �0.08
P–J fit � P–O fit (b4) 0.33**
The square of P–O fit (b5) �0.14+

R2 0.04*** 0.07***
DR2 0.03***
Congruence line
Slope (a1) 0.21***
Curvature (a2) 0.12*

Incongruence line
Slope (a3) �0.03
Curvature (a4) �0.55***

Note: *** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.1, two-tailed test.

P- J fit: person–job fit.

P–O fit: person–organization fit.

Fig. 1. Congruence of person–job fit and person–organization fit on safety behavior.
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tion fit are consistent, employees showmore safety behavior in the
case of ‘‘high P–J fit — high P–O fit” than in the case of ‘‘low P–J fit
— low P–O fit.” The greater the degree of matching between the
two, the higher the safety behavior of employees. Moreover, when
the two fit types are not congruent, no significant difference is
found for the impact of ‘‘low person–job fit and high person–orga-
nization fit” or ‘‘high person–job fit and low person–organization
fit” on safety behavior.

4.1. Theoretical implications

According to social cognitive theory (Lewin, 1951), an individ-
ual’s behavior is influenced by the environment and arises as a
result of the interaction between an individual’s internal character-
istics and their environment. Safety behavior, such as complying
with safety rules and regulations or making safety recommenda-
tions, is a matter of individual choice, a process whose intrinsic
mechanism is often influenced by the environment (Christian
et al., 2009). Our study, which is the first to examine the relation-
ship between person–environment fit and employees’ safety
behavior, has shown that both person–job fit and person–organiza-
tion fit are positively related to employees’ safety behavior. If
employees perceive that they fit their organizational environment
well, they naturally develop a sense of belonging or dependence on
the organization. This belonging may be transformed into organi-

zational commitment or a psychological contract, resulting in the
generation of behaviors that are permitted and supported by the
organization (e.g., safety behavior; Kim & Gatling, 2019). If the
organization advocates safety behavior, employees will be pre-
pared to obey the associated arrangements, abide by the organiza-
tion’s safety rules and regulations, and engage in extra-role
behaviors that benefit the safety procedures, such as actively par-
ticipating in making safety-related suggestions (Pei, Sparrow, &
Cooper, 2016). Person–job fit provides another important perspec-
tive in explaining employees’ safety behavior. If employees believe
that they are very compatible with the position they hold, they will
tend to have a strong sense of satisfaction and be full of enthusiasm
for work, giving full play to their work abilities, completing their
work to a higher standard, and performing more safety behaviors
(Tims, Derks, & Bakker, 2016). The current study has contributed
to a further understanding of the antecedent variables of employ-
ees’ safety behavior, while at the same time helping to extend the
research on person–environment fit and safety behavior.

Looking back on previous related studies, researchers have
mostly focused on the influence of one particular aspect of per-
son–environment fit on employee behavior, such as person–job
fit, person–organization fit, or other types of fit, but rarely has
the role of both person–job fit and person–organization fit been
considered together. Even studies that have integrated multiple
types of fit have only examined their linear relationship, ignoring

Fig. 2. Incongruence of person–job fit and person–organization fit on safety behavior.

Table 6
Results of mediating effect analysis.

Variables Model 1 psychological safety Model 2 safety behavior

b SE 95% CI b SE 95% CI

Gender 0.21** 0.07 [0.08,0.34] 0.05 0.06 [�0.07,0.18]
Working years 0.01 0.01 [0.00,0.01] 0.01*** 0.00 [0.01,0.02]
person–environment fit 0.92*** 0.14 [0.65,1.20] 0.61*** 0.14 [0.35,0.88]
psychological safety 0.25*** 0.04 [0.18,0.32]

R2 0.08 0.15

Note: 95% CI means 95% confidence interval. *** p < 0.001, ** p < 0.01, two-tailed test.
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any joint effect (Cai et al., 2018). This has resulted in an incomplete
understanding of the relationship and internal mechanism con-
necting person–environment fit and safety behavior. Our findings
have demonstrated that although person–job fit alone does not
necessarily have a significant direct effect on safety behavior, it
can indeed affect safety behavior through comparison and interac-
tion with person–organization fit. Person–job fit reflects how
employees evaluate their own competencies and needs next to
those required for the position, whereas person–organization fit
reflects how employees evaluate their own values and goals next
to those of the organization (Kristof-Brown et al., 2005). Previous
research has confirmed that the closer the psychological distance
between environment and individual, the greater the impact of
the environment on the individual. For example, Huang et al.
(2017) found that supervisors have a greater influence on employ-
ees’ safety behaviors than seniors. Some researchers, however,
have argued that organizational culture and organizational climate
are guiding norms that can have a more profound impact on
employees. Christian et al. (2009), for example, confirmed that
organizational environment plays a greater role in employees’
safety behavior. The results of our study thus provide an explana-
tion for the divergence between the two perspectives, namely, that
P–O fit and P–J fit are linked and need to be combined in order to
explore their common influence. People seek verification of their
own abilities and needs (i.e., person–job fit) and hope to maximize
consistency in all aspects of the self, such as attitudes, beliefs, and
behaviors (Kim & Gatling, 2019). In addition, individuals strive to
obtain certainty and predictability. When their own beliefs, atti-
tudes, and behaviors align with those of others in the social envi-
ronment (i.e., person–organization fit), individuals will realize
that they share common characteristics and achieve a sense of
belonging (i.e., fit; Arieli et al., 2020). When the two types of fit
work together, employees are able to exert control over their
own lives, reduce uncertainty, achieve a sense of belonging, and
lead happy and fulfilling lives (Afsar et al., 2015), thereby promot-
ing greater safety behavior. This study used polynomial regression
to simultaneously examine the linear relationship, curvilinear rela-
tionship, and interaction between the two types of fit. Combined
with response surface analysis, this permitted an in-depth analysis
of the mechanism by which person–job fit and person–organiza-
tion fit influence safety behavior. As well as revealing a joint influ-
ence of person–job fit and person–organization fit on safety
behavior, the results have contributed to a deeper understanding
of the relationship between the congruence of person–environ-
ment fit types and safety behavior.

Finally, this study has explored the mediating effect of employ-
ees’ psychological safety on the relationship between person–envi-
ronment fit consistency and employees’ safety behavior. In
previous related studies, researchers focused on organizational
support or other work-related factors (Warr & Inceoglu, 2012),
yet overlooked the role of individual cognition, an important indi-
vidual characteristic. According to social cognitive theory, individ-
ual characteristics and the social environment are important
factors that interact to influence individual behavior. The previous
lack of exploration of individual cognition has therefore counted
against the development of a deeper understanding of how per-
son–environment fit relates to safety behavior. Supportive organi-
zational measures (e.g., person–environment fit) enhance
employees’ perceptions of psychological safety, thereby increasing
their organizational commitment and performance. For example,
research has found that employees’ perceptions of organizational
support (Singh et al., 2013) can enhance their psychological safety.
Person–environment fit reflects the support of an organization for
its employees. When a team’s organizational characteristics match
those of its employees, psychological safety is enhanced. This cog-
nitive state is necessary for learning and change, on which many

behavioral outcomes depend, such as learning behavior, shared
behavior, organizational citizenship behavior, and creativity. Sev-
eral studies have shown that psychological safety has a direct
impact on task performance (Schaubroeck et al., 2011). It also
reduces the potential negative factors of making mistakes, thus
enabling employees to focus on tasks that enhance performance
(Faraj & Yan, 2009). In addition, psychological safety creates an
environment that encourages risk-taking behaviors among people.
Employees are more likely to feel that it is safe to voice opinions,
make suggestions, and challenge current ways of doing things
(Walumbwa & Schaubroeck, 2009). In the context of rapid eco-
nomic and social changes in China today, employees’ perceptions
of their job security (e.g., psychological safety) are having a strong
influence on their psychology and behavior (Morrow et al., 2010).
Integrating environmental factors with individual cognitive factors
thus offers a novel and potentially informative direction for future
safety behavior research.

4.2. Management recommendations

Based on the results of our study, we propose the following rec-
ommendations for improving safety behavior in the workplace.
First, organizations and managers need to improve the degree of
fit between employees and their workplace. Person–organization
fit is primarily a fit of values. Therefore, organizations should
regard the fit of values between employees and the workplace as
an important screening criterion in the recruitment process. In
addition, when considering the appointment and promotion of
staff to important positions, companies should choose managers
with a high degree of organization fit in order to maximize the
impact of such leaders on their subordinates (Hu, Wu et al.,
2018). Companies can also enhance employees’ participation in
decision-making, thus fostering a sense of belonging and commit-
ment, which ultimately serves to enhance the level of fit between
them and their organization.

Second, when the congruence of the person–environment fit
types is high, it can lead to improvements in employees’ safety
behavior. Companies can use psychological measurement methods
to develop effective tools for evaluating person–job fit during the
process of selection and placement, so as to ensure that employees
are well adapted to their positions. Furthermore, organizations
should guide their employees’ interests and strengths and help
them to develop detailed career plans. Such measures can ensure
that employees have a clear understanding of themselves and
experience a high level of person–job fit. Through job rotation,
job enrichment, job redesign, and other approaches, companies
can help employees to develop deeper interest and understanding
of their positions, thereby enhancing their level of fit with the job.

Finally, enterprises and managers should pay more attention to
employees’ psychological feelings. When employees are in a posi-
tive corporate atmosphere, they experience a higher level of psy-
chological safety. Once they have a sense of security and
responsibility for the company, they are more likely to identify
with the organization’s values and rules, and exhibit behavior con-
ducive to the development of the enterprise. Leaders should be
expected to care about others and establish a safe working envi-
ronment through active communication with employees (Liu,
Liao, & Wei, 2015), thus enabling them to feel safe at work and
demonstrate the behaviors expected by the organization.

4.3. Limitations and directions for future research

Although the current study has yielded informative results,
there are several limitations that might by addressed by future
research. First, all of the data in this study are drawn from a single
state-owned petrochemical company in China, which happens to
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place great emphasis on employees’ safety at work. All of the
employees involved in this study would have had a high level of
safety awareness. Such attention to safety might not be replicated
within other petrochemical companies or other industries. Future
research should extend the scope of the investigation to encom-
pass a more diversified sample of companies, thus improving the
level of ecological validity.

Second, to avoid the problem of common method bias, we col-
lected employee self-reported data at two separate points in time.
Although we emphasized authenticity and confidentiality during
the reporting process, issues such as social desirability and
employees’ concerns may have influenced the data collected on
safety behavior. Future research might aim to simultaneously eval-
uate employees’ safety behavior from the perspective of their lead-
ers or colleagues. The current study is essentially just a cross-
sectional study, meaning that causality cannot be inferred. Future
cross-lagged analyses and longitudinal investigations would help
to address these limitations.

Third, although this study investigated the relationship
between the congruence of person–environment fit types and
safety behavior, as well as its mediating mechanism, there may
well be other mechanisms involved in this relationship, or bound-
ary conditions that make it stronger. While this study used two
representative categories, namely person–job fit and person–orga-
nization fit, there are other potential classifications of person–en-
vironment fit (e.g., person–team fit, person–career fit, person–
leader fit). The relationship between the consistency of these two
types of fit and other unstudied types of fit and safety behavior,
as well as the mechanism underlying them, could prove to be a
fruitful avenue of future research. Subsequent studies might also
aim to incorporate variables specifically related to social cognition
into the research framework.

Finally, whereas the current study explored the moderating
mechanism of psychological safety at the individual level, it has
been noted that psychological safety can be aggregated at the
group level (Singh, Winkel, & Selvarajan, 2013). Safety perceptions
at the group level might also have an influence on employees’
behavior. Future research could adopt multi-level approaches to
explore the effects of psychological safety at the group level.

5. Conclusion

The study found that the more consistent the match between
person–job fit and person–organization fit, the higher employees’
level of safety behavior. Employees showed more safety behavior
in the situation of ‘‘high person–job fit - high person–organization
fit” than they did in the situation of ‘‘low person–job fit - low per-
son–organization fit.” Finally, psychological safety has been shown
to play a mediating role between the congruence of person–job fit,
person–organization fit and employees’ safety behavior.
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a b s t r a c t

Introduction: The availability of highly automated driving functions will vastly change the seating config-
uration in future vehicles. A reclined and rearward-facing seating position could become one of the pop-
ular seating positions. The occupant safety needs to be addressed in these novel seating configurations, as
novel occupant loading conditions occur and the current standards as well as regulations are not fully
applicable. Method: Twelve finite element simulations using a series production seat model and a state
of the art 50th percentile male human body model were conducted to investigate the influences of var-
ious parameters on the occupant kinematics and injury risk. The varied parameters included the seatback
angle, impact speed, and seatback rotational stiffness. Results: The seat model shows a large seatback
rotation angle during the frontal crash scenario with high impact speed. A reclining of the seatback angle
leads to no significant increase of the injury risk for the assessed injury values. However, the reclining
does affect the interaction among the occupant, seatbelt, and seatback. An increase of the seatback rota-
tional stiffness helps reduce brain and chest injury metrics, while neck injury values are higher for the
stiffer seatback.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Highly automated vehicles (HAVs) of SAE Level 4 or 5 (SAE
International, 2018) become realistic with advanced technologies
and are able to perform the driving task independently. This allows
occupants to do various activities during the drive. The common
vehicle interior equipped with steering wheel, dashboard, and
forward-facing seats can be adapted accordingly. In a voluntary
research on future driving scenarios, the participants frequently
mentioned a so-called ‘‘living room” seating configuration with
rotatable seats in the front-row facing rearward as one of the most
preferred configurations in HAVs (Jorlöv et al., 2017). Nie et al.
(2020) conducted a national survey in China regarding seating
preferences in HAVs. It was found that for specific travelling pur-
poses (i.e., long drives with family or excursion) front-row seats
facing rearward seats obtained as high percentage as front-row
seats facing rearward. Regarding user acceptance, a rearward-
facing seat is the second highest, right after the conventional

forward-facing seating position (Köhler et al., 2019). In addition
to the seat rotation, a reclined seating position is highly expected
in HAVs (Jorlöv et al., 2017). In these new seating configurations,
state-of-the-art occupant protection systems face new challenges
and their applicability is questionable. An analysis of the German
In-Depth Accident Study data found five cases involving
rearward-facing seats, all of which were in an upright position,
without proof of the influence of the rearward-facing configuration
on the occupant injury risk (Zellmer et al., 2018).

A frontal impact with a rearward facing seat configuration
makes the occupant experience rear impact dynamics. Current reg-
ulations for rear impacts only focus on low-speed tests (below
25 km/h (EuroNCAP; NHTSA), while those for frontal impacts con-
duct much higher impact speed tests (above 50 km/h (EuroNCAP;
Hollowell et al., 1998). This raises a concern about occupant safety
in rearward-facing seats, when frontal crashes and therefore high
impact speeds are applied. The new concept of seat design for
HAVs must consequently incorporate the protection of occupants.

Jin et al. (2018) studied occupant biomechanics in various seat
orientations under high-speed frontal impacts and reported the
lowest injury risk in rearward-facing seats due to a distributed load

https://doi.org/10.1016/j.jsr.2021.08.001
0022-4375/� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: julaluk.c@tggs.kmutnb.ac.th (J. Carmai).

Journal of Safety Research 79 (2021) 26–37

Contents lists available at ScienceDirect

Journal of Safety Research

journal homepage: www.elsevier .com/locate / jsr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsr.2021.08.001&domain=pdf
https://doi.org/10.1016/j.jsr.2021.08.001
mailto:julaluk.c@tggs.kmutnb.ac.th
https://doi.org/10.1016/j.jsr.2021.08.001
http://www.sciencedirect.com/science/journal/00224375
http://www.elsevier.com/locate/jsr


on the seatback. Zellmer and Manneck (2019) conducted sled tests
using a Hybrid III dummy in a rearward-facing position under sev-
ere frontal crash pulses. All reported injury measures were below
the injury reference assessment values. However, the above-
mentioned studies did not consider a highly reclined seating posi-
tion (�45�). Kitagawa et al. (2017) investigated various non-
standard seating positions in frontal crashes, including a
rearward-facing seat with a reclined seatback, using THUMS and
a rigid series production seat model. They initially found higher
displacement of the first thoracic vertebra (T1) and belt force but
lower seat force in reclined seating. Neck Injury metrics (Nij) and
Brain Injury measure (BrIC) were reported to be highest in a
rearward-facing seat. Hasija et al. (2019) also performed a simula-
tion analysis on future driving, including a reclined and rearward-
facing seat. They found an upward trend of the BrIC with a more
reclined seatback angle, while the chest deflection decreased with
an increase of the seatback angle.

The above-mentioned studies usually made use of either a rigid
seat or an experimental seat (Jin et al., 2018; Zellmer and Manneck,
2019; Kitagawa et al., 2017). An experimental seat setup has a dif-
ferent geometry compared to a series production seat and the
means of controlling its seatback rotational stiffness with, for
example, spring and cable, might alter the test outcomes (Kang
et al., 2012). The series production seat in one study could not
withstand highly severe rear-loadings (Zellmer and Manneck,
2019). Some studies used a constant seatback rotational stiffness
of 65 Nm/deg (Hasija et al., 2019) (Kang et al., 2012). The value
itself, reported firstly in 1998 (Molino, 1998), is lower compared
to series production seats in today’s vehicles (Bridges et al.,
2019). It is questionable whether the reported results still hold
for a series production seat in a HAV.

The review of literature shows that especially the reclined and
rearward-facing seat has not been investigated in detail and only
few comparable examples from accident statistics exist. Especially
in frontal collisions where high impact velocities can be expected,
the performance of the seat structure is uncertain. Particularly, the
seatback rotational stiffness as well as the restraint capability in
reclined positions of series production seats have not been broadly
investigated. Consequently, the effect on occupant safety and
appropriate injury measures also need to be discussed in this
context.

The focus of this study is on the occupant behavior in a reclined
and rearward-facing series production seat when different full-
frontal impact velocities are applied, whereas specifically the inter-
action of occupant and reclined seatback is investigated in a para-
metric study. In order to identify possible challenges for seat
manufacturers and restraint system suppliers, the occupant kine-
matics and injury risks are assessed.

2. Method

2.1. Preparation of the seat model

The geometry and material characteristic of the FE seat model
are based on the publicly available Toyota Yaris FE seat model
(NHTSA, 2010). It is a plain geometric model, which is not capable
to withstand any direct load. Hence, the model was modified to
obtain a seatback behavior corresponding to a typical series pro-
duction seat. A revolute joint was created at the recliner position,
analytically constraining the seatback to the seat base. The seat
frame was rigidified to eliminate any influences by material failure
that is not validated. The seatback rotation hence depends only on
the stiffness of the recliner, which is represented by the joint. The
rotational stiffness curve of the recliner was extracted from a
NHTSA report in which pull tests were conducted on a Honda

Accord’s seatback to develop a detailed FE model for rear impact
crashes (Bridges et al., 2019). The stiffness curve was derived by
combining the moment and seatback rotation profiles from the
report, as shown in Fig. 1 where collapsing of the seatback occurs
at a relative rotation angle of 26�. The seatback angle was adjusted
to 22� and 45� from the vertical axis to represent an upright and a
reclined seating position, respectively. A seat-integrated belt sys-
tem with a retractor, a pre-tensioner of 3.5 kN, and a load limiter
of 4 kN was added. As needed for studying the effect of the seat-
back rotational stiffness on the occupant injury risks, the seatback
rotation was constrained by scaling up the stiffness curve of the
recliner joint to an extreme value. The seat model with constrained
seatback rotation is hereafter referred to as the rigid seat.

2.2. Preparation of the human body model

A 50th percentile male THUMS v4.0.2 with a height of 178 cm
and a weight of 74.3 kg was used in this study. THUMS original
posture is in a driving state. It was positioned into a relaxed pos-
ture in the upright (22�) and reclined (45�) for this study. The Oasis
Primer was utilized as a pre-processing tool for repositioning
THUMS. The two postures were obtained by applying prescribed
motion on the T1 vertebra in pre-simulations. Afterwards, the arms
were pulled to the thighs by assigning displacement to the tip of
the ulna bones. The head was put into contact with the headrest
in both seats, according to a ‘‘good” rating of the Insurance Insti-
tute for Highway Safety (IIHS, 2019). Lastly, THUMS was settled
by gravitational load until an equilibrium state was reached
between THUMS and the seat foam. The final upright posture
was not much different from the original THUMS. For the reclined
posture, the spine angles of THUMS were compared with those cal-
culated from the posture-prediction model of Reed et al. (2019).
Overall, good comparison was seen in most regions. Discrepancy
in some areas were within the root mean square error of the
regression model. The two seating postures are shown in Fig. 2a.
Two database historic nodes were mounted at the head and pelvis
center of gravity (CG) to measure their displacement. The head
rotational velocities were also obtained at the same node as the
head displacement. A cross-section was created at the interverte-
bral disc between the second (C2) and the third cervical vertebra
(C3) to record the neck forces and moments as practiced in
Arosio et al. (2017). Chest deflections were measured through
spring elements at the mid-sternum position (as in a conventional
dummy) and at four local areas (see Fig. 2b) as practiced in
Kitagawa and Yasuki (2013).

Fig. 1. The seatback rotational stiffness derived from NHTSA report (Bridges et al.,
2019).
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2.3. Frontal impact simulation conditions and injury measures

The model is used to simulate the frontal collision with three
impact speeds, including 24 km/h, 40 km/h, and 56 km/h (see
Fig. 3a). Whereas the acceleration pulse of the 24 km/h impact
speed was taken from a cadaveric rear impact test of Kang et al.
(2012). The acceleration curve for an impact speed of 56 km/h
was derived from a frontal impact of a compact car against a rigid
barrier (crash scenario according to UNECE R94 (UNECE, 2017). The
40 km/h impact speed represents a median speed in an urban area
and the acceleration pulse was obtained by generating the average
acceleration pulse of two compact cars from a rigid barrier crash
test. Each crash pulse is applied to the seat base in longitudinal
direction. In total, 12 simulations were conducted, including three
impact speeds, two seatback angles (22�, 45�), and two seatback
rotational stiffness (series production/compliant, rigid) (see
Fig. 3b). All simulations were run using LS-DYNA Version 971
(Livermore Software Technology Corporation, US).

The following output responses were obtained from the simula-
tions: seatback rotation; head longitudinal and vertical displace-
ment; pelvis longitudinal and vertical displacement; and contact
forces of the human body model (HBM) to the seat and seatbelt.
Injury indices considered in this study include BrIC and brain’s
Cumulative Strain Damage Measure (CSDM) for the head; Neck
Injury metrics (Nij and Nkm); and chest deflection. The BrIC was cal-
culated from rotational velocities of the head center of gravity.

CSDM with the strain limit of 0.25 was recorded for the brain to
verify the reliability of the BrIC calculation and to preliminarily
study the risk of brain neurological injury (Takhounts et al.,
2013). Nij was introduced for the assessment of severe neck inju-
ries in frontal impacts and is based on axial force and lateral
moment (NHTSA, 1999). Meanwhile, Nkm was used for the assess-
ment of neck injuries in rear-end impacts (Schmitt et al., 2002)
based on shear force and lateral moment. Chest deflections were
considered to assess the risk of thorax injury. The evaluation of
injuries only serves as relative assessment among the shown cases
and does not necessarily indicate actual injury risks.

3. Results

3.1. Model validation and robustness

The FE seat model was compared with experimental data from
Edwards et al. (2019) using the Hybrid III 50th percentile male
dummy model, where a 36.5 km/h rear impact was applied to dif-
ferent series production seats in an upright seatback position. Sim-
ilar test conditions were set up for the FE simulation. Good
comparison can be seen with slight discrepancy. The result of the
FE simulation is within the average range of series production seats
reported by Edwards et al. (2019) as shown in Fig. 4. The overall
kinematics of the dummy is comparable. The slight discrepancy

Fig. 2. Occupant position in an upright and a reclined seat (a). Locations of chest deflection measurement (b).

Speed 

[km/h] 

Seatback angle 

[°] 

Seatback rot. 

stiffness [-] 

24

22 
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rigid 
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compliant 

rigid 

40

22 
compliant 

rigid 

45 
compliant 

rigid 

56

22 
compliant 

rigid 

45 
compliant 

rigid 

(a) (b)

Fig. 3. The three generic acceleration pulses (a) and the simulation matrix (b).
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can be explained by differences in seat geometries of the Honda
Accord seat (tested seat) and the Toyota Yaris seat (simulated seat).
The Hybrid III dummy was then replaced by THUMS and the sim-
ulation was performed under the same conditions. The overall
kinematics of THUMS and Hybrid III dummy in the FE seat model
were similar with minor difference at local regions (e.g., neck
and feet). The maximum seatback rotation and the vertical pelvis
displacement of THUMS are within the tests’ average range
(Fig. 4). In conclusion, the simulation setup has a good correlation
with the reported data in terms of the kinematics.

To check the model robustness, perturbation in parameter val-
ues (e.g., small changes in seatback angle as well as with and with-
out belt pretension) were performed. An overall good mesh quality
was observed. There was no such mesh distortion, irregular ele-
ment shape, or poor element aspect ratio. The mesh sizes were also
quite uniform. In addition, the resulting change of kinematics was
minimal as expected and calculation time remained consistent as
shown in Fig. 5. Moreover, every simulation in this paper took
around 6.5 h using 48 cores MPP processing. They terminated nor-
mally without critical warnings. The calculation converged uni-
formly for all values of parameters.

3.2. Results of the series production seat model

The kinematics of the occupant with an upright posture and a
reclined posture on a series production (compliant) seat are shown
in Figs. 6 to 8 for different impact speeds and several time steps.
Under the rear impact load, the occupant moves rearward relative
to the seat. When the buttock hits the seatback, the whole body
ramps upwards along the seatback, while the seat belt restrains
the body downwards on the shoulder and lap. The back of the
occupant loads the seatback resulting in the rotation of the recliner
joint. The lower legs contact the seat base’s cushion on the rear
side of the tibia (fibula bone).

For a 24 km/h impact speed, the upper body reaches maximum
rearward excursion before the seatback collapses. Afterwards the
upper body rebounds forward. For the 40 km/h and 56 km/h
impact speeds, the seatback rotates largely from its initial position,
leading to the collapsing of the seatback, which is defined at a rota-
tion angle of 26� relative to the initial seatback angle (see Fig. 1).
Consequently, the seatback is not rebounding for these two impact
speeds. The whole body slides upward along the seatback, causing
an excessive head displacement behind the headrest. These kine-
matics are similar for the two investigated seatback angles. For
the lower body the kinematics differs between upright and
reclined posture. After losing contact with the seatback during
the ramping, the lower body in the upright seat is restrained by
the lap belt and drops down. In the reclined seat, the lap belt slips
off the thighs due to the higher seatback angle. This leads to a
higher displacement of the occupant in the reclined position, espe-
cially when a high impact speed (56 km/h) is applied.

The seatback rotation angles plotted against time for three
impact speeds and two initial seatback angles are illustrated in
Fig. 9. For all cases, the dynamic seatback rotation increases with
the impact speed. While the reclined cases reach a higher absolute
seatback rotation than the upright cases, the rate of change of seat-
back rotation is higher for the upright seats. The simulations with
impact speed of 56 km/h display the belt slipping in both seatback
angles (Fig. 8 at 140 ms). For an impact speed of 40 km/h, the belt
slipping only occurs in the reclined seat (Fig. 7d at 140 ms). The lap
belt slips off the thighs when the absolute seatback rotation
reaches an average angle of 73�.

The occupant’s head andpelvis displacement trajectories are dis-
played in Fig. 10. For both cases, an upright and reclined seatback
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Fig. 4. Vertical pelvis displacement and seatback rotation of the FE seat model
compared to the average range of series production seats.

Fig. 5. Comparisons of THUMS kinematics obtained from the models with seatback angles of 27� and 29� (a). with pretensioner and without pretensioner (b).
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angle, the resulting head trajectories have similar trends but are dif-
ferent in their magnitudes. For both seatback angles in the low
impact speed case (24 km/h), the head rebound is visualized in the
trajectories. The maximum head displacement for this crash speed
is 50 mm vertically and 300 mm longitudinally. Cadaver experi-
ments with a comparable impact speed show similar results (Kang
et al., 2019). As the seatback collapses in higher impact speed, exces-

sive head excursions, ranging from around 700 mm to 900 mm,
appear. The head excursion increases with the impact speed. Longi-
tudinal head displacement relative to the initial head position is
higher for the upright seat, while the vertical displacement is higher
for the reclined seat in all three investigated impact speeds.

For the pelvis, until the buttocks are constrained by the seat-
back, the pelvis slides downwards along the cushion slope. After-

(a) 

(b) 

0 ms 50 ms 100 ms 140 ms 

Fig. 6. Occupant kinematics in an upright (a) and a reclined compliant seat (b) under 24 km/h impact.

(c) 

(d) 

0 ms 50 ms 100 ms 140 ms 

Fig. 7. Occupant kinematics in an upright (c) and a reclined compliant seat (d) under 40 km/h impact.

(e) 

(f) 

0 ms 50 ms 100 ms 140 ms 

Fig. 8. Occupant kinematics in an upright (e) and a reclined compliant seat (f) under 56 km/h impact.
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wards the pelvis starts to move upward along the seatback. Due to
the rebound of the seatback in 24 km/h impacts, the pelvis trans-
lates forward for both seatback angles. Contrarily, in the higher
impact cases (40 km/h and 56 km/h), the higher absolute seatback
angle leads to a shallow slope in the cushion surface, allowing the
pelvis to ramp up and move further rearward.

In Fig. 11, the seat contact force as a function of time for each
simulation case is shown. Mainly the seatback cushion contributes
the seat contact force. For 24 km/h impact speeds, the curve of the
seat contact force is comparable for the upright and reclined seat-
back angle. With higher impact speeds, the effect of the reclined
seatback on the contact force becomes more significant. There
are three simultaneous impacts, leading to the first peak force in
the graph. These impacts are between the head and the headrest,
the buttock and the stiff structure behind the seatback foam and
between the legs and the seat base. The second peak in the graph
for 40 km/h – 22� and 56 km/h – 22� is due to the lower body drop-
ping down (see Fig. 7c and Fig. 8e). In the high-speed tests (40 km/
h and 56 km/h), the upright seat leads to higher contact forces than
the reclined seat. Due to the reclining, the effective restraint area,
which is the contact area between the occupant and the seat nor-
mal to the load direction, is reduced.

The belt contact force in dependency of the time is shown in
Fig. 12. The belt force increases with the seatback angle as well
as the impact speed and displays two peaks in all cases. Due to
the belt pre-tensioning the first peak occurs at around 20 ms. The
second peak is reached when the belt restrains the ramping occu-
pant. As the occupant excursion is opposite to the designed
restraint direction of the belt system, the maximum belt force is
mainly contributed by the lap belt. The second peak of the belt
force obtained from the simulations with 40 km/h and 56 km/h
speed are quite high due to excessive body excursion along the
seatback (see Figs. 6 and 7). It is found that the maximum pelvis
strain is around 0.06 for both high impact speeds. This implies pos-
sible risk of pelvis fracture as it exceeds 3% strain criteria of bone
fracture. However, for 24 km/h impact speed, the belt force is
low, and the pelvis strain is lower than 0.03. The belt force of the
case 56 km/h – 45� increases at around 135 ms as the excessive
rearward body motion causes the belt to contact the kneecaps
when the legs overstretch.

The injury values of the various seatback angles and impact
speeds with the series production seat are summarized in Table 1.
BrIC and CSDM show a correlated trend and increase with the
impact speed for both seatback angles. For 56 km/h, the BrIC and
the CSDM decrease significantly with a higher seatback angle. In
lower impact speed cases, BrIC and CSDM are mainly induced by
the rebound of the seatback, leading to a head rotation mainly
around the lateral axis (y-axis) as shown in Fig. 13. Under
higher-speed impacts, not only the head angular velocity around
the lateral axis (xy) but also around the longitudinal axis (xx)
increases. In these cases, the x-rotation is induced by the shoulder
belt engagement, which pulls the upper body asymmetrically
downwards. The y-rotation is caused by the neck impact to the
headrest followed by the head wrapping around the headrest
(see Fig. 8).

Brain injury risks predicted by BrIC and CSDM are also consis-
tent for all cases. For 24 km/h, both metrics have low values, indi-
cating no risk of brain injury. For 40 km/h and 56 km/h impact
speed, BrIC is above 1.0 and CSDM is higher than the 54% criteria
for 50% risk of AIS 3 diffuse axonal injury (Takhounts et al.,
2008). Fig. 14 exemplarily shows the contour plot of the brain
strain for the upright seatback angle in the 56 km/h test, where
the elements in red color experience strain above 0.25.

Fig. 9. Seatback rotation of the compliant seat.

Fig. 10. Head and pelvis displacement trajectory in the compliant seat.
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Nij and Nkm show similar values and a decreasing trend with
an increase of the seatback angle for all impact speeds. The loading
mode of the neck is not influenced significantly by the seatback
angle but by the impact speed. For Nij, compression-flexion is
the dominant mode in low-speed cases while tension-extension

and tension-flexion are dominant in moderate- and high-speed
cases, respectively. For Nkm, posterior shear-flexion is the domi-
nating mode in the low impact speed cases. Whereas anterior
shear combined with extension and flexion is the main loading
mode in 40 km/h and 56 km/h impact speed cases, respectively.

Fig. 11. Seat to occupant contact force of the compliant sea.

Fig. 12. Belt contact force in the compliant seat.

Table 1
Summary of injury metrics for the compliant seat.

Speed [km/h] Seatback angle [�] BrIC
[-]

CSDM
[%]

Nij
[-]

Nkm
[-]

Chest deflection [mm]

Mid-sternum Upper right Upper left Lower right Lower left

24 22 0.50 3 0.06 0.06 21.0 12.4 9.7 21.4 25.2
45 0.57 6 0.04 0.05 21.1 14.0 7.8 23.1 24.7

40 22 1.48 60 0.16 0.17 31.8 16.5 12.7 27.2 30.2
45 1.40 63 0.13 0.12 26.8 19.1 13.1 27.4 31.2

56 22 1.92 88 0.20 0.30 33.6 27.5 12.7 27.3 23.8
45 1.56 62 0.07 0.04 21.1 22.4 11.2 27.3 29.8
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Dominant load of the neck occurs at around 70 ms in low impact
speed cases. Whereas in higher impact speed cases, the dominant
load occurs at the end of the crash (140 ms).

The neck compression load is caused by the contact of the head
with the headrest as the seat is still in the rebound range, enabling
full restraint of the occupant for the 24 km/h impact speed cases.
This headrest-induced force poses posterior shear load to the
upper neck. Meanwhile, under higher impact speeds, the head
ramped over the headrest, resulting in tension/positive shear load
to the neck. For the reclined seating position, which leads to higher
absolute seatback rotation during the crash event, the upper body
moves simultaneously with the neck, reducing the relative head-
to-neck movement and hence the forces and moments compared
to the upright seating position. With respect to the rotational load-
ing condition, the flexion moment is more significant than the
extension moment in all cases. From the perspective of injury met-
rics, the moment is inferior to the force component. Note that the
recorded moments do not always reflect the observed kinematics.
For instance, the neck flesh motion cannot be captured by the
accelerometer at the upper cervical spine.

The mid-sternum chest deflection (CD) is comparable for both
seatback angles in the low impact speed cases. For higher impact
speed cases, mid-sternum CD decreases with seatback angle, which
correlates well with the seat contact force. The highest mid-
sternum CD value is 33.6 mm at an impact speed of 56 km/h with
upright seatback angle. This value is below the threshold of 42 mm
for a Hybrid III dummy (UNECE,2017). However, the maximum rib
strain for this case is 5.6%, which exceeds the rib fracture criteria of
3% strain (Kemper et al., 2005), at the rib number 1, which implies

the possibility of rib fracture. In the other cases with lower impact
speed and reclined seatback, the maximum rib strain is below the
fracture strain. For all cases, CD is relatively higher at mid-sternum,
lower left and lower right thorax locations. These locations are
within the effective restraint area of the seatback. The CD at the
upper left and upper right area of the thorax is below 20 mm, as
the upper ribcage moves between the seatback and the headrest.
Only for the 56 km/h cases, the ribcage contacts the headrest caus-
ing higher CD at the upper thorax areas.

3.3. Results of the constrained seatback rotation seat model

The kinematics of the occupant in an upright posture and a
reclined posture on a constrained seatback rotation (rigid) seat
under 24 km/h and 56 km/h impact speeds are shown in Fig. 15
and Fig. 16. For the 40 km/h impact speed, the occupant kinematics
is comparable to the 56 km/h impact case and therefore the 40 km/
h case is not analyzed in detail here. In all investigated impact
velocities, the body moves rearward and upward into the seatback,
followed by a forward rebound of the upper body. The headrest
maintains contact with the head during all time steps. For all cases,
both head and pelvis displacements increase in the reclined pos-
ture. Due to the fixed seatback angle, no belt slipping occurs for
the lap as well as the shoulder belt. This kinematics are similar
to that of the compliant seat in the low impact speed cases. Com-
pared to the compliant seat, a rigid seatback offers more occupant
retention and reduces the head and pelvis displacement signifi-
cantly for medium and high impact speed cases.

Fig. 17 shows the seat contact force for the rigid seat. The seat
force decreases with a higher seatback angle in higher impact
speed cases and is correspondent with the occupant kinematics.
Compared to the compliant seat the maximum force level appears
in a defined timeframe, when the main contact between occupant
and seat appears. The peak force is on a higher value than for the
compliant seat (see Fig. 11), which indicates that the rigid seat
has a higher occupant retention.

Fig. 18 shows the belt contact force for the rigid seat. The belt
force shows high sensitivity for the seatback angle, as it increases
significantly in the reclined cases. Comparable to the series pro-
duction seat, the belt pre tensioning causes the first peak force.
The second peak belt force is due to the lap belt restraining the
occupant ramping and occurs near the time of maximum pelvis
excursion. Generally, the belt forces measured in the rigid seat
are lower compared to the compliant seat cases. The maximum
pelvis strain is around 0.02, 0.04, and 0.06 for impact speeds of
24, 40, and 56 km/h, respectively. Considering the typical bone
fracture strain of 3%, the high impact speed of 40 and 56 km/h pos-
sibly leads to high risk of pelvis fracture for the high impact speed
of 40 and 56 km/h.

The injury values for the various seatback angles and impact
speeds with the constrained seatback rotation (rigid) seat are sum-
marized in Table 2. It can be observed that injury metrics increase
with the impact speed for all cases. BrIC and CSDM continue to cor-
relate as in the compliant seat cases. While at low impact speeds,
the brain injury metrics vary slightly between the two seatback
angles, in higher impact speeds, both BrIC and CSDM increase sig-
nificantly with a higher seatback angle. The occupant ramps up
more in the reclined seat than in the upright one, consequently
the head passes the top of the headrest. Both BrIC and CSDM values
in all cases, except for the reclined seat with 56 km/h impact speed,
are lower than the neurological injury threshold (1.0 for BrIC and
54% for CSDM) indicating possible no risk of neurological injury.
However, injury values reading from the reclined seat with
56 km/h impact speed are 1.05 (BrIC) and 66% (CSDM). This implies
possibility of neurological injury. Neck injury values decrease with
higher seatback angle for all impact speeds. In all tests, the domi-

Fig. 13. Head rotational velocity for the compliant seat.

Fig. 14. Contour plot of brain strain with the limit of 0.25 for the case 56 km/h –
22�.
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(a) 

(b) 

0 ms 50 ms 100 ms 140 ms 

Fig. 15. Occupant kinematics in an upright (a) and a reclined (b) rigid seat under 24 km/h impact.

(c) 

(d) 

0 ms 50 ms 100 ms 140 ms 

Fig. 16. Occupant kinematics in an upright (c) and a reclined (d) rigid seat under 56 km/h impact.

Fig. 17. Seat contact force of the rigid seat.
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nant loading mode of Nij and Nkm is compression-flexion and pos-
terior shear-flexion, respectively.

Mid-sternum CD increases with higher seatback angle, which is
opposite to the trend of seat contact force. The occupant’s ribcage
in an upright seating posture impacts the middle area of the seat-
back cushion. The highest mid-sternum CD value is 28.2 mm,
which is below the 42 mm threshold for Hybrid III dummy
(UNECE,2017). However, the CD occurs at the lower left location
for the 56 km/h impact speed with reclined seat is as high as
44.9 mm. As the seat model used in this study does not have any
structure behind the seatback foam, the occupant pockets into
the soft seat foam for the upright seatback angle. In the reclined
seat, the ribcage of the occupant hits into the rigid frame on the
top of the seatback, resulting in an increase of the mid-sternum
CD values. The local CD values show no clear trend for the two
investigated seatback angles. The chest areas in contact with the
seatback structure show higher CDs compared to other areas,
where the ribcage is only in contact with the seat foam. However,
the maximum rib strain for high impact speed cases (40 and
56 km/h) exceeds the typical rib fracture criteria of 3% strain
(Kemper et al. 2005), which implies possibility of rib fracture.

4. Discussion

The occupant kinematic response is almost identical across the
investigated impact speeds for the rigid seat. For the compliant
seat more significant differences occur among the test speeds,
depending on whether the seatback rebound limit is reached or
not. The compliant seat that is used in this study only retains the
occupant in the 24 km/h impact speed cases. For higher impact

speeds of 40 km/h and 56 km/h, the seatback collapses and the
occupant moves excessively rearward. The seatback recliner stiff-
ness (according to (Bridges et al., 2019) that is used in this study
cannot withstand the rearward loading of a 50th percentile male
occupant caused by high impact speeds as applied in current fron-
tal crash tests regulations. The requirements for the seat structure,
and especially the recliner stiffness, shall be increased when novel
rearward facing seating positions are introduced in HAVs.

When the seatback collapses under the occupants loading, con-
sequently the rearward movement of the occupant increases. In
this case, even the belt system does not prevent the occupant from
moving excessively out of the seating area and an occupant ejec-
tion becomes likely. The lap belt slips off the thighs once the abso-
lute seatback rotation reaches an average value of 73�. An initially
reclined seatback reduces the amount of relative seatback rotation
to reach this threshold angle. An increase of the recliner stiffness
needs to be taken into account when high loadings are applied to
the seatback in future seating configurations. Additionally, the
lap belt can play an important role when the occupant’s ramping
along the seatback becomes critical. For highly reclined seats, fur-
ther restraint strategies need to be discussed and investigated.

The rigid seat shows lower brain injury measures compared to
the compliant seat in almost all test cases. This is due to the seat-
back and headrest maintaining their restrain capability, which
reduces unfavorable rotations of the head as it can be observed
in the compliant seat. An exceptional case is the case 56 km/h –
45�, where CSDM increases. Contrarily, Nij reduces in one case (re-
clined seat in 40 km/h) while it increases in all other cases with the
rigid seat. The rigid seatback, which acts as a hard impact surface,
makes the head bounce off the headrest and thus creates a higher

Fig. 18. Belt contact force for the rigid seat.

Table 2
Summary of injury metrics for the rigid seat.

Speed [km/h] Seatback angle [�] BrIC
[-]

CSDM
[%]

Nij
[-]

Nkm
[-]

Chest deflection [mm]

Mid-sternum Upper right Upper left Lower right Lower left

24 22 0.46 2 0.12 0.11 15.1 11.7 10.1 16.5 17.4
45 0.38 1 0.07 0.06 19.5 9.1 7.6 14.0 17.1

40 22 0.54 7 0.19 0.15 21.3 12.9 12.2 22.0 28.4
45 0.80 45 0.11 0.06 24.0 15.3 10.8 20.0 31.1

56 22 0.55 11 0.22 0.11 26.4 14.0 13.8 23.6 32.3
45 1.05 66 0.15 0.06 28.2 15.7 17.7 29.2 44.9
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compression load to the neck than a yielding seatback does.
Accordingly, the flexion moment of the upper neck increases sig-
nificantly. In contrast, the shear force decreases as the discrepancy
in the head and neck motion in the longitudinal direction
decreases. This reduces the Nkm in some of the investigated cases.
Generally, the Nij and Nkm for the rigid seat remain on a low level
(relative to the threshold of 1.0). Regarding thorax injuries, the
rigid seat shows lower CD in almost all areas of the ribcage. The
CD is sensitive to the impact location and remains low when the
ribcage contacts the seatback cushion. Meanwhile, CD increases
when the ribcage contacts the rigid frame due to the occupant
ramping. Risk of rib fracture at high-speed impact is possible for
both compliant and rigid seats.

The influences of the seatback angle on the injury values
depends on the seatback rotational stiffness, as the head and tho-
rax injury trends in the compliant seat are different for the rigid
seatback cases. Meanwhile, the assessment of neck injury remains
consistent regardless of the seatback rotational stiffness.

For the protection of vehicle occupants in a rearward-facing and
reclined seat under frontal impacts, not only the seatback rota-
tional stiffness but also the geometry of the headrest and seatback
needs to be re-evaluated. Additionally, the injury measures, which
address the standardized injury mechanism in a whiplash situa-
tion, are not verified for the novel seating and loading condition
of the occupant. Consequently, the injury evaluation is challenging.

The presented study has the following limitations. No interior
parts are considered, although their existence can alter the simula-
tion outcomes and lead to contacts with the occupant. In addition,
the application of THUMS and the seat model in a high-velocity
rear impact has not been validated by physical tests. THUMS is
positioned into a reclined posture and it is uncertain whether its
performance remains reliable. Additionally, THUMS v4.0.2 is a pas-
sive model and cannot replicate any muscle activities of the occu-
pant. Current crash scenarios and velocities are used in this study,
without any pre-crash manoeuvers (e.g., autonomous emergency
braking or steering), which are likely to become standard in HAVs.
Lastly, the calculations of the injury values in this study are based
on standards developed for dummies as well as standard seating
positions and might not reflect the true values for HBMs. Therefore,
these values are only used to show trends when comparing the
presented simulation runs and a severity rating of the injury values
is not considered.

5. Conclusion

In total, 12 simulations were conducted with the variation of
three parameters (seatback angle, impact speed, and seatback rota-
tional stiffness) to investigate the occupant kinematics and injury
risk in a rearward facing and reclined seating position. Regarding
the occupant kinematics, the seatback rotational stiffness, which
defines the collapse angle of the recliner, is the most influencing
among the investigated parameters. The occupant displacement
increases and the restraint function of the seatback as well as the
lap belt decreases when the collapse angle of the seatback is
exceeded. For the investigated speeds of 40 km/h and 56 km/h, this
threshold is reached for a series production seat. With a high seat-
back rotational stiffness (e.g., a rigid seat), the occupant’s kinemat-
ics is almost identical across all impact speeds. A reclined seatback
leads to ramping and increases the displacement of the occupant.
In addition, a higher seatback angle makes the lap belt more prone
to slipping off the thighs. With respect to the injury assessment in
the low impact speed cases, no significant differences with subject
to the seatback rotational stiffness and seatback angle are found.
Meanwhile, under higher impact speeds, the higher seatback angle
yields lower head and neck injury measures for the compliant seat-

back rotational stiffness. For the rigid seatback rotational stiffness,
the reclined seat shows increased head injury values but lower
neck injury measures. The chest deflection is sensitive to the con-
tact location between the occupant and the structure of the seat
frame. Generally, an increase of the seatback rotational stiffness
helps reduce brain and chest injury metrics, but neck injury values
are higher for the stiffer seatback. An optimization of the seatback
rotational stiffness for seats in HAVs can be considered from sev-
eral perspectives. To prevent a seatback collapse and an occupant
ejection in high impact velocities and especially in reclined posi-
tions, the backrest stiffness needs to increase compared to current
production seats. In addition, geometric adjustments and an inte-
grated restraint strategy, which addresses not only upright but also
reclined seats, may become necessary.
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a b s t r a c t

Introduction: Previous research has indicated that increases in traffic offenses are linked to increased
crash involvement rates, making reductions in offending an appropriate measure for evaluating road
safety interventions in the short-term. However, the extent to which traffic offending predicts fatal
and serious injury (FSI) crash involvement risk is not well established, prompting this new Victorian
(Australia) study. Method: A preliminary cluster analysis was performed to describe the offense data
and assess FSI crash involvement risk for each cluster. While controlling demographic and licensing vari-
ables, the key traffic offenses that predict future FSI crash involvement were then identified. The large
sample size allowed the use of machine learning methods such as random forests, gradient boosting,
and Least Absolute Shrinkage and Selection Operator (LASSO) regression. This was done for the ‘all driver’
sample and five sometimes overlapping groups of drivers; the young, the elderly, and those with a motor-
cycle license, a heavy vehicle license endorsement and/or a history of license bans. Results: With the
exception of the group of drivers who had a history of bans, offense history significantly improved the
accuracy of models predicting future FSI crash involvement using demographic and licensing data, sug-
gesting that traffic offenses may be an important factor to consider when analyzing FSI crash involvement
risk and the effects of road safety countermeasures. Conclusions: The results are helpful for identifying
driver groups to target with further road safety countermeasures, and for showing that machine learning
methods have an important role to play in research of this nature. Practical Application: This research indi-
cates with whom road safety interventions should particularly be applied. Changes to driver demerit poli-
cies to better target offenses related to FSI crash involvement and repeat traffic offenders, who are at
greater risk of FSI crash involvement, are recommended.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The effectiveness of new sanctions and other behavioral road
safety countermeasures is largely determined by their impact on
fatal and serious injury (FSI) crashes. Due to the relative rarity of
FSI crashes, it may be many years before the impact of reforms
and interventions can be reliably observed. Changes in offending
patterns post-intervention have been postulated to reflect the

specific effects of interventions. As traffic offenses are much
more frequent compared with FSI crashes, earlier evaluation of
interventions can perhaps be carried out using a reduction in
offending as a proxy measure for success (Australian Bureau of
Statistics, 2019; BITRE, 2017). However, the extent to which traffic
offending increases FSI crash involvement risk is not well estab-
lished, prompting the need for this investigation.

Offense history (i.e., the number of traffic infringement convic-
tions) and crash history (i.e., the number of crashes a driver has
been involved in) have frequently been found to be useful predic-
tors of future FSI crashes (DeYoung & Gebers, 2004; Elliott, Waller,
Raghunathan, & Shope, 2007; Rezapour, Wulff, & Ksaibati, 2018).
Previous research has also indicated that increases in offending
patterns are linked to increased crash involvement rates
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(e.g. Cooper, 1997), while the increase in crash involvement risk is
particularly high when repeated violations lead to license suspen-
sion or ban (revocation). A previous traffic offense increases the
likelihood of having a crash for one, two, and multi-vehicle crashes
(Kim, Kim, & Son, 2006), while speeding violations and a license
suspension, rather than any other type of offense, are associated
with increased injury severity (Hamzeie, Thompson, Roy, &
Savolainen, 2017). Leal and Watson (2011) have reported that
3.7% of illegal street racing offenses brought to police attention
resulted in crashes. This and other research by Palk, Freeman,
Kee, Steinhardt, and Davey (2011) has suggested that the driving
records of ‘hoons,’ who are most likely to be young males aged
16–24 years, are more likely to include traffic infringements,
license sanctions, and crashes than other drivers. But there are of
course many other factors that are associated with crashes. Envi-
ronmental factors (e.g., weather conditions), road conditions (e.g.
road geometry), legal factors (e.g., extant law, law enforcement
strategy), licensing factors (e.g., licensing status), and driver char-
acteristics (e.g., age and years of driving experience) may all con-
tribute to FSI crash involvement (Asbridge et al., 2017; Asgarian,
Namdari, & Soori, 2019; Bingham & Ehsani, 2012; Chen, Liu,
Zhang, & Hou, 2017; Moradi, Saeed, Nazari, & Rahmani, 2018;
Salmon et al., 2019; Wali, Ahmed, Iqbal, & Hussain, 2017; Yang,
Liu, Chan, Xu, & Guo, 2019).

Much of the research considering the relationship between
offense history and crash risk has been conducted in the United
States, with very little research exploring such trends using Aus-
tralian crash data. The most comprehensive analysis using Victo-
rian crash data was published over 20 years ago
(Diamantopoulou, Cameron, Dyte, & Harrison, 1997) and Victoria’s
licensing system, road safety legislation, and regulations have
changed significantly over the last 20 years. More recently a Victo-
rian study has shown that the odds of receiving an infringement
notice were greater in the 30 days prior to a crash, suggesting that
infringement notices may not be encouraging safer driving as
much as expected (McDonald, Berecki-Gisolf, Stephan, &
Newstead, 2020). The objective of this study is therefore to quan-
tify the relationship between the various types of traffic offense
and the risk of future FSI crashes and crash involvements, while
controlling for licensing and demographic risk factors using Victo-
rian data. This will be achieved through exploring two research
questions. Firstly, what combinations of driver characteristics,
license and offense histories are associated with the greatest levels
of future FSI crash involvement risk? And secondly, what is the
relationship between offense history and crash involvement after
controlling for driver characteristics and license history? These
research questions were addressed by first considering the Victo-
rian driving population (‘all driver’ population) and then consider-
ing particular groups of interest; namely young drivers, older
drivers, drivers who have motorcycle licenses, drivers who have
heavy vehicle license endorsements, and drivers who have recently
been banned from driving.

A systematic review of the literature, considering the types of
statistical model used to predict FSI crashes using driver crash
and offense history data (Slikboer, Muir, Silva, & Meyer, 2020),
has found that, as yet, the use of machine learning methods is
uncommon, despite large sample sizes and large numbers of highly
correlated predictor variables for crash involvement. Furthermore,
there has seldom been an attempt to validate models using fresh
data that has not been used to train these models, although this
is the standard approach with machine learning methods. These
methods are therefore utilized in this study, with the intention of
validating the final models for FSI crash involvement risk that will
be used to identify suitable interventions for the reduction of crash
occurrences.

2. Materials and methods

2.1. Data preparation

A two-year predictor period (1 July 2013–30 June 2015) was
used to predict FSI crashes and crash involvements in the following
three-year crash outcome period (1 July 2015–30 June 2018). The
three-year outcome period ensured a large sample of crash-
involved drivers whereas the two-year predictor period ensured
that only recent relevant driver history was included for prediction
purposes. Victorian drivers involved in FSI crashes between July
2015 and June 2018 were identified from the Victorian Road Crash
Information System (RCIS) (N = 22,641). The proportion of drivers
involved in FSI crashes was less than 1% of the total number of dri-
vers, making it necessary for only a random sample of drivers who
were not involved in FSI crashes in the same period to be used for
modelling purposes. A sample consisting of a randomly selected 1%
of all drivers not involved in FSI crashes between July 2015 and
June 2018 (N = 57,742) was therefore selected. This better balanc-
ing of the number of drivers involved and not involved in FSI
crashes was previously done in similar studies conducted by
Taamneh, Alkheder, and Taamneh (2017) and Peng, Li, Wang,
Gao, and Yu (2020) in order to obtain reliable models for predicting
the probability of future crash involvement. Licensing details and
offense history convictions were then extracted from the Victorian
Driver Licensing System (DLS) for the period between July 2013
and June 2015 for all the above drivers (N = 22,641 + 57,742). Dri-
ver license numbers were required to link the DLS and crash data,
and this was the only form of driver identification information
used, apart from gender and date of birth.

In order to make the comparison as reliable as possible, the ran-
dom sample of drivers not involved in FSI crashes needed to be
representative of this driver population in terms of demographics
and licensing history. Chi-squared goodness of fit tests were used
to confirm that the sample was representative of this population
in terms of driver age, gender, region of residence, licensing profi-
ciency, and licensing status distributions. Licensing data and age
were recorded as of 30th June 2015 and a decision was taken to
exclude drivers over the age of 90, as well as drivers with surren-
dered licenses. This was done on the grounds that these people
were unlikely to still be driving, and may be deceased because date
of death is not well recorded in the DLS.

Demographic data included each driver’s age, gender, and
Accessibility/Remoteness Index of Australia (ARIA), which was
coded as major city, inner regional, outer regional, or remote. Also,
Socio-Economic Indices for Areas (SEIFA) quintiles (range 1 –5),
where low quintiles indicate poorer socio-economic residency
areas, were included.

Licensing data included each driver’s license status (current,
cancelled, disqualified, expired, or suspended), proficiency (full
license, probationary license), possessing a motorcycle license,
having a heavy vehicle license endorsement, medical condition
license flag (yes or no), history of an overseas or interstate license,
and number of attempts needed to pass driving tests. A Victorian
probationary license is applied to drivers 18 years or older after
completing the requirements of the Graduated Driver Licensing
System (VicRoads, 2019). The restrictions for P1 licenses, required
for one year if aged under 21 at licensing, are slightly stricter than
for P2 licenses in that only one passenger aged between 16 and
22 years of age is allowed, and applicants must complete 120 hours
of supervised practice. However, there are many other restrictions
that apply for the probationary period of four years (VicRoads,
2019). Offense data included each driver’s frequency for each type
of offense committed. These offenses included speeding offenses of
increasing severity, failure to wear a seat belt, traffic light offenses,
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and many more. The number of court and traffic infringement
notices and license bans were also collated for each driver.

2.2. Statistical analysis

As illustrated in Fig. 1 and explained below, two separate anal-
yses were performed, the first a cluster analysis and the second the
development of models to predict FSI crash involvement. The clus-
ter analysis was conducted with the offense data, using an initial
hierarchical clustering with Ward’s method as described by
Murtagh and Legendre (2014). Cluster analysis is commonly used
for the clustering of road traffic crashes (e.g., Taamneh, Taamneh,
& Alkheder, 2016) but we have yet to find an example where dri-
vers have been clustered based on their traffic offense history.
The resulting dendrogram plot suggested six clusters and provided
initial cluster means for all the offense variables, allowing a final
fine-tuned K-means cluster analysis as conducted by Li, Chihuri,
and Brady (2017) for fatal crashes. The resulting six driver clusters
were compared in terms of their demographic and licensing char-
acteristics as well as future FSI crash involvement risk.

In the second analysis, FSI crash involvement was recorded as a
binary variable for the three-year crash outcome period and was
modelled with demographic variables, license characteristics, and
offense history data for the predictor period. This was done for
the ‘‘all driver” sample and the five sub-groups defined above. Only
four demographic variables were considered (age, gender, region
and socio-economic advantage of residential area) but there were
numerous licensing history variables (e.g., car/motorcycle license
status, license proficiency, heavy vehicle endorsement, medical
condition license flag, previous interstate/overseas license, ages
at which license testing and license acquisition were accomplished
and number of license test attempts). There were also numerous
offense history variables (e.g., numbers of speeding, seat belt and

traffic light offenses, as well as the total number of offenses and
ban types). This analysis was conducted for the entire sample
and then separately for the five sub-groups, which were not always
mutually exclusive; probationary drivers, older drivers (60–
90 years of age), heavy vehicle license endorsed drivers, motorcy-
clists, and drivers who had received at least one license ban (sus-
pension, cancellation or disqualification) in the predictor period
(i.e. July 2013–June 2015). These five sub-groups were identified
by the funders of this research as being of high importance for
interventions designed to reduce crash risk.

Three machine learning classification models (random forest,
gradient boosting, and penalized logistic regression models;
James, Witten, Hastie, & Tibshirani, 2013; Williams, 2011), were
developed for each sample in order to predict the probability of
FSI crash involvement in the following three years. Random forests
consist of a random sample of tree models which segment the data
into non-overlapping regions and then classify all the drivers in the
same segment according to the most common class (FSI crash
involved – yes or no). The data segments for each tree are defined
using a randomly chosen small sample of variables. For any driver
a prediction for the probability of FSI crash involvement is obtained
by combining the classification results from all the trees in the for-
est. Random forests were used successfully by Mafi, AbdelRazig,
and Doczy (2018) and by Iranitalab and Khattak (2017) to predict
level of injury for drivers involved in crashes. Boosting also consid-
ers a random sample of tree models but these trees are grown
sequentially, using the information available from previously
grown trees within the gradient boosting algorithm. Like random
forests, boosting models provide a single consensus prediction
for the probability of FSI crash involvement.

Both these methods have been previously used by Wang, Liu,
Xu, and Lv (2019) to predict the future driving risk of crash-
involved drivers. They provide measures of importance for each

Fig. 1. Flowchart for cluster analysis and the development of a model to predict FSI crash involvement.
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of the predictor variables as explained by James et al. (2013). For
the random forest these measures are calculated using the mean
decrease in prediction accuracy (for new test data) when the data
for each variable is permuted in turn. For the (eXtreme) gradient
boosting these variable importance measures are calculated using
improvement in classification accuracy achieved by each predictor
variable in each tree, averaged over all the decision trees within the
model.

In contrast to these two methods penalized logistic regression
provides a single model. The Least Absolute Shrinkage and Selec-
tion Operator (LASSO) penalties were used in this analysis to
ensure that only one of two or more highly correlated predictor
variables were kept in the model, with only the significant predic-
tor variables retained. This LASSO method produced more accurate
predictions than other penalty approaches considered (utilizing
Elastic Net Regularisation), and has been previously used by Bui
et al. (2018) to identify driving behaviors associated with crashes
in the fire services.

These three modelling techniques (random forests, gradient
boosting and LASSO regression) all accommodate variable selec-
tion as well as providing importance measures for each of the
explanatory variables considered. Each model was trained on a
randomly chosen 70% of the data and their classification accuracy
was assessed on the remaining 30% of the data. Basing model accu-
racy on the remaining 30% of the data rather than the 70% training
data provides levels of accuracy that are indicative of the future
performance of the model when applied with new data. The per-
formance of these models was compared using the area under
the Receiver Operating Characteristic (ROC) as done by Wang
et al. (2019), with a minimum of 70% accuracy required to identify
individuals at risk of future FSI crash involvement. The results were
similar for all three methods but the small number of predictors
retained in the logistic regression model, and the odds ratios pro-
vided for each of these variables, made it the stand-out model.
The adjusted odds ratios from the logistic regression model were
used to quantify the magnitude of the effects of each explanatory
variable on the risk of future FSI crash involvement, while control-
ling for the other variables included in the model. The 95% confi-
dence intervals are provided for these odds ratios rather than p-
values because these are more meaningful, allowing an assessment
of the accuracy of the odds ratios. The excluded variables differed
for each sub-group sample, with the license testing data found to
be unhelpful for all but the probationary drivers.

3. Results

3.1. Cluster analysis

Six driver clusters were identified using the cluster analysis.
Clusters were named according to the offense severity and fre-
quency of offenses. For example, ‘‘mild” offenders were those dri-
vers who committed less severe offenses (e.g., <10 km/h excess
speed), while ‘‘severe” offenders were those who committed more
serious offenses (e.g., �10 km/h excess speed). Table 1 shows that
as the offender clusters escalate in their level and severity of
offending, so do their numbers of demerit points, court and traffic
infringement notices (TINs), and license bans, with the very fre-
quent severe offenders displaying very high levels of these behav-
iors in comparison with the other offender clusters.

Table 1 demonstrates that a high rate of reoffending particularly
distinguishes a driver most likely to become involved in an FSI
crash within the next three years, with more detail provided in
Supplementary Tables 1–3. However, there were also some signif-
icant demographic and licensing differences between the clusters
as reported in Supplementary Tables 4 and 5. In particular the last

two clusters in Table 1 included a high percentage of males (75%
and 73%) and novice drivers aged 18–25 (25% and 21%), many with
P2 probationary licenses (15.7% and 17.9%) and license bans.
Although the probationary, older, and banned sub-groups show
clear cluster patterns linked to expected FSI risk profiles, this is
not as clear for the heavy vehicle and motorcyclist sub-groups. This
confirms that FSI crash models are particularly required for these
two sub-groups in order to identify appropriate crash
interventions.

3.2. Models for future FSI crash involvement

Random forests, gradient boosting, and penalized logistic
regression were used to model the risk of FSI crash involvement
for the drivers in the whole sample (‘all driver’) and in the five
sub-group samples. As shown in Supplementary Table 6, the
non-linear random forest and gradient boosting models provided
markedly different measures of importance for the predictor vari-
ables. The penalized logistic regression was validated by these
methods in that, although it assumed linearity (with a logit link)
and included only a relatively small number of predictor variables,
it achieved similar levels of prediction accuracy (AUR = 0.620–
0.664) as these more complex ‘‘non-linear” methods. Indeed, as
shown in Table 2 the random forest models produced worse pre-
dictive accuracy for all the sub-groups (AUR = 0.584–0.649), while
the gradient boosting models produced only slightly better predic-
tive accuracy than the penalized logistic regression for the overall
sample and two of the five sub-groups (AUR = 0.628–0.671).

However, none of these models achieved an area under the
Receiver Operating Curve (ROC) of 0.7, indicating that none of
these models should be used for predicting FSI crash involvement
risk for individual drivers. With the exception of the group of dri-
vers who had a history of bans, offense history significantly
improved the accuracy (area under the ROC) of models predicting
future FSI crash involvement using only demographic and licensing
data. Table 2 also reports the rates of FSI crash involvement show-
ing that all the sub-groups (except the older subgroup, 60–
90 years) are at greater FSI crash involvement risk than the ‘all dri-
ver’ population.

The odds-ratios from the parsimonious penalized logistic
regression models were more informative than the variable impor-
tance measures provided by the random forest or gradient boost-
ing, in that their interpretation related directly to FSI crash risk
as demonstrated below.

3.2.1. Demographic predictor variables for penalized logistic regression
models

Table 3 provides the odds ratios for the statistically significant
demographic variables included in the penalized logistic regression
models. In the following summary odds ratios are provided in
brackets only for the ‘all driver’ model. Table 2 indicates that the
odds of FSI crash involvement declined with increasing age in most
cases; however, there was an increase in FSI crash involvement risk
in the case of the 80–90 year age group (OR = 1.54) and the 18–
25 year age group (OR = 1.22). This piecewise linear approach for
the modelling of age allowed for the non-linear relationship
between age and the risk of FSI crash involvement. The risk was
generally higher for males than females (OR = 1.28), higher in the
major cities than inner regional areas (OR = 1.26), and lower in
outer regional areas (OR = 0.72). Finally, the risk was generally
lower for people living in higher socio-economic postcodes (4th
and 5th SEIFA quintile: OR = 0.82 and 0.68 respectively) than for
people living in middle level socio-economic postcodes (3rd SEIFA
quintile).
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Table 1
Offense characteristics summary for the six offender clusters.

Mean offense characteristics (1 July 2013 to 30 June 2015 – predictor period)

Never and seldom
offender
(63.8%)

Occasional mild
offenders
(16.0%)

Occasional severe
offenders
(10.3%)

Repeat mild
offenders
(5.9%)

Repeat severe
offenders
(3.5%)

Very
frequent
severe
offenders
(0.4%)

Sample size 40,377 10,103 6528 3719 2237 274
No. offenses 0.11 1.41 1.63 4.13 4.60 17.15
No. demerit points 0.26 1.69 4.10 6.00 9.17 26.52
No. court hearings 0.02 0.04 0.10 0.11 0.61 2.24
No. traffic infringement notices 0.09 1.37 1.53 4.01 3.97 14.54
No. bans 0.01 0.01 0.09 0.04 0.38 1.35
Future FSI crash involvement rates1 per 1000

drivers per annum
1.28 1.83 2.54 2.62 4.29 7.76

% males 51.6 58.3 65.4 63.0 75.4 73.4
% major city 73.3 80.6 75.2 87.2 79.3 88.0
% 18–25 years 12.4 10.4 16.6 9.9 25.2 20.8
% P1 probationary license 2.1 0.6 1.6 0.5 3.0 3.6
% P2 probationary license 6.8 5.4 9.7 4.6 15.7 17.9
% older drivers (60–90 years) 25.4 18.4 12.4 13.2 6.4 0.4
% heavy vehicle endorsements 13.0 14.2 17,0 15.5 16.5 15.7
% motorcycle license 10.9 13.2 16.9 14.7 16.5 10.2
% drivers with bans 0.6 0.9 7.4 3.4 21.2 42.7

1 Calculated based on July 2015 to June 2018 data.

Table 2
Evaluation of the predictive accuracy of the machine learning models for each sample.

Model Area under ROC curve

All driver Probationary Older Heavy
vehicle

Motorcycle Banned

Random forest 0.649 0.616 0.602 0.602 0.622 0.584
Gradient Boosting 0.671 0.620 0.639 0.639 0.628 0.639
Penalized logistic regression 0.664 0.622 0.641 0.659 0.627 0.620

Future FSI Crash Involvement risk1 per 1000 drivers pa 1.62 2.98 1.21 2.51 3.00 5.36

1 Calculated based on July 2015 to June 2018 data using the same method used for the clusters in Supplementary Table 1.

Table 3
Penalized logistic regression results for each sample: Demographic predictor variables, controlling for licensing and offense variables.

Predictor Adjusted Odds Ratios (95% confidence intervals)

All driver Probationary Older Heavy Vehicle Motorcycle Banned

Age (continuous)
Age (years) 0.99

(0.99, 1.00)
1.01
(1.00, 1.02)

0.99
(0.98, 0.99)

0.99
(0.98, 0.99)

0.98
(0.97, 0.99)

Age (categorical)
Age group 26–79 1.00 1.00 1.00
Age group 18–25 1.22

(1.12, 1.34)
NA

Age group 80–90 1.54
(1.34, 1.76)

1.26
(1.04, 1.52)

1.60
(1.15, 2.23)

Female 1.00 1.00 1.00 1.00 1.00
Male 1.28

(1.22, 1.34)
1.20
(1.05, 1.37)

1.22
(1.10, 1.35)

1.53
(1.20, 1.94)

1.28
(1.05, 1.55)

ARIA region
Inner regional 1.00 1.00 1.00 1.00
Major city 1.26

(1.19, 1.33)
1.23
(1.11, 1.37)

1.37
(1.22, 1.55)

1.31
(1.15, 1.49)

Outer regional 0.72
(0.64, 0.81)

0.68
(0.55, 0.84)

0.68
(0.52, 0.88)

SEIFA quintile
3rd SEIFA quintile 1.00 1.00 1.00 1.00 1.00
4th SEIFA quintile 0.82

(0.78, 0.87)
0.82
(0.72, 0.94)

5th SEIFA quintile 0.68
(0.64, 0.71)

0.68
(0.58, 0.80)

0.86
(0.77, 0.96)

0.70
(0.59, 0.82)

0.72
(0.63, 0.82)

Note: The ‘‘age (years)” variable is a continuous variable (in years). The ‘‘age group” variables are categorical; Predictor variables that were not included in any final model are
excluded in this table; Cells = 1.00 indicate that this category is the reference group for the indent categories below it.

D. Meyer, S. Muir, S.S.M. Silva et al., Journal of Safety Research 79 (2021) 83–93

87



3.2.2. License history predictor variables for penalized logistic
regression models

Table 4 provides the odds ratios for the significant licensing
variables in the penalized logistic regression models. In the follow-
ing summary, odds ratios are again provided in brackets for the ‘all
driver’ model unless indicated otherwise. Overall, the odds of FSI
crash involvement were higher for drivers with record of a motor-
cycle license (OR = 1.75), but lower for motorcyclists who also had
a car license (OR = 0.46). Also, the FSI crash involvement risk was
higher for drivers with a heavy vehicle license endorsement, par-
ticularly when this was for a multi-combination heavy vehicle
license endorsement (OR = 2.21). The withdrawal of a license due
to cancellation, disqualification, or expiration reduced the risk of
FSI crash involvement (OR = 0.45, 0.43, and 0.23, respectively).
However, probationary drivers who had previously had their

licenses suspended were at high FSI crash involvement risk
(OR = 1.70) as were probationary drivers who needed to attempt
their learner permit knowledge test more than once to pass
(OR = 1.19). In addition, probationary drivers in their first year
(P1) were more at risk of FSI crash involvement (OR = 1.45) than
in the following three years of their probationary driving period
(P2). A medical condition license flag indicated significantly greater
risk of FSI crash involvement only in the case of heavy vehicle
license endorsed drivers (OR = 1.48), perhaps because these drivers
are required to have more frequent medical tests than other dri-
vers. A previous interstate or overseas license indicated greater risk
of FSI crash involvement only in the case of motorcyclists
(OR = 1.14). Finally, for the banned group, drivers with a motorcy-
cle license were more likely to be FSI crash involved (OR = 2.53), as
were drivers with a heavy rigid endorsement (OR = 2.03). However,

Table 4
Penalized logistic regression results for each sample: License history predictor variables controlling for demographic and offense variables.

Predictor Adjusted Odds Ratios (95% confidence intervals)

All driver Probationary Older Heavy vehicle Motorcycle Banned

Motorcycle license
No record of a motorcycle license 1.00 1.00 1.00 NA 1.00
Record of motorcycle license 1.75

(1.64, 1.87)
1.70
(1.45, 1.99)

1.52
(1.35, 1.70)

NA 2.53
(1.76, 3.64)

Car license
No record of a car license 1.00 NA 1.00
Record of car license 0.48

(0.30, 0.78)
NA 0.46

(0.28, 0.78)

Heavy vehicle license endorsement
No heavy vehicle license endorsement 1.00 NA 1.00 NA 1.00 1.00
Light rigid endorsement NA 1.00yy

Medium rigid endorsement 1.20
(1.05, 1.36)

NA 0.87
(0.75, 0.99)

Heavy rigid endorsement 1.45
(1.33, 1.59)

NA 1.25
(1.05, 1.49)

2.03
(1.20, 3.45)

Heavy combination endorsement 1.46
(1.31, 1.62)

NA 1.38
(1.15, 1.64)

1.24
(1.05, 1.48)

Multi-combination endorsement 2.21
(1.85, 2.66)

NA 1.95
(1.17, 3.24)

1.75
(1.44, 2.13)

2.00
(1.52, 2.64)

License proficiency
Full licensey 1.00 NA NA
P1 license 2.02

(1.72, 2.38)
1.45
(1.22, 1.69)

NA

P2 license 1.40
(1.27, 1.54)

1.00 NA

License status
Current license 1.00 1.00 1.00 1.00 1.00 1.00
Cancelled license 0.45

(0.29, 0.70)
0.57
(0.37, 0.90)

Disqualified driver 0.43
(0.30, 0.62)

0.03
(0.00, 0.18)

0.19
(0.07, 0.55)

Expired license 0.23
(0.19, 0.29)

0.02
(0.01, 0.07)

0.28
(0.16, 0.49)

0.24
(0.13, 0.45)

Suspended license 1.70
(1.05, 2.77)

0.34
(0.16, 0.75)

Medical condition flag
No flag 1.00
Flag 1.48

(1.07, 2.04)

Previous Interstate or overseas license
No NA 1.00
Yes NA 1.14

(1.01, 1.28)

Knowledge test
No. of knowledge test attempts NA 1.19

(1.06, 1.34)
NA NA NA NA

Note: Predictor variables that were not included in any final model are excluded in this table; NA = this predictor variable was not included in the analysis for this sample;
Cells = 1.00 indicate that this category is the reference group for the indent categories below it. yFull license holders were merged with Learner drivers; yy‘‘Light rigid” was the
reference category for license endorsement for the heavy vehicle license endorsed sample.
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after license cancellation the risk of FSI crash involvement was
reduced for the banned group (OR = 0.57). Although license sus-
pension did not feature in the ‘all driver’ model, this was addressed
in Table 5 where ban duration was found to be very important.

3.2.3. Offense history predictor variables for penalized logistic
regression models

Table 5 identifies the offense variables that contribute signifi-
cantly to predictions of FSI crash involvement. In the ‘all driver’
sample these factors include higher numbers of offenses involving
excess speeds of �10 km/h (OR = 1.15), seat belt offenses
(OR = 1.24), and traffic light offenses (OR = 1.14). For probationary,
older drivers (60–90 years), and heavy vehicle license endorsed
drivers the number of traffic offenses is an important predictor of
FSI crash involvement risk (OR = 1.12, 1.26, and 1.18, respectively).
For motorcyclists and banned drivers with a larger number of sus-
pension bans in the last two years, FSI crash involvement risk is
higher (OR = 2.39 and OR = 1.28, respectively). For heavy vehicle
endorsed drivers with a higher number of bans, FSI crash involve-
ment risk is also greater (OR = 1.35). However, for the ‘all driver’
group the maximum license ban duration provided a more
nuanced indication of FSI crash involvement risk (OR = 1.48–1.56)
than the number of bans. Finally, the total number of traffic
infringement notices provides a good indication of future FSI crash
involvement risk in the case of motorcyclists (OR = 1.16).

4. Discussion

4.1. Cluster analysis

Six distinct groups of drivers were identified based on their
offending levels in the two-year predictor period. The two groups
with the highest offending rates were found to have FSI crash
involvement rates (per 1,000 drivers) of 4.3 and 7.8 per annum
in the following three years, confirming the link between traffic
offending and FSI crashes. The link between traffic offending and
future crashing has been documented elsewhere. For example,
McDonald and colleagues (2020) reported the odds of receiving
an infringement in the month prior to a crash were 35% higher

than receiving an infringement in the same month the year prior.
A 2015 Queensland study found drivers had a 32% increased crash
risk after receiving traffic infringements, with a 41% increased
crash risk for crashes in which the offender was at fault (Walter
& Studdert, 2015). In the United States, 40% of drivers injured in
crashes while under the influence of alcohol had a previous history
of alcohol offenses (Lapham, Baum, Skipper, & Chang, 2000).

4.2. Models for future FSI crash involvement

After controlling for demographic and licensing characteristics
significantly related to FSI crash involvement (namely gender,
socio-economic level, urban/rural residence, license status and
endorsements), it was found that drivers receiving more traffic
infringement notices for seat belt, disobeying traffic lights, and
speeding offenses were at increased risk of FSI crash involvement.
This supports the work of Factor (2014) who found that the prob-
ability of involvement in an FSI crash was more than 11 times
higher for drivers with six traffic infringements per year compared
to those with one infringement per year.

Separate analyses for five important driver sub-groups indi-
cated the following: first year probationary drivers (P1) were more
at risk than second to fourth year probationary drivers (P2), those
aged over 80 were at greater risk than drivers aged 60–79, drivers
with a multi-combination heavy vehicle license endorsement were
more at risk than other heavy vehicle license endorsed drivers,
motorcyclists were more at risk if they did not have a car license.
The higher FSI crash involvement risk of these sub-groups is com-
mon knowledge amongst road safety professionals.

Victorian probationary drivers have the highest risk of crashing
in their first year of driving and this group has more crashes than
any other road user type (VicRoads, 2017, 2019). Indeed, young
drivers (18–25 years) are overrepresented in crashes and resulting
casualties across Australia (Senserrick & Williams, 2015) and Vic-
torian novice drivers have higher casualty and FSI crash involve-
ment rates compared with Victorian experienced drivers
(Catchpole, 2020). Regarding older drivers, the increased FSI crash
involvement risk found here also matches past research. Studies in
Australia and worldwide show that, for crash rates per distance

Table 5
Penalized logistic regression results for each sample: Offense history predictor variables controlling for demographic and licensing variables.

Predictor Adjusted Odds ratios (95% confidence intervals)

All driver Probationary Older Heavy vehicle Motorcycle Banned

No. of high speed (�10 km/h) offenses 1.15
(1.09, 1.21)

No. of failure to wear seat belt offenses 1.24
(1.02, 1.50)

No. of disobey traffic light offenses 1.14
(1.07, 1.22)

No. of offenses 1.12
(1.08, 1.16)

1.26
(1.21, 1.32)

1.18
(1.14, 1.23)

No. of traffic infringement notices 1.11
(1.05, 1.16)

1.16
(1.11, 1.21)

No. of bans 1.35
(1.05, 1.75)

No. of suspension bans 2.39
(1.61, 3.56)

1.28
(1.09, 1.51)

Max. ban duration
No bans 1.00
Less than 3 months 1.56

(1.26, 1.93)
Between 3 and 6 months 1.56

(1.02, 2.39)
More than 6 months 1.48

(1.17, 1.87)

Note: Predictor variables that were not included in any final model are excluded in this table; Cells = 1.00 indicate that this category is the reference group for the indent
categories below it.
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driven, younger and older drivers have higher crash rates com-
pared with middle-aged drivers (Baldock, Thompson, Dutschke,
Kloeden, Lindsay, & Woolley, 2016).

The finding that drivers with a multi-combination heavy vehicle
license endorsement were more at risk than other heavy vehicle
license endorsed drivers has been found in another Victorian study
where articulated truck crashes were more severe than rigid truck
crashes (Haworth & Symmons, 2003). As multi-combination heavy
vehicles are larger than articulated trucks resulting in more severe
outcomes during a crash, this finding would be expected. The find-
ing that having a car license is protective for motorcyclists was also
not unexpected. In 2017, for every mile travelled, U.S. motorcyclist
fatalities occurred nearly 27 times more frequently than passenger
car occupant fatalities (NHTSA, 2019). In 2019, Victorian motorcy-
clists had a much higher fatality crash rate per billion vehicle kilo-
meters travelled – 84.9 versus 2.4 for vehicle occupants (BITRE,
2020).

Also, drivers who had received a traffic ban in the last two years
were particularly at risk of future FSI crash involvement in the fol-
lowing three years if they were younger, a motorcyclist, or heavy
vehicle license endorsed driver. Finally, the study found that FSI
crash involvement risk increases for all license ban durations, with
bans less than three months and bans three to six months having a
slightly higher crash involvement risk compared with bans greater
than six months. The FSI crash involvement risk occurs as some
banned drivers continue to drive unauthorized and the banned dri-
vers in this study were compared with drivers with a current
license who are inherently safer drivers. It should be noted that
other research with Victorian drink-drivers and Victorian speeders
has found license cancellation and suspension to be effective sanc-
tions in reducing offending and crashing (Imberger, Watson, &
Kaye, 2019; VicRoads, 2016).

4.3. Practical applications

This research has identified five groups of driver who are at risk
of involvement in FSI crashes, suggesting that road safety interven-
tions need to target these groups. Successful interventions for
some of the above high risk groups are well established.
Castellucci, Bravo, Arezes, and Lavalliere (2020) have provided a
review of interventions that are tailored to improving driving in
older healthy individuals by working on components of safe driv-
ing such as self-awareness, knowledge, behavior skills, and reduc-
ing crash/collision rates, while many other studies have focused on
developing screening tools to identify medically at-risk drivers
(Bédard, Weaver, Dārzin, & Porter, 2008; Dickerson & Bedard,
2014). Our research suggests that older people with a higher num-
ber of recent traffic offenses and with heavy vehicle endorsed
licenses or motorcycle licenses need to be particularly targeted in
these ways.

Similarly, there has been considerable research investigating
the effectiveness of interventions designed to improve safety of
probationary drivers (Pressley, Fernandez-Medina, Helman,
McKenna, Stradling, & Husband, 2016). Interventions that maxi-
mize maturity and on-road experience before licensure, and limit-
ing exposure to risky situations such as night-time driving and
carrying peer-age passengers, have all been shown to be successful
(VicRoads, 2017). Other interventions that have shown promise
include engaging parents in managing post-test driving in specific
risky situations, utilizing technology such as in-vehicle data recor-
ders to monitor driver behavior (e.g., speeding and use of mobile
phones), and to provide feedback to the driver, banning of distract-
ing devices and training in hazard perception skills. Our research
shines a light on the need for interventions with young drivers
who have had license suspensions in the past, who have battled

to pass their learner driving knowledge test, and those who have
had a high number of traffic offenses.

Similar interventions have been suggested for motorcyclists
(Haworth, Rowden, Wishart, Buckley, & Watson, 2012). Our
research indicates that motorcyclists that receive traffic infringe-
ment notices or suspension bans should be specifically targeted
with interventions that will reduce unsafe attitudes and behavioral
intentions, particularly if they hold a license with a heavy vehicle
endorsement. Mooren, Grzebieta, Williamson, Olivier, and
Friswell (2014) have suggested that safety training, management
commitment, worker participation, incentives, work scheduling,
vehicle technologies, and pay levels can all affect the safety of
heavy vehicle drivers. Our research suggests that drivers with a
multi-combination license endorsement and those with high num-
bers of previous traffic offenses and bans need to be especially tar-
geted in this way. However, medical flags were also seen to be
reflected in higher FSI crash involvement, indicating that medical
testing of drivers of heavy vehicles is also an important priority.

Finally, drivers who have a history of bans are usually handled
through the courts, but there is also some research regarding post-
court safety interventions for convicted traffic offenders. Wright,
Ayton, Rowe, and Pligt (2007) have recommended interactive, cer-
tificated, classroom-based interventions focusing on the conse-
quences of illegal driving behavior for the drivers themselves and
other drivers (often perceived as being less able drivers). Research
also indicates that such courses should be ‘behavior change’ based
to have an impact, targeting items such as beliefs about peer
acceptability, the commonness of the undesirable behavior, driver
responsibility, perceptions of the likelihood of detection, and pro-
viding alternative safe behaviors and strategies for managing trig-
gers and relapses of unsafe behavior (Fylan, Hempel, Grunfeld,
Conner, & Lawton, 2006). Our research suggests that banned dri-
vers with motorcycle licenses and/or heavy vehicle endorsed
licenses should be specifically targeted with ‘behavior change’
strategies.

It is particularly important to consider interventions for repeat
offenders in any of the above categories, because these drivers are
more likely to be involved in future FSI crashes. In addition, this
research indicates which offense categories should be monitored
when evaluating interventions designed to change risky driving
behaviors. These offense variables include high excess speed
(�10 km/h), failure to wear seatbelts, and disobeying traffic lights.
Allowing greater penalties (e.g., demerit point penalties) for these
particular offenses is another response that may be helpful.

4.4. Limitations

This analysis was not without its limitations. Firstly, the way
the outcome variable (FSI crash involvement) has been defined
may be a limitation. This variable does not consider whether a dri-
ver was at fault (Victorian crash data does not indicate driver
fault), rather, just that the driver was or was not involved in an
FSI crash. Further, potential predictor variables such as crash his-
tory were not explored in our analysis as too few drivers had expe-
rienced multiple FSI crashes in the period of interest. However, it
can be argued that the offense data included in this analysis would
capture previous crash involvement when the driver was at fault,
so this may not be a serious omission. A driver who causes a FSI
crash is likely to be convicted of an offense of some nature.

Further, potential predictors (e.g., kilometers travelled) and
traffic variables (e.g., traffic volumes) were not included in this
analysis because the data were not available. This means that the
results for drivers that travel large distances, particularly drivers
with heavy vehicle license endorsements, should be interpreted
with caution. However, some of the variables included in the anal-
ysis are directly related to driving exposure (e.g., heavy vehicle
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endorsement) and some are likely to be indirectly related to driv-
ing exposure (e.g., number of offenses). Also, it should be noted
that it is not known in which vehicle offenses were committed.
For example, the number of bans was found to be positively asso-
ciated with FSI crash involvement risk for the heavy vehicle license
endorsed driver subgroup; however, it is not known if these bans
were imposed as a result of driving offenses committed in heavy
vehicles, cars, or on motorcycles. Another important variable not
captured in our data is police enforcement practices (e.g., technol-
ogy such as speed cameras) and policing intensity, which relate to
both detection levels for offending and the likelihood of FSI crashes
(Bates, Soole, & Watson, 2012).

Finally, although insights regarding the relationship between
offense history and future FSI crash involvement have been
gleaned from the machine learning methods employed in this
study, none of our models are sufficiently powerful to be able to
provide estimated probabilities of future crash involvement for
individual drivers. This is because there are many driver specific
variables (such as personality and cognition variables) that were
not included in this study. The inclusion of such variables would
be required to produce models with sufficient accuracy as to allow
individual predictions of future FSI crash involvement. The collec-
tion of such data would be very costly, making this an unachiev-
able goal at this time.

5. Conclusions

The use of machine learning methods in this study has shown
that these methods, used in tandem, can be successfully used in
this context and can therefore be recommended for the future
modelling of crash data. The first of these methods, a two-stage
cluster analysis, has shown that the nature of offending and reof-
fending can be captured from large numbers of offending statistics,
allowing the relationships between offense patterns and future FSI
crash involvement risk to be better understood, while identifying
population sub-groups that need further investigation. The next
two methods, random forests and gradient boosting, have shown
that it is possible to identify the variables that are most predictive
of future FSI crash involvement risk, without making assumptions
about the nature of these relationships. Finally, this study has
shown that penalized logistic regression can be used to provide a
more parsimonious model for FSI crash involvement risk. This
has been done by using the LASSO algorithm to select a more par-
simonious model with predictive accuracy similar to that obtained
with random forests and gradient boosting, while allowing the use
of familiar odds ratios for condensing the critical modelling infor-
mation in a format that facilitates policy decision-making.

To conclude, the models produced provide significant insights
regarding the predictors associated with FSI crash involvement
for at-risk driver groups but cannot be used to predict the circum-
stances for an individual driver. This study has shown the efficacy
of machine learning methods for the prediction of future FSI crash
involvement risk with the most useful models derived using penal-
ized logistic regression. The large numbers of observations and the
large numbers of highly correlated variables makes these machine
learning methods more appropriate than conventional statistical
modelling for these data, allowing the best models to be chosen
for describing the data. It is therefore recommended that such
methods be considered for future studies of this nature.

The results of this study show that demographics and licensing
history do explain, to a large extent, the types of drivers who are
more at risk of involvement in FSI crashes. However, traffic offense
history is also important, significantly improving the accuracy of
five of the six models considered. The results provide up-to-date
insights into the driver characteristics most associated with FSI

crash involvement risk. This information will help better target
road safety interventions and provide indications of which offense
variables should be monitored when evaluating interventions.
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a b s t r a c t

Introduction: A large majority of pedestrian fatal crashes occurred during the nighttime. The focus of this
research was to identify if the following pedestrian crossing treatments were more or less effective at
night: pedestrian hybrid beacon (PHB), rectangular rapid flashing beacon (RRFB), or LED-embedded
crossing warning sign (LED-Em). Method: For each treatment, two statistical evaluations were used on
the staged pedestrian data: ANCOVA models that considered per site mean yield rates and logistic regres-
sion that considered the individual driver response to the crossing pedestrian. Results: For the PHB, essen-
tially no difference was found between the very high daytime and nighttime driver yielding values. The
research found RRFBs to be more effective at night, and the LED-Em to be more effective during the day.
Using the results from the logistic regression evaluation, higher driver yielding was observed at LED-Em
sites in the lower speed limit group (30 or 35 mph (48.3 or 56.3 kph), with 2 lanes (rather than 4 lanes),
with narrow lanes of 10.5 or 11 ft (3.2 or 3.4 m) widths (rather than 11.5 or 12 ft (3.5 or 3.7 m) widths),
and lower hourly volumes. The results from the ANCOVA model for LED-Ems also showed a statistically
significant difference for yield lines (higher yielding when present). Conclusions: This analysis represents
the only known study to date on the effectiveness of pedestrian crossing treatments at night. Practical
Applications: This study provides additional support for the PHB as a treatment because the PHB was
found to be highly effective during the nighttime as well as the daytime. The value of using advance yield
lines was also demonstrated. The findings offer a caution regarding the use of the LED-Em treatment on
higher speed, higher volume, or wider roads.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

One reason that motor vehicle-crashes with pedestrians are a
concern is because pedestrians are more likely to sustain fatal or
severe injuries compared to vehicle occupants. In Texas between
2010 and 2016, pedestrian crashes accounted for 3,434 fatal
crashes representing 16% of all fatal crashes (Texas Strategic
Highway Safety Plan, 2020). A large majority of those pedestrian
fatal crashes occurred during the nighttime (79%).

Several traffic control device treatments aimed at improving
crossing opportunities for pedestrians have been installed includ-
ing the following:

� Pedestrian hybrid beacon (PHB) (see example in Fig. 1a).
� Rectangular rapid flashing beacon (RRFB) (see example in
Fig. 1b).

� Light emitting diode embedded (LED-Em) pedestrian/school
crossing sign (see example in Fig. 1c).

The PHB uses typical traffic and pedestrian signals, but with a
different configuration and sequence of operations (see Fig. 2).
The PHB was developed in Tucson, Arizona starting about 2000
with changes reflecting feedback from the traffic engineering com-
munity. The PHB was included in the 2009 Manual on Uniform
Traffic Control Devices (MUTCD) (FHWA, 2009). The RRFB currently
has Interim Approval for optional use (Knopp, 2018). The RRFB is a
pedestrian-actuated conspicuity enhancement to supplement
standard pedestrian and school crossing warning signs at uncon-
trolled marked crosswalks. It uses rectangular-shaped LEDs, flashes
rapidly in a combination wig-wag and simultaneous flash pattern,
and is mounted immediately adjacent to the crossing sign. LEDs are
embedded in traffic signs to enhance drivers’ awareness of the
signs and can outline either the sign itself or the words and sym-
bols on the sign. For this study, LED-Em sites were only considered
if the LEDs were pedestrian activated (as opposed to flashing con-
tinuously) and the sign had the LEDs in the border.

https://doi.org/10.1016/j.jsr.2021.09.009
0022-4375/� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: K-Fitzpatrick@tamu.edu (K. Fitzpatrick).

Journal of Safety Research 79 (2021) 273–286

Contents lists available at ScienceDirect

Journal of Safety Research

journal homepage: www.elsevier .com/locate / jsr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsr.2021.09.009&domain=pdf
https://doi.org/10.1016/j.jsr.2021.09.009
mailto:K-Fitzpatrick@tamu.edu
https://doi.org/10.1016/j.jsr.2021.09.009
http://www.sciencedirect.com/science/journal/00224375
http://www.elsevier.com/locate/jsr


While the effectiveness of the PHB, RRFB, and LED-Em have
been examined in previous studies, whether these treatments have
a similar effectiveness at night needs to be explored. For this activ-
ity, researchers sought to evaluate and compare the day and night
operational performance of the PHB, RRFB, and LED-Em
treatments.

2. Previous research

Several studies have examined the performance of pedestrian
traffic control device crossing treatments including a 2019 Texas
Department of Transportation (TxDOT) study that summarized
the findings for these three treatments (Finley et al., 2020; Rista
& Fitzpatrick, 2020). Most of these studies used a study approach
of counting the number of drivers that did and did not yield to a
crossing pedestrian. In many cases a staged pedestrian, who is a
researcher trained to cross in a similar manner for all locations
and crossings, was used. A summary of key findings for each of
the treatments follow.

2.1. PHBs

Several studies have evaluated the PHBs and have reported high
yielding rates varying from 75% to 97% (Fitzpatrick et al., 2006;
Turner, Fitzpatrick, Brewer, & Park, 2006; Fitzpatrick, Avelar,
et al., 2016). A comprehensive study for FHWA (Fitzpatrick &
Pratt, 2016) identified an overall average driver yield rate of 96%
for sites with posted speed limits between 30 and 45 mph (48.3–
72.4 kph). An Arizona Department of Transportation study
(Fitzpatrick, Cynecki, Pratt, Park, & Beckley, 2019) utilized 10 loca-
tions in Arizona for which operating speeds ranged between
44 mph (70.8 kph) and 54 mph (86.9 kph) to evaluate the driver
yielding rates for facilities with higher posted speed limits. The
researchers found that the average yield rate across the sites was
97%, thus concluding that PHBs are equally effective on facilities
with higher posted speed limits.

2.2. RRFBs

A 2016 Texas A&M Transportation Institute (TTI) report
(Fitzpatrick, Brewer, et al., 2016) that evaluated the effectiveness
of RRFBs provides a detailed summary of various studies that
investigated the effectiveness of RRFBs utilizing the measure of dri-
ver yield rates. The TTI study (Fitzpatrick, Brewer, et al., 2016)
combined previous data from TxDOT and Federal Highway Admin-
istration (FHWA) studies and through a series of statistical models,
identified factors associated with driver yielding at the RRFB. Those
factors included intersection configuration (number of legs), pres-
ence of median, crossing distance, and direction of travel (one-way
vs. two-way traffic). For a subset of data that included one-minute
vehicle counts for each crossing, the statistical model showed a
number of significant factors contributing to driver yielding such
as, intersection configuration, crossing distance, one-minute traffic
count, posted speed limit, location of the beacons (overhead or
roadside), sign face (e.g., pedestrian, trail, etc.), and presence of
yield line, school, or transit stop.

Before-and-after studies for the RRFB reported increased yield-
ing rates although with large variability in the magnitude of the
increase. Other more recent studies (Fitzpatrick et al., 2015;
Fitzpatrick, Avelar, et al., 2016; Morrissey, 2013; Potts et al.,
2015) examined the yield rate at treated sites with either staged
or non-staged pedestrian observations, also found a wide range
of effectiveness, varying by time of day, treatment activation, and
beacon location. A 2020 study (Monsere, Kothuri, & Anderson,
2020) in Oregon found higher yielding rates with the presence of
beacons in the median; however, the increase was not large
(<5%) and was not statistically significant.

2.3. LED-Ems

Most previous studies on the LED-Em pedestrian/school cross-
ing signs only included a few locations (Hawkins & Bektas, 2012;
Ellis & Tremblay, 2014; Hourdos, 2018). These studies found, in

Fig. 1. Examples of Treatments.
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general, low driver yielding. At a crosswalk with an LED-Em in Des
Moines (Hawkins & Bektas, 2012), motorist yielding observed was
highest in the morning at 46%, followed by lower yielding rates of
40% at noon, and 30% in the afternoon. A Vermont case study (Ellis
& Tremblay, 2014) noted that overall yield rate decreased at the
site from year one to year four of installation, but still remained
12% higher than the yield rate before installation. Observations at
a Minnesota (Hourdos, 2018) site included no improvement in dri-
ver yield rates after the installation of the LED-Em with less than
20% of pedestrians activating the treatment during crossings.

A Texas study (Finley et al., 2020; Rista & Fitzpatrick, 2020) col-
lected data at several LED-Em installations. Higher hourly volumes,
speeds 45 mph (72.4 kph) and greater, lack of sidewalks, and 12-ft
(3.7 m) lanes (no deviation from baseline 12-ft (3.7 m) lane width)
were found to adversely affect yield probability. The authors con-
cluded that based on the findings, LED-Emwould be a suitable can-
didate treatment at sites with sidewalks, lower operating speeds
and traffic volumes, and narrow lanes.

2.4. Key findings from literature

The main findings from the literature review included the
following:

� None of the previous research efforts included nighttime data
collection.

� PHBs have been found to have very high driver yielding rates
including sites with wider crossing distances and operating
speeds up to 54 mph (86.9 kph), making PHBs a preferred treat-
ment for higher speed or multilane roadways.

� While RRFBs have been shown to be an effective treatment, sev-
eral studies have demonstrated a wide range of effectiveness.
The treatment was found to be more effective for crossings with
shorter crossing distance and presence of a median, presence of
yield lines, and near a school or transit stop.

� Most of the studies on the effectiveness of LED-Ems only
included a few locations. The 2019 TxDOT study (Finley et al.,
2020) collected data at 13 locations and found an average driver
yield rate of 40%.

These findings suggested that in the examination of nighttime
conditions, study site selection should consider a range of geomet-
ric conditions including number of lanes (crossing distance), med-
ian presence, and speed (operating or posted).

3. Study approach

Researchers employed a staged pedestrian crossing study
approach in this study. The intent was to collect data at 30 sites
during both daytime and nighttime conditions; however, equip-
ment malfunctions and in a few cases, concerns with the available

Fig. 2. Pedestrian hybrid beacon sequence along with appropriate actions for driver and pedestrian.

K. Fitzpatrick and Eun Sug Park Journal of Safety Research 79 (2021) 273–286

275



nighttime street lighting conditions, limited nighttime data collec-
tion. The following sections describe site selection, site character-
istics, data collection methodology, and data reduction processes.

3.1. Site selection

The goal was to select 10 sites for each of the treatments of
interest. Sites were selected with consideration of having a range
of posted speed limits and median type represented. In addition,
sites were selected to represent either 2- or 4-lane roads. Data col-
lection efficiency was the final consideration in site selection. For
the LED-Em treatment, all feasible sites were considered. The sites
with PHBs were concentrated in Austin, which reflects the city
with the most PHB installations in Texas. More regions within
Texas have installed the RRFB (and the LED-Em) and the site selec-
tion reflected that diversity with sites being in or near the three
major population regions of Texas (Houston, Dallas/Fort Worth,
and San Antonio).

3.2. Site characteristics

Researchers collected data at 10 PHB sites, 12 RRFB sites, and 8
LED-Em sites. In addition, the daytime data collected at 12 LED-Em
sites in the late spring of 2019 (Finley et al., 2020) were also used
in the analysis. Researchers used aerial photographs to identify the
roadway geometric characteristics and these characteristics were
confirmed in the field as needed. Table 1 lists the variable descrip-
tions considered in the statistical analysis. Additional variables
were collected for each site, such as presence of bike lane or on-
street parking, crosswalk pavement marking pattern type, and dis-
tance to streetlight; however, those variables were either uniform

for all sites or were determined in the preliminary analyses to be
not influential with respect to driver yielding.

Table 2 lists the site characteristics for the sites and Table 3
provides the summary statistics or number of sites by treatment
type. All PHB sites had an advance stop line and continental cross-
walk pavement markings. Most had an advance warning sign. For
motorists, the PHB rests in the dark mode and when activated tran-
sitions to flashing yellow, steady yellow, steady red, and then flash-
ing red. The flashing yellow provides an additional warning to the
drivers that the device will soon be transiting to red. For these 10
sites the flashing yellow lasted between 4 and 9 s. The flashing red
ranged between 24 and 35 s.

One of the RRFB sites had diagonal crosswalk pavement mark-
ings with all remaining sites having continental pavement mark-
ings at the crosswalk. The length of time the device was active
(i.e., flashing yellow) ranged between 25 and 35 s. Researchers
did not collect nighttime data at one location because the equip-
ment had malfunctioned, and the device would not activate when
the pedestrian pushed the button.

Because of challenges during data collection for the LED-Em
sites, attempts to collect data between November 2019 to February
2020 occurred at 8 rather than the preferred 10 sites. The daytime
data collected at 12 sites during the May 2019 study (Finley et al.,
2020) were included in the analysis to expand the sample size.
Additional challenges were faced with regards to the nighttime
data collection for the LED-Em sites. At two of the sites, the data
collectors did not feel comfortable with the combination of operat-
ing speed, available streetlight levels for both sides of the street,
type of development, and/or lack of general pedestrian activity
level; therefore, nighttime data collection was stopped at those
two sites. Table 2 Indicates if the data available for analysis repre-
sented: (a) daytime data collected in spring of 2019, (b) daytime

Table 1
Variable Descriptions.

Variable Name, Variable Description Levels/Range

ActiveSLGroup, Active Speed
Limit Group

Speed limits groups Low: 35 mph and less (56.3 kph and
less)
High: 40 mph and more (64.4 kph)

ActiveSL, Active Speed Limit Speed limit active during data collection (mph). Variable used as a surrogate for typical
operating speeds.

20 mph (32.2 kph) to 50 mph
(80.5 kph)

AdvSign, Advance Sign Is an advance warning sign present for the site? Yes = advance sign present
No = no advance sign present

HourlyVol, Hourly Volume Estimated hourly volume just prior to the staged pedestrian crossing based on 1-min
count

Day: 118 to 3741, average 754 veh/hr
Night: 88 to 3287, average 596 veh/hr

LnWdGroup, Lane Width Group Lane width groups Narrow: 10.5 or 11 ft (3.2 or 3.4 m)
Typical: 11.5 or 12 ft (3.5 or 3.7 m)
Wide: 13 ft (4.0 m) or more

LnWd, Lane Width Lane width 9 to 14 ft (2.7 to 4.3 m), average 11.3 ft
(3.4 m)

Legs, Legs Number of legs 2 legs = midblock crossing
3 legs = T-intersection
4 legs = cross intersection.

LightLevel, Light level Natural light level during data collection Day
Night

MedType, Median Type Type of median raised, two-way left turn lane (TWLTL),
or none

Develop, Develop Type of land development Com = commercial
Hos/Uni = hospital/university (Hos/Uni)
Res = residential
Mix = mix of land uses

#Thru, Number of Through Lanes Number of through lanes on the major road, total of both directions 2 to 4 lanes with one site having 5 lanes
PSL, PSL Posted speed limit 30 mph (48.3 kph) to 50 mph

(80.5 kph)
Site, Site Pedestrian treatment (PHB, RRFB, or LED-Em), two-letter city code, three-digit site

number.
Unique for each site

TreatType, Treatment Type Type of treatment PHB, RRFB, or LED-Em
Line, Yield or Stop Line Presence of a stop or yield line prior to the crosswalk Stop (only PHBs)

Yield (for RRFBs or LED-Ems)
None
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data collected in winter of 2019–2020, or (c) nighttime data col-
lected in the winter of 2019–2020. At one of the sites, the LEDs
flashes for 80 seconds upon activation. The other sites where the
flash rate is known have a range of 30–60 s for the length of time
the LEDs were flashing.

3.3. Data collection protocol

The protocol for data collection was developed and refined
based on experiences from several previous research projects
(see especially Fitzpatrick & Pratt, 2016; Fitzpatrick et al., 2013).
For this study, a goal of 60 staged pedestrian crossing events or
four hours of data (the smaller of the two) was collected at each
location. A staged pedestrian is a member of the research team
who wears a ‘‘uniform” of gray t-shirt or sweatshirt, blue jeans,
and predominantly dark shoes while completing the street cross-
ings. A baseball cap and sunglasses are permitted. The stage pedes-
trian is trained to approach the crossing in a similar manner for
each location so to minimize the effects of pedestrian behavior
on drivers. Training also covers when the staged pedestrian should
approach the pedestrian push button so that there is at least one
driver who must decide whether to yield or not yield to the waiting
pedestrian once the treatment is activated. Placing a foot on the
pavement is also part of the training so that the staged pedestrian
meets the state law requirement that the pedestrian needs to be on
the pavement (rather than just waiting on the curb).

The staged pedestrian activates the pedestrian treatment and
then waits until the vehicular traffic approaching has stopped
before initiating the crossing. For the next staged pedestrian
crossing event, the staged pedestrian is to have at least 1 minute
between events so that all queued vehicles clear before beginning
another staged crossing. The 1-minute gap also permits the count-
ing of the number of vehicles present at the site without including
vehicles being in a queue for a previous crossing pedestrian.

The second member of the research team waits in an area
where he or she will not attract the attention of drivers or natural
pedestrians while at the same time having a clear view of the
crosswalk, pedestrians, and traffic from both directions. This per-
son records the number of drivers that did not and did yield to
the staged pedestrian.

A video camera was also installed prior to data collection. The
recordings served as a backup for the yielding data collected and
was used to obtain the 1-min volume vehicle counts prior to each
pedestrian crossing. While the site could be within a school zone,
researchers attempted to collect data when the school zone was
not active. Researchers collected data when a school zone was
active at only one site (YT-001) and the school zone speed limit
was used in the analysis rather than the posted speed limit.

3.4. Data collection

For this research effort, researchers began collecting data in
November 2019 and completed the data collection in February

Table 2
Site characteristics.

Site1 Data2 #Thru Ln Wd3 PSL4 Legs Med Type AdvSign Line D-HV5 N-HV5

PHB-AU-001 B, C 5 10 40 3 Raised Yes Stop 1739 1001
PHB-AU-013 B, C 4 11 40 2 TWLTL Yes Stop 488 261
PHB-AU-014 B, C 2 10 35 2 None Yes Stop 613 239
PHB-AU-027 B, C 2 10 30 3 TWLTL Yes Stop 1231 896
PHB-AU-035 B, C 4 9.5 35 2 None Yes Stop 1759 1802
PHB-AU-042 B, C 2 10 35 2 TWLTL Yes Stop 484 570
PHB-AU-045 B, C 4 11 40 4 None Yes Stop 453 439
PHB-AU-066 B, C 4 11 45 4 Raised Yes Stop 809 870
PHB-AU-067 B, C 2 11 30 2 TWLTL Yes Stop 458 149
PHB-AU-068 B, C 4 9 40 3 TWLTL Yes Stop 3741 3287
RRFB-AU-004 B, C 2 10 30 4 Raised No Yield 351 257
RRFB-CS-003 B, C 2 12 30 3 TWLTL No None 525 188
RRFB-DEN-01 B, C 4 9.5 30 3 Raised Yes Yield 799 444
RRFB-GA-002 B, C 4 11 40 4 Raised Yes Yield 901 666
RRFB-GA-006 B, C 4 11 40 4 Raised No Yield 324 333
RRFB-GA-007 B, C 4 11 45 4 Raised No Yield 936 978
RRFB-GA-010 B, C 4 11.5 40 4 Raised Yes Yield 268 281
RRFB-GA-013 B, C 4 12 40 4 Raised No Yield 843 690
RRFB-MA-002 B, C 2 14 30 3 None Yes None 453 124
RRFB-SA-002 B, C 4 12 40 3 Raised Yes Yield 703 930
RRFB-SA-005 B 2 13.5 30 4 Raised Yes None 835 ND
RRFB-SA-006 B, C 2 14 30 3 Raised Yes None 118 120
LED-Em-CB-001 A, B, C 4 12 35 3 TWLTL Yes None 404 161
LED-Em-CB-002 A, B 4 12 35 4 TWLTL Yes None 609 ND
LED-Em-CS-001 A, C 4 11 30 2 Raised Yes Yield 437 178
LED-Em-DF-001 A, B, C 4 12 45 2 TWLTL Yes None 594 437
LED-Em-HS-001 A 2 12 50 4 None No None 686 ND
LED-Em-KT-001 A 4 12 35 3 Raised No Yield 438 ND
LED-Em-NB-001 A, B, C 2 11.5 30 3 None Yes None 177 88
LED-Em-NS-001 A, B, C 4 10.5 30 3 None No None 849 413
LED-Em-RW-001 A 2 11 50 3 TWLTL No None 482 ND
LED-Em-SA-001 A, B 4 12 35 2 Raised Yes Yield 1633 ND
LED-Em-SA-002 A 2 12 30 2 None No None 354 ND
LED-Em-SP-001 A, B, C 4 12 30 3 Raised Yes None 351 280
LED-Em-YT-001 A 2 11 306 4 None No None 539 ND

1 Variable descriptions available in Table 1.
2 Calendar period for data collection along with light level, where A = day, spring 2019; B = day, winter 2019–2020; and C = night, winter 2019–2020.
3 LnWd = 9, 9.5, 10, 10.5, 11, 11.5, 12, 13.5, 14 ft = 2.7, 2.9, 3.0, 3.2, 3.4, 3.5, 3.7, 4.1, 4.3 m, respectively.
4 PSL = 30, 35, 40, 45, 50 mph = 48.3, 56.3, 64.4, 72.4, 80.5 kph, respectively.
5 D-HV = daytime average hourly volume (veh/hr), N-HV = nighttime average hourly volume (veh/hr), ND = no data collected.
6 Site in school zone active during data collection; therefore, 20 mph (32.2 kph) used in analysis.
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2020. Data from a previous effort (collected May 2019) were also
included in the statistical analysis. This study included about
224 h of video recordings. The previous TxDOT study provided
about 48 h of video (Finley et al., 2020). Table 4 summarizes the
number of staged pedestrian crossings along with the total number
of drivers reacting to the staged pedestrians by treatment type,
light level, and data collection period. Data for 9,301 drivers over
3,871 pedestrian crossings were reduced.

3.5. Video data reduction

Video data reduction primarily focused on obtaining 1-min vol-
ume counts. The video was also used to confirm the driver yielding
or not yielding data for several sites, as the video permitted replay-
ing of the recording which allowed for better quality control, espe-
cially at the PHB sites.

Researchers used the video to count the number of vehicles
driving across the crosswalk in both directions for 1-min prior to
each staged pedestrian crossing. The 1-min increment provides
an appreciation of the amount of traffic present just prior to the
specific pedestrian crossing. The theory is that with more vehicles,
drivers may be hesitant to stop for the pedestrian because of a con-

cern with being rear-ended. In general, the researcher identified
the video frame during which the staged pedestrian pressed the
button to activate the treatment and then rewound the video for
at least 1 minute. In a few cases a slightly longer time period
was used to be able to avoid starting the count with a vehicle on
the crosswalk. There were also a few cases when a shorter time
period was used because of the start time of the video file.

Researchers converted the 1-min traffic counts into hourly vol-
umes by using the exact number of seconds reflected in the vehicle
count. The final columns in Table 2 provide the average hourly
vehicle counts by site and light level.

4. Analysis

Data were collected by pedestrian crossing event where the
number of vehicles yielding and not yielding was recorded. This
format was revised to reflect the decision of each driver so that
each driver was assigned a value of 1 if yielding or a value of 0 if
not yielding.

The objective of this analysis was to explore the relationship
between driver yielding and independent variables and assess

Table 3
Summary statistics or number of sites by treatment type.

Variable Name1 Level2 LED-Em PHB RRFB

LnWd Min 10.5 ft (3.2 m) 9 ft (2.7 m) 9.5 ft (2.9 m)
Max 12 ft (3.7 m) 11 ft (3.4 m) 14 ft (4.3 m)
Ave 11.6 ft (3.5 m) 10.3 ft (3.1 m) 11.8 ft (3.6 m)

PSL Min 30 ft (48.4 m) 30 ft (48.3 m) 30 ft (48.3 m)
Max 50 ft (80.5 m) 45 ft (72.4 m) 45 ft (72.4 m)
Ave 35.8 ft (57.6 m) 37 ft (59.5 m) 35.4 ft (57 m)

HourlyVol, day Min 177 veh/hr 453 veh/hr 118 veh/hr
Max 1633 veh/hr 3741 veh/hr 936 veh/hr
Ave 581 veh/hr 1177.5 veh/hr 588 veh/hr

HoulyVol, night Min 88 veh/hr 149 veh/hr 120 veh/hr
Max 437 veh/hr 3287 veh/hr 978 veh/hr
Ave 259.5 veh/hr 951.4 veh/hr 455.5 veh/hr

MedType None 5 3 1
Raised 4 2 10
TWLTL 4 5 1

AdvSign No 6 0 5
Yes 7 10 7

Line None 10 0 4
Stop 0 10 0
Yield 3 0 8

Legs 2 4 5 0
3 6 3 5
4 3 2 7

Dev Commercial 4 4 4
Mix 1 4 1
Residential 7 2 6
Hos/Uni 1 0 1

1 Variable descriptions available in Table 1.
2 Column includes Min = minimum, Max = maximum, Ave = average, or variable level

Table 4
Number of staged pedestrian crossings and drivers included in analysis.

Current or
previous study

Data collection dates Treatment
type

Daytime number of staged
Ped crossings

Nighttime number of staged
Ped crossings

Daytime number
of drivers

Nighttime number
of drivers

Current November 2019 –
February 2020

PHB 570 623 1746 1623
RRFB 709 546 1420 980
LED-Em 421 326 1523 579
Subtotal 1700 1495 4689 3182

Previous May 2019 LED-Em 676 0 1430 0
Total Used in

Analysis
Grand Total All 2376 1495 6119 3182
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their effects on the probability of driver yielding. Because the out-
come variable is dichotomous (i.e., did the driver yield or not
yield), a logistic regression model was employed.

The log-odds of the probability of driver yielding given the
value of independent variables (X), P Y ¼ Yield xjð Þ, can be expressed
as follows:

g xð Þ ¼ ln
P Y ¼ Yield xjð Þ

1� P Y ¼ Yield xjð Þ
� �

¼ b0 þ b1x1 � � � þ bkxk ð1Þ

where g(x) is the logit (log-odds), x denotes a value of the indepen-
dent variables X1; � � � ;Xk (such as TreatType, LightLevel, ActiveSL,
HourlyVol, Legs, #Thru, Lines, etc.). Note that the logit, g(x), is linear
in its parameters. The intercept b0 represents the baseline level of
the logit, and bk represents the change in the logit that occurs with
a unit change in Xk. The conditional probability that the driver
yields at site i in jth pedestrian crossing can be expressed as

P Yij ¼ Yield xj� � ¼ eg xð Þ

1þ eg xð Þ ¼
eb0þb1xi;1j ���þbkxi;kj

1þ eb0þb1xi;1j ���þbkxi;kj
ð2Þ

To account for possible correlation in the outcome variable
obtained for multiple time periods (multiple crossings) from the
same site, the Generalized Estimating Equations (GEE) is employed
as an estimation method.

Prior to conducting the logistic regression, preliminary analyses
were performed using a normal linear model, specifically the anal-
ysis of covariance (ANCOVA) model, applied to driver yielding rates
averaged by each site and light level. An ANCOVA model was con-
sidered since many of the independent variables are site based
rather than individual crossing event based and the average driver

yielding rates satisfy the underlying assumptions for ANCOVA
models. The results from a linear model are also easier to interpret
when considering whether the findings are reasonable.

The following section provides a summary of the findings from
the two statistical analysis techniques selected for this study:

� Analysis of covariance (ANCOVA) model based on mean yield
rates where average is taken over all staged crossings at each
site by light level.

� Logistics regression model based on individual driver response
to a staged pedestrian crossing.

5. Results

5.1. Average driver yielding rate per site

Each driver responding to a staged pedestrian crossing was
coded as being either 1 (for yielding) or 0 (for not yielding). The
average driver yielding rate (DYR) was calculated by:

DYR ¼
P

NumberofDriversYieldingP
TotalNumberofDrivers ð3Þ

Table 5 lists the average driver yielding rate by site and by treat-
ment type for daytime and nighttime conditions and Fig. 3 illus-
trates the same data, plotted across a range of hourly volumes in
the data. Table 5 also provides the DYR difference between night-
time and daytime for each site. The distribution of daytime average
driver yielding rates for this study is similar to previous studies
with the following observations:

Table 5
Average driver yielding rate by site for daytime and nighttime conditions.

Site Daytime DYR Daytime drivers Nighttime DYR Nighttime drivers DYR difference (Night-Day)

PHB-AU-001 95% 320 97% 263 2%
PHB-AU-013 100% 153 95% 107 �5%
PHB-AU-014 100% 73 99% 86 �1%
PHB-AU-027 96% 112 97% 145 0%
PHB-AU-035 96% 169 96% 190 0%
PHB-AU-042 98% 102 96% 98 �2%
PHB-AU-045 98% 158 94% 125 �5%
PHB-AU-066 98% 231 99% 221 1%
PHB-AU-067 100% 98 97% 78 �3%
PHB-AU-068 95% 330 95% 310 0%
PHB Average 97% 1746 96% 1623 �1%
RRFB-AU-004 70% 84 76% 84 6%
RRFB-CS-003 74% 93 83% 69 8%
RRFB-DEN-001 86% 140 91% 155 5%
RRFB-GA-002 81% 162 79% 117 �2%
RRFB-GA-006 79% 97 79% 63 0%
RRFB-GA-007 78% 165 97% 72 20%
RRFB-GA-010 85% 106 88% 66 3%
RRFB-GA-013 90% 145 96% 85 7%
RRFB-MA-002 76% 95 75% 73 0%
RRFB-SA-002 60% 159 72% 154 12%
RRFB-SA-005 68% 121 ND ND ND
RRFB-SA-006 70% 53 67% 42 �3%
RRFB Average 77% 1420 83% 980 5%
LED-Em-CB-001 25% 224 12% 77 �14%
LED-Em-CB-002 29% 400 ND ND ND
LED-Em-CS-001 84% 80 71% 78 �13%
LED-Em-DF-001 16% 354 3% 131 �13%
LED-Em-HS-001 18% 160 ND ND ND
LED-Em-KT-001 42% 117 ND ND ND
LED-Em-NB-001 58% 151 38% 45 �20%
LED-Em-NS-001 58% 295 36% 123 �22%
LED-Em-RW-001 15% 126 ND ND ND
LED-Em-SA-001 5% 643 ND ND ND
LED-Em-SA-002 31% 80 ND ND ND
LED-Em-SP-001 38% 211 20% 125 �18%
LED-Em-YT-001 69% 112 ND ND ND
LED-Em Average 29% 2953 27% 579 �17%

ND = No data available.
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� PHB – average driver yielding rate is high (range of 95–100%
with the average being 97%).

� RRFB – a large range of per site average driver yielding rates
(60–90%) is present with an average (77%) below the yielding
rate for the PHBs.

� LED-Em – an even larger range of per site average driver yield-
ing rates (5–84%) compared to RRFBs and PHBs with overall
daytime average (29%) below both the PHBs and RRFBs.

The focus of this research effort was on nighttime conditions as
compared to daytime conditions. Table 5 shows that the overall
average driver yielding rates for nighttime conditions are generally
similar to the rates observed for daytime conditions. For PHBs the
rates appear to be very similar (i.e., average of 97% for daytime and
96% for nighttime across all PHB sites and within each site the day-
time and nighttime rates are similar).

For LED-Em, the overall average nighttime rate also looks simi-
lar to daytime with 29% of the drivers during the day and 27% of
the drivers during the night yielding to pedestrians. Within each
LED-Em site, however, driver yielding during the day is noticeably
higher than driver yielding during the night. When reviewing the
difference between nighttime and daytime yielding within each
site when nighttime data were available, those LED-Em sites
appear to have large differences between daytime and nighttime.
As shown in the final column of Table 5, the differences were
between 13% and 22% lower nighttime driver yielding for a site.
The statistical analysis (see following section) did find a statisti-
cally significant difference in daytime and nighttime yielding when
site-to-site variability (resulting from different site characteristics)
is incorporated into the analysis.

Previous research along with the range of yielding rates
observed, especially for the RRFB and the LED-Em, indicate that
other factors than just the subject traffic control device is con-
tributing to the variability of the yielding results. The next two sec-
tions discuss the findings from the statistical evaluations that
examined potential variable effects on yielding, including the key
question for the research – is driver yielding different during day-
time and nighttime conditions.

5.2. ANCOVA model for assessing the effect of treatment type based on
mean yield rates for sites and light level

There were repeated observations for day and night from 35
sites in the dataset. Researchers conducted several preliminary
analyses to identify the best approach and variables to include in

the statistical models. Initially, researchers considered all vari-
ables, and examined the various combinations to identify the
model that seemed to be the most appropriate in terms of model
goodness of fit criteria and interpretation. Researchers conducted
the analysis utilizing a mixed effect ANCOVA model with LightLe-
vel (i.e., day or night) and site characteristic variables (including
TreatType, ActiveSLGroup, and LnWdGroup as discrete factors
and Mean (HourlyVol) as a covariate) as fixed effects. Researchers
also included Site as a random effect to account for the fact that
values of the site characteristic variables are repeated in the data.
Two-way interaction effects between TreatType and other site
characteristic variables were included in the model to see if the
effect of treatment type varies with the levels of other site charac-
teristic variables. Table 6 shows the estimated model coefficients,
and Table 7 provides the effect tests results (based on F-tests) for
the variables included in the model shown in Table 6. Note that
LnWdGroup was included as a nested effect (i.e., effect nested
within TreatType) because the levels of LnWdGroup were different
for each TreatType (i.e., PHB has only narrow LnWdGroup, LED-Em
has narrow and typical, and RRFB has all three levels (narrow, typ-
ical, and wide)).

It can be observed from Table 7 that the interaction effects
TreatType*LightLevel and TreatType*ActiveSLGroup as well as the
main effects (TreatType, LightLevel, ActiveSLGroup, and
LnWdGroup nested within TreatType) are statistically significant
at a = 0.05 and TreatType*Mean(HourlyVol) is statistically signifi-
cant at a = 0.1. When there are significant interaction effects, the
effect of each factor involved in the interaction needs to be
assessed conditionally on the levels of the other factor because
the effect might be different for each level of the other factor.
The results from Tables 6 and 7 indicate that the effectiveness of
the treatment may vary between nighttime and daytime condi-
tions. The results also show that speed limit groups and lane width
groups influence on driver yielding may vary by treatment type.
Therefore, the effect of LightLevel needed to be assessed for each
level of TreatType. Likewise, the effect of ActiveSLGroup or
LnWdGroup needed to be assessed for each level of TreatType.

The research team also determined the least squares means
(LSM) of the response (driver yielding rate) for each factor-level
combination of significant interactions along with the results of a
multiple comparison test. When there are multiple factors in the
model, it is not fair to make comparisons between raw cell means
in data because raw cell means do not compensate for other factors
in the model. The LSM are the predicted values of the response for
each level of a factor that have been adjusted for the other factors

Fig. 3. Driver Yielding by Treatment, Light Level, and Site.
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in the model. A multiple comparison procedure such as Tukey’s
Honestly Significant Difference (HSD) test can be employed to
determine which pairs of factor levels (estimated by the least
squares means) are statistically significantly different (see, e.g.,
Spiegelman, Park, & Rilett, 2021). When multiple hypotheses are
tested based on the same dataset (e.g., conducting several pairwise
t-tests to determine which of the factor levels are statistically dif-
ferent), the multiple comparisons problem arises. That is, even if
each individual test is performed at the specified comparison-
wise Type I error rate (e.g., a = 0.05), an overall experiment-wise
error rate (the probability of making at least one incorrect rejec-
tion) can significantly exceed the designated significance level a.
Tukey’s HSD test is a popular procedure that accounts for multiple
comparisons on an experiment-wise basis so that the overall
experiment-wise type I error rate is limited to a.

Fig. 4 shows the LSM plots for the comparison of daytime and
nighttime driver yielding rates by treatment type. The plot shows
that driver yielding was slightly higher at night for RRFBs, lower
at night for LED-Ems, and similar for PHBs. While differences can
be seen in Fig. 4, the LSM Differences Tukey HSD test shown in
Table 8 demonstrated that whereas the treatment types were sta-
tistically different, driver yielding by light level (day or night) for
PHBs and RRFBs were similar but were different for LED-Ems.

Fig. 5 shows the comparison of speed limit groups, and Table 9
provides the corresponding LSM Differences Tukey HSD results.
The differences among the three treatments were again obvious
with LED-Ems being statistically different from PHBs and RRFBs.

In addition for LED-Ems, the driver yielding rate for the high-
speed group was lower than the low-speed group. There was a
minimal difference between speed limit groups for PHBs and
RRFBs.

Fig. 6 shows the comparison of lane width groups and treat-
ment type. Table 10 provides the corresponding LSM Differences
Tukey HSD results. The differences among the three treatments
were again obvious. These data also show an insignificant differ-
ence between lane width groups for RRFBs, and a statistically sig-
nificant difference between narrow and typical lane width groups
for LED-Ems.

As explained above, the significant interaction terms indicate
that the effect of site characteristic variables as well as light condi-
tions on driver yielding varies by treatment type. These findings

Table 6
ANCOVA model including treatment type, light level, and other site characteristic variables using per site mean yield rates.

Parameter Estimates Estimate Std Error DFDen t ratio Prob > |t|

Intercept 0.6982278 0.028413 33.48 24.57 <0.0001
TreatType[LED-Em] �0.430449 0.029525 26.68 �14.58 <0.0001
TreatType[PHB] 0.3071775 0.02723 23.48 11.28 <0.0001
LightLevel[Day] 0.026969 0.007159 35.91 3.77 0.0006
Mean(HourlyVol) �4.417e�5 3.91e�5 47.15 �1.13 0.2644
ActiveSLGroup[Low] 0.0454034 0.019072 22.32 2.38 0.0262
TreatType[LED-Em]*LightLevel[Day] 0.0756203 0.011038 39.02 6.85 <0.0001
TreatType[PHB]*LightLevel[Day] �0.019354 0.009628 34.21 �2.01 0.0523
TreatType[LED-Em]*(Mean(HourlyVol)-668.511) �0.000145 5.828e�5 42.3 �2.49 0.0168
TreatType[PHB]*(Mean(HourlyVol)-668.511) 3.1058e�5 4.314e�5 43.8 0.72 0.4754
TreatType[LED-Em]* ActiveSLGroup[Low] 0.0920804 0.026653 22.66 3.45 0.0022
TreatType[PHB]*ActiveSLGroup[Low] �0.04332 0.026191 21.75 �1.65 0.1125
TreatType[LED-Em]:LnWdGroup[narrow] 0.1355606 0.029252 22.36 4.63 0.0001
TreatType[RRFB]:LnWdGroup[narrow] 0.0298317 0.039141 21.53 0.76 0.4542
TreatType[RRFB]:LnWdGroup[typical] 0.0245799 0.044553 21.08 0.55 0.5870

Summary of Fit
RSquare 0.987749
RSquare Adj 0.984512
Root Mean Square Error 0.047239
Mean of Response 0.685299
Observations (or Sum Wgts) 68

Notes: Std Error = Standard Error; DFDen: Degrees of Freedom in denominator; t ratio: test statistic used for the t test; Prob > |t|: p-value for the t-test.

Table 7
Fixed Effect Tests for Model in Table 6.

Source Nparm DF DFDen F Ratio Prob > F

TreatType 2 2 25.09 113.2088 <0.0001
LightLevel 1 1 35.91 14.1898 0.0006
Mean(HourlyVol) 1 1 47.15 1.2759 0.2644
ActiveSLGroup 1 1 22.32 5.6676 0.0262
TreatType*LightLevel 2 2 35.06 26.1621 <0.0001
TreatType*Mean(HourlyVol) 2 2 44.07 3.0958 0.0552
TreatType*ActiveSLGroup 2 2 22.29 5.9805 0.0083
LnWdGroup[TreatType] 3 3 21.69 7.5270 0.0012

Notes: Nparm: Number of parameters; DF: Degrees of Freedom; DFDen: Degrees of Freedom in denominator; F Ratio: test statistics used for the F test; Prob > F: p-value for
the F test.

Fig. 4. LSM Driver Yielding for Daytime and Nighttime by Treatment Type.
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provided support for conducting additional separate analyses by
treatment type.

5.3. PHB

5.3.1. ANCOVA model based on mean yield rates
The best ANCOVA model selected for the PHB is shown in

Table 11. The only variables found to be statistically significant
was light level and hourly volume. Lower driver yielding was asso-
ciated with higher volumes with values ranging from 100% to 94%.
Light level was also significant with slightly higher driver yielding
occurring during the daytime. As a comparison, the least squares
mean driver yielding for daytime is 98%, while it is 96% for night-
time conditions. As illustrated in several studies (Fitzpatrick &
Pratt, 2016; Fitzpatrick, Cynecki, Pratt, Park, & Beckley, 2019), dri-
ver yielding is very high at PHBs. With such high driver yielding at
PHBs, finding a difference by a roadway characteristic is challeng-
ing and even if a difference was detected statistically, the differ-
ence between, say 96% and 98%, is questionable on a practical
level. So, while the statistical model found a statistical difference
in driver yielding during different light conditions, whether it is
of practical difference can be debated.

Table 8
LSM differences Tukey HSD by treatment type and light level.

Level A B C D Least Sq Mean

PHB, Day A 0.98349431
PHB, Night A 0.96826384
RRFB, Night B 0.82127040
RRFB, Day B 0.76267557
LED-Em, Day C 0.34084186
LED-Em, Night D 0.13566327

Levels not connected by same letter are significantly different at a = 0.050.

Fig. 5. LSM Driver Yielding for Speed Limit Groups by Treatment Type.

Table 9
LSM differences Tukey HSD by treatment type and speed group.

Level A B C Least Sq Mean

PHB, Low A 0.97796261
PHB, High A 0.97379553
RRFB, Low A 0.78861591
RRFB, High A 0.79533007
LED-Em, Low B 0.37573638
LED-Em, High C 0.10076875

Levels not connected by same letter are significantly different at a = 0.050.

Fig. 6. LSM Driver Yielding for Lane Width Group by Treatment Type.

Table 10
LSM differences Tukey HSD by treatment type and lane width.

Level A B C D Least Sq Mean

PHB, Narrow A 0.97587907
RRFB, Narrow A B 0.82180473
RRFB, Typical A B 0.81655294
RRFB, Wide B 0.73756129
LED-Em, Narrow C 0.37381321
LED-Em, Typical D 0.10269192

Levels not connected by same letter are significantly different at a = 0.050.

Table 11
ANCOVA model using per site mean yield rates at PHBs.

Parameter Estimates Estimate Std Error t ratio Prob > |t|

Intercept 1.0495921 0.030284 34.66 <0.0001
LightLevel[Day] 0.0081907 0.003749 2.18 0.0432
Log(Mean(HourlyVol)) �0.011905 0.004536 �2.62 0.0177

Summary of Fit
RSquare 0.363034
RSquare Adj 0.288097
Root Mean Square Error 0.016395
Mean of Response 0.970689
Observations (or Sum Wgts) 20

Notes: Std Error = Standard Error; t ratio: test statistic used for the t test; Prob > |t|: p-value for the t-test.
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5.3.2. Logistic regression based on driver response to crossing
pedestrian

Table 12 provide the results of the logistic regression estimated
by GEE using Site as a cluster variable for PHB. Only two variables
were found significant in the ANCOVA model and were included in
the logistic regression. A similar relationship was found for hourly
volume (lower driver yielding for higher volumes); however, it was
just barely not significant (p-value of 0.0571). The odds ratio (OR)
for LightLevel can be estimated by Exp(LightLevel). In this case the
effect of LightLevel is not statistically significant, however.
OR = 1.2686(=EXP(0.2379)) means that driver yielding for PHB is
1.27 times as likely (although this effect is not statistically signifi-
cant) to occur during day compared to night.

5.4. RRFB

5.4.1. ANCOVA model based on mean yield rates
The analysis for RRFB was conducted utilizing a mixed effect

ANCOVAmodel with LightLevel and several site characteristic vari-
ables as fixed effects and Site as a random effect to account for the
fact that values of the site characteristic variables are repeated in
the data. Several combinations of variables were considered,
including developing a refined variable to capture the apparent
variation associated with nearby development. However, most of
the site characteristic variables were statistically insignificant.
Table 13 provides the model that had the best fit along with rea-
sonable interpretations of the variable estimates.

Light conditions were significant at the 0.05 level (p-value of
0.0286) with a trend of slightly higher driver yielding during night-
time conditions (i.e., least squares mean of 80% for nighttime com-
pared to 75% for daytime). The research team theorized that the
brightness levels associated with RRFBs (especially compared to
LED-Ems) may be contributing to finding higher driver yielding
at night for RRFB and lower driver yielding at night for LED-Ems.

The previous study on the RRFB (Fitzpatrick, Brewer, et al.,
2016) also found the following variables significant: presence of
median refuge, crossing distance, school within 0.5 mi of cross-
walk, presence of yield lines, and direction of vehicle travel (one-
way or two-way). All of the sites in this study were two-way
streets. All but two of the sites had a raised median, so the lack
of variability in that variable limited its use. Presence of yield lines,
which was significant in the previous study, was found to be bor-
derline significant (p-value of 0.1086) in this study.

5.4.2. Logistic regression based on driver response to crossing
pedestrian

Table 14 provide the results of the logistic regression with
including LightLevel and Lines as independent variables for RRFBs,
estimated by GEE using Site as a cluster variable. LightLevel was
found to be statistically significant at a = 0.05 and Lines was signif-
icant at a = 0.1. The findings indicate that drivers are 1.32 times
more likely to yield during the nighttime as compared to daytime
(calculated with Exp(LightLevel) or Exp(0.3237)).

Table 12
Logistic Regression Based on Driver Response at PHBs.

Intercept Level Estimate Standard error 95% Confidence limits Z Prob > |Z|

Intercept 4.6580 0.7950 3.0998 6.2162 5.86 <0.0001
LightLevel Day 0.2379 0.2239 �0.2009 0.6767 1.06 0.2879
LightLevel Night 0.0000 0.0000 0.0000 0.0000 NA NA
LnVol �0.2032 0.1068 �0.4125 0.0062 �1.90 0.0571

Notes: Z: test statistic used for the Z test; Prob > |Z|: p-value for the Z test; NA = Not Applicable (the value is not relevant since this level represents base condition for the
variable).

Table 13
ANCOVA model using per site mean yield rates at RRFBs.

Variables Estimate Std Error DFDen t ratio Prob > |t|

Intercept 0.7752704 0.024422 10.44 31.74 <0.0001
LightLevel[Day] �0.025476 0.010032 10.40 �2.54 0.0286
Lines[None] �0.042848 0.024422 10.44 �1.75 0.1086

Summary of Fit
RSquare 0.865103
RSquare Adj 0.851614
Root Mean

Squares Error
0.047154

Mean of Response 0.791813
Observations

(or Sum Wgts)
23

Notes: Std Error = Standard Error; DFDen: Degrees of Freedom in denominator; t ratio: test statistic used for the t test; Prob > |t|: p-value for the t-
test.

Table 14
Logistic regression based on driver response at RRFBs.

Parameter Level Estimate Standard error 95% Confidence limits Z Prob > |Z|

Intercept 0.9043 0.0927 0.7226 1.0860 9.75 <0.0001
LightLevel Night 0.3237 0.1137 0.1007 0.5466 2.85 0.0044
LightLevel Day 0.0000 0.0000 0.0000 0.0000 NA NA
Lines Yield 0.4121 0.2311 �0.0408 0.8650 1.78 0.0745
Lines None 0.0000 0.0000 0.0000 0.0000 NA NA

Notes: Z: test statistic used for the Z test; Prob > |Z|: p-value for the Z test; NA = Not Applicable (the value is not relevant since this level represents base condition for the
variable).
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5.5. LED-Em

5.5.1. ANCOVA model based on mean yield rates
The analysis for LED-Ems was conducted utilizing a mixed

effect ANCOVA model with LightLevel and site characteristic vari-
ables (including ActiveSLGroup, LnWdGroup, Lines, AdvSign, and
#Thru as discrete factors and Mean(HourlyVol) as a covariate)
and Site as a random effect to account for the fact that values of
the site characteristic variables are repeated in the data. Several
variables were found to be statistically significant for the groups
of sites with the pedestrian/school crossing warning signs with
embedded LEDs (see Table 15). With a range of driver yielding
per site of 5% to 84%, having more variables related to a difference
in driver yielding for LED-Em as compared to the PHB is not sur-
prising. A discussion of the findings by variable for the LED-Em
follows.

� Light level (LightLevel): Driver yielding is higher during daylight
conditions. The least squares mean driver yielding for daytime
was 54% while nighttime has 31%.

� Hourly volume (HourlyVol): Similar to the findings for the PHB,
higher hourly volumes were associated with lower driver yield-
ing although the range for LED-Em was much greater as com-
pared to the range for PHBs.

� Active speed limit group (ActiveSLGroup): When LED-Em was
used on roads with 30 or 35 mph (48.3 or 56.3 kph) posted
speed limits, driver yielding was found to be higher as com-
pared to roads with 45 or 50 mph (72.4 or 80.5 kph) speed lim-
its with borderline statistical significance (p-value of 0.1070).
The least squares mean driver yielding for the low-speed group
was 48%, while the high-speed group was 37%.

� Number of through lanes (#Thru):When a LED-Em was used on a
2-lane road as compared to a 4-lane road, driver yielding was
higher with borderline statistical significance (p-value of
0.0582). The least squares mean driver yielding for the 2-lane
road was 48%, while it was 36% for the 4-lane road group.

� Lane width groups (LnWdGroup(narrow)): LED-Em on roads with
narrow lane widths (10.5 or 11 ft (3.2 or 3.4 m)) have higher
driver yielding as compared to roads with typical lane widths
(11.5 or 12 ft (3.5 or 3.7 m)). None of the sites with the LED-
Em treatment had a wide lane width (13 ft (4.0 m) or more).
The least squares mean driver yielding for narrow lane width
was 62% while typical lane widths were associated with 22%
driver yielding.

� Advance lines (Lines): The value of the yield lines when used
with the LED-Em was demonstrated in this evaluation. For this
dataset, those with yield lines have a least squares mean driver
yielding of 48%, while those sites without a yield line have 36%.

Table 15
ANCOVA model using per site mean yield rates at LED-Ems.

Parameter Estimates Estimate Std Error DFDen t ratio Prob > |t|

Intercept 0.5682309 0.050166 7.188 11.33 <0.0001
LightLevel[Day] 0.1156761 0.018991 13.7 6.09 <0.0001
Mean(HourlyVol) �0.0003 6.563e�5 10.81 �4.57 0.0008
ActiveSLGroup[Low] 0.0528672 0.026616 4.733 1.99 0.1070
LnWdGroup[narrow] 0.1992876 0.024881 7.473 8.01 <0.0001
Lines[None] �0.061551 0.025504 6.457 �2.41 0.0494
AdvSign[yes] 0.0474033 0.023678 7.578 2.00 0.0822
#Thru[2] 0.0584831 0.024215 5.24 2.42 0.0582

Summary of Fit
RSquare 0.942926
RSquare Adj 0.917956
Root Mean Square Error 0.066483
Mean of Response 0.367668
Observations

(or Sum Wgts)
24

Notes: Std Error = Standard Error; DFDen: Degrees of Freedom in denominator; t ratio: test statistic used for the t test; Prob > |t|: p-value for the t-test.

Table 16
Logistic regression based on driver response at LED-Ems.

Intercept Level Estimate Standard error 95% Confidence limits Z Prob > |Z|

Intercept �2.3342 0.3683 �3.0559 �1.6124 �6.34 <0.0001
LightLevel Day 1.2102 0.1828 0.8519 1.5685 6.62 <0.0001
LightLevel Night 0.0000 0.0000 0.0000 0.0000 NA NA
HourlyVol �0.0015 0.0003 �0.0021 �0.001 �5.21 <0.0001
ActiveSLGroup Low 0.7089 0.1292 0.4556 0.9622 5.49 <0.0001
ActiveSLGroup High 0.0000 0.0000 0.0000 0.0000 NA NA
LnWdGroup narrow 1.9476 0.2658 1.4265 2.4686 7.33 <0.0001
LnWdGroup typical 0.0000 0.0000 0.0000 0.0000 NA NA
Lines Yield 0.1592 0.3277 �0.4832 0.8015 0.49 0.6272
Lines None 0.0000 0.0000 0.0000 0.0000 NA NA
AdvSign Yes 0.3006 0.2832 �0.2545 0.8556 1.06 0.2885
AdvSign No 0.0000 0.0000 0.0000 0.0000 NA NA
#Thru 2 0.4721 0.2315 0.0184 0.9258 2.04 0.0414
#Thru 4 0.0000 0.0000 0.0000 0.0000 NA NA

Notes: Z: test statistic used for the Z test; Prob > |Z|: p-value for the Z test; NA = Not Applicable (the value is not relevant since this level represents base condition for the
variable).
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� Advance sign (AdvSign): The findings from this analysis demon-
strated an advantage to having an advance sign for a crossing
with an LED-Em. When an advance sign as compared to no sign
was present prior to the LED-Em, driver yielding was higher
with borderline statistical significance (p-value of 0.0822).

5.5.2. Logistic regression based on driver response to crossing
pedestrian

Most of the available variables for the analysis were site charac-
teristics that has the same value for all staged crossings, such as
the presence of a yield line or the lane width group. The one vari-
able that varied based upon a particular staged pedestrian crossing
was the hourly volume estimated from a count of vehicles that
drove over the crosswalk for the 1-min before the crossing. The
previous ANCOVA analysis used the average hourly volume at each
site (day and night). Logistic regression considers the unique
hourly volume associated with the particular staged pedestrian
crossing and the results of logistic regression estimated by GEE
using Site as a cluster variable are shown in Table 16. The hourly
volume was statistically significant again supporting the theory
that drivers are less likely to stop when volumes are higher. For
the range of hourly volumes included in this study, none of the
crossings occurred at a volume where congestion would have been
a concern.

Table 17 provides the contrast estimate results which includes
the OR estimates for those variables that were found statistically
significant in the logistics regression. While the ANCOVA model
found Lines and AdvSign significant, they were not significant
within the logistic regression model. The OR for LightLevel is esti-
mated by Exp(LightLevel)(=Exp(1.2102)). An OR = 3.3542 means
that driver yielding at LED-Ems was 3.35 times as likely to occur
during the day compared to night. In other words, for LED-Ems a

driver would yield to pedestrians during the daytime 3.35 times
more likely compared to the nighttime.

6. Discussion

For this research analysis, researchers considered 9,301 drivers
for 3,871 staged pedestrian crossings. All evaluations clearly show
that overall, the driver yielding rate was different for the three
pedestrian treatments studied with the PHB having the highest
yielding and the LED-Ems having the lowest yielding as illustrated
in Fig. 7. While overall there is a statistically significant difference
between the treatment types, there were sites where a treatment
had a higher (or lower) yielding rate than the average for the other
treatments. For example, the LED-Em located on a college campus
had a daytime driver yielding rate of 84%, which is higher than the
average RRFB driver yielding rate of 77% and is near the maximum
per site driver yielding rate of 90% observed for any RRFB site. Fig. 7
summarizes the per site findings by treatment type and light level.

The initial statistical evaluation that included interaction terms
between treatment type and other site characteristic variables
found significant interaction effects as well as a significant differ-
ence between treatment types. That evaluation also found that dri-
ver yielding compliance for a treatment with respect to daytime
and nighttime conditions varies for the different treatments, which
supported conducting evaluations separately for each treatment
type.

For each treatment, two statistical evaluations were conducted:
ANCOVA models that considered per site mean yield rates and
logistic regression that considered the individual driver response
to crossing pedestrian. Because of the nature of ANCOVA modeling,
interpretation of the results is easier; however, the logistic regres-
sion modeling provides the opportunity to use data for individual
drivers rather than a site average. Being able to use the data for

Fig. 7. Per Site Driver Yielding by Treatment Type and Light Level.

Table 17
Contrast estimate results for LED-Ems.

Label Estimate Standard error 95% Confidence limit Chi-square Prob > ChiSq

LightLevel 1.2102 0.1828 0.8519 1.5685 43.82 <0.0001
OR = Exp(LightLevel) 3.3542 0.6132 2.3441 4.7996 43.82 <0.0001
ActiveSLGroup 0.7089 0.1292 0.4556 0.9622 30.09 <0.0001
OR = Exp(ActiveSLGroup) 2.0318 0.2626 1.5771 2.6175 30.09 <0.0001
LnWdGroup 1.9476 0.2658 1.4265 2.4686 53.67 <0.0001
OR = Exp(LnWdGroup) 7.0116 1.8639 4.1643 11.8058 53.67 <0.0001
#Thru 0.4721 0.2315 0.0184 0.9258 4.16 0.0414
OR = Exp(#Thru) 1.6034 0.3712 1.0185 2.5240 4.16 0.0414

Notes: Chi-Square: test statistic used in the Chi-square test; Prob > ChiSq: p-value of the Chi-square test.
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each driver provides the opportunity to consider individual
responses rather than collapsing the variability into a site average.

The statistical evaluations for the day and night effectiveness for
the PHB found mixed results. The ANCOVA model found a statisti-
cally significant difference with daytime driver yielding to be
slightly higher, while the logistics regression did not find a statisti-
cally significant difference. Even though the ANCOVA model found
the PHB to bemore effective during the day, the differencewas very
small (98%during day and96%during night) andmaynot be of prac-
tical significance. The analyses conducted for each treatment type
also provided the opportunity to identify if there are variables that
are more influential for one treatment type than another. The PHB,
with very high driver yielding, did not have any site characteristics
that were found to also influence driver yielding.

The characteristics of the siteswith RRFBs included in this analy-
sis provided only limited additional understanding of relationships.
A previous study on the RRFB found higher driver yielding at 2-leg
(midblock) sites, when a median refuge is present, when a school
was within 0.5 miles of the crosswalk, and when yield lines are pre-
sent. This study found that the light conditions can influence driver
yieldingwith higher yielding being present at night. The presence of
yield lines as compared to no lines was also found to affect driver
yielding, although the difference was only marginally significant.

This effort provided many insights into how crossing character-
istics influence driver yielding at sites with the LED-Em. Using the
results from the logistic regression evaluation, higher driver yield-
ing was observed at LED-Em sites in the lower speed limit group
(30 or 35 mph (48.3 or 56.3 kph)), with 2 lanes (rather than 4
lanes), with narrow lanes of 10.5 or 11 ft (3.2 or 3.4 m) widths
(rather than 11.5 or 12 ft (3.5 or 3.7 m) widths), and lower hourly
volumes. The results from the ANCOVA model show a statistically
significant difference for yield lines (higher yielding when present)
as well as suggesting higher driver yielding for sites with lower
average hourly volumes, with narrow lanes, with lower speed limit
group (marginally significant), with 2 lanes (marginally signifi-
cant), and with advance sign (marginally significant).

7. Conclusions

The focus of this research was to identify if the following pedes-
trian treatments were more or less effective at night: PHB, RRFB,
and LED-Em. For the PHB, essentially no difference was found
between daytime and nighttime driver yielding. The research
found RRFBs to be more effective at night (statistically significant
in both ANCOVA and logistical regression evaluations), and the
LED-Em to be more effective during the day (statistically signifi-
cant in both ANCOVA and logistical regression evaluations).

The findings from this study should encourage greater consider-
ation for the PHB to accommodate pedestrian crossings for all con-
ditions. The findings also indicate that the LED-Ems should only be
considered for locations associated with lower-speed operations,
lower hourly volumes, or narrow lanes. While some of the relation-
ships between roadway geometry and driver yielding at RRFB is
known, this research has demonstrated that the reasons for the
wide range of driver yielding for RRFBs is still not completely
understood and additional research could help to fill that gap. A
limitation of this study, along with most if not all research of this
nature, is the lack of data for street lighting. The relationship
between land use/nearby development and driver yielding is
another area where future research is needed. Datasets larger than
what was available for this study would probably be needed.
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a b s t r a c t

Introduction: Pedestrian fatalities in the United States increased 45.5% between 2009 and 2017. More than
85% of those additional pedestrian fatalities occurred at night. Method: We examine Fatality Analysis
Reporting System (FARS) data for fatal pedestrian crashes that occurred in the dark between 2002 and
2017. Within-variable and before/after examinations of crashes in terms of infrastructure, user, vehicle,
and situational characteristics are performed with one-way analysis of variance (ANOVA) and two-
sample t-tests. We model changes in crash characteristic proportions between 2002–2009 and 2010–
2017 using linear regressions and test for autocorrelation with Breusch-Godfrey tests. Results: The
increase in fatal nighttime pedestrian crashes is most strongly correlated with infrastructure factors:
non-intersection unmarked locations (saw 80.8% of additional fatalities); 40–45 mph roads (54.6%);
five-lane roads (40.7%); urban (99.7%); and arterials (81.1%). In addition, SUVs were involved in 39.7%
of additional fatalities, overrepresenting their share of the fleet. Increased pedestrian alcohol and drug
involvement warrant further investigation. The age of pedestrians killed increased more (18.1%) than
the national average (3.2%). Conclusions: By identifying factors related to the increase in nighttime pedes-
trian fatalities, this work constitutes a vital first step in making our streets safer for pedestrians. Practical
Applications:More research is needed to understand the efficacy of different solutions, but this paper pro-
vides guidance for such future research. Engineering solutions such as road diets or traffic calming may
be used to improve identified infrastructure issues by reducing vehicle speeds and road widths.
Rethinking vehicle design, especially high front profiles, may improve vehicle issues. However, the prob-
lems giving rise to these pedestrian fatalities are likely a result of not only engineering issues but also
interrelated social and political factors. Solutions may be correspondingly comprehensive, employing
non-linear, systems-based approaches such as Safe Systems.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

5,977 pedestrians were killed by motor vehicles in the United
States in 2017 – a 45.5% increase in pedestrian fatalities over the
previous eight years (NHTSA, 2018) (Fig. 1). Other than the 6,080
pedestrians killed in 2016, this represents the highest number of
pedestrians killed since 1990. While the number of pedestrian
fatalities was nearly cut in half in the 30 years between 1979 and
2009, more than half of that progress was erased in just eight
years.

Much of this sharp increase in pedestrian fatalities has occurred
at night (Hu & Cicchino, 2018; Retting, 2019). Between 2009 and
2017, pedestrian fatalities increased by 1,868. 1,594 of these fatal-

ities occurred in the dark, representing more than 85% of the total
increase (Fig. 2). Only 21.2% of pedestrian fatalities in 2017
occurred in daylight.

This study identifies factors related to the recent nighttime
pedestrian fatality trend by examining Fatality Analysis Reporting
System (FARS) data between 2002 and 2017 to see whether
changes in infrastructure, user, vehicle, or situational characteris-
tics are related to increases in fatal nighttime pedestrian crashes.
Doing so will help to ensure safety for this vulnerable group of road
users and inform possible solutions.

Hu and Cicchino (2018) recently completed pioneering work on
the topic that used Poisson and linear regressions to investigate
roadway, environmental, personal, and vehicle factors underlying
the recent pedestrian safety crisis. They found that between 2009
and 2016, the largest increases in pedestrian deaths occurred in
urban areas, on arterials, at non-intersections, and in dark condi-
tions. Hu and Cicchino (2018) also found that the rise in SUV (sport
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utility vehicle) involvement was larger than the increases for cars,
vans, pickups, or medium/heavy trucks. While Hu and Cicchino
(2018) provide a strong foundation, our current work adds several
novel perspectives. First, our paper examines the share of the total
night time pedestrian fatality increase (both frequency and propor-
tion) for each category within each variable. Second, we account for
both the before and after periods to understand whether post-2009
changes represent new trends. Third, we include additional vari-
ables, several of which are significant to the final findings.

Retting (2019) also examined the recent increase in U.S. pedes-
trian fatalities, similarly finding that SUV involvement has been
increasing at a faster rate (50%) compared to passenger cars
(30%). Their work was some of the first to identify the nighttime
trend and also hypothesized that driver and pedestrian distraction
are at least partially responsible for the recent increase in night-
time pedestrian fatalities (Retting, 2019).

Research has found that pedestrians are at higher risk of a col-
lision in the dark, all else being held equal (Uttley & Fotios, 2017).
Severity of nighttime collisions is worse than that of daytime col-
lisions, with nighttime pedestrian collisions at intersections having
an 83% higher chance of being fatal without street lighting and a
54% higher chance of being fatal even with street lighting
(Siddiqui, Chu, & Guttenplan, 2006). Specifically, pedestrians have
been found to be at highest risk of death between 3 a.m. and 6 a.
m. (Chang, 2008).

The reason for this increased nighttime risk is not clear. Sullivan
and Flannagan (2001) identified vehicle speed, limited-access
roadways, and alcohol use by pedestrians as contributors to high
pedestrian risk at night. However, the researchers utilized data
from 1987 to 1997, meaning that it does not explain what has

caused the substantial increase in nighttime pedestrian fatalities
over the last eight years.

Much research has been completed on vehicular headlighting
(Shinar, 1984; Sullivan & Flannagan, 2007; Sullivan & Flannagan,
2011; Wood, Tyrrell, & Carberry, 2005), reflective clothing
(Moberly & Langham, 2002; Shinar, 1984; Venable & Hale, 1996;
Wood, Tyrrell, & Carberry, 2005), and nighttime pedestrian detec-
tion systems for vehicles (Jeong, Kwak, Son, Ko, & Nam, 2014; Luo,
Remillard, & Hoetzer, 2010). Results suggest that these counter-
measures may improve nighttime pedestrian safety outcomes.
However, the research was specific to these countermeasures and
did not explore whether these issues were responsible for the
crashes in the first place. And again, many of these studies were
performed prior to the recent increase in pedestrian fatalities that
this paper seeks to understand.

In general, pedestrian crash prevalence and severity has been
found to be related to infrastructure, user, vehicle, and situational
characteristics (Martin, 2016). Although not specific to nighttime
pedestrian safety, we use existing literature to identify variables
within these groups that warrant investigation. In an analysis of
all U.S. pedestrian fatalities between 1997 and 2006, Chang
(2008) found that pedestrians have higher probabilities of being
killed when a male or older pedestrian is involved, collisions occur
in urban areas, and when alcohol is involved. However, this report
explored pedestrian fatalities before the current upward trend
commenced (Chang, 2008). Pedestrian injury severity in rural Con-
necticut crashes was significantly related to pedestrian age, vehicle
type, roadway width, and alcohol involvement (Zajac & Ivan, 2003).
Pedestrian injury severity at intersections in Illinois was signifi-
cantly related to pedestrian age, vehicle type, point of first contact,
and weather condition (Ma, Lu, Chien, & Hu, 2017). Pedestrian
injury severity in South Korea was significantly related to driver
and pedestrian gender and age, vehicle type, roadway width, driver
intoxication, weather condition, and vehicle speed (Tay, Choi,
Kattan, & Khan, 2011). While these studies are not specifically
focused on nighttime factors, we use this literature as a guide to
select variables that may be related to the recent increase in night-
time pedestrian fatalities, thereby helping us to fill this significant
knowledge gap.

2. Methods

To explore possible factors associated with the recent increase
in nighttime pedestrian fatalities, we examined motor-vehicle
crashes that incurred a pedestrian fatality at night between 2002
and 2017. This timeframe allows us to have eight years (2002–
2009) where pedestrian fatalities were decreasing and eight years
(2010–2017) where pedestrian fatalities were increasing. By solely
looking at nighttime fatalities, we control for the lighting factor
and therefore can determine which variables are related to this
nighttime trend.

We utilized fatality data from FARS, a national database main-
tained by the U.S. Department of Transportation’s National High-
way Traffic Safety Administration (NHTSA). We would have
preferred to examine data pertaining to all pedestrian injuries
because other factors (e.g., improved emergency medical care)
may have concurrently impacted fatality rates over the study per-
iod (Cruz & Ferenchak, 2020). Unfortunately, longitudinally exam-
ining all pedestrian injuries on the national level and specific to our
variables is not currently feasible due to pedestrian injuries being
underreported and inconsistently reported (Pucher & Dijkstra,
2003).

For a fatality to be included in the FARS database, a crash must
involve a motorist on a roadway that is open to the public and
must result in a fatality within 30 days of the collision. Bicyclist-

Fig. 1. Pedestrian fatalities in the U.S. (Data source: NHTSA, 2018).

Fig. 2. Pedestrian fatality trend by light condition (minimum and maximum values
in bold) (Data source: NHTSA, 2018).
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on-pedestrian crashes and other incidents that resulted in a pedes-
trian fatality but did not involve a motor vehicle are not included in
the FARS database. We queried Person worksheets for non-
occupant pedestrians whose injury severities were classified as
fatal to identify the crashes used in this study.

Nighttime was defined by the Light Condition variable
(LGT_COND) from the Accident worksheets. Specifically, any
crashes that were listed as ‘‘Dark,” ‘‘Dark – Not Lighted,” ‘‘Dark
but Lighted,” ‘‘Dark – Lighted,” or ‘‘Dark – Unknown Lighting” were
considered as nighttime crashes. This analysis does not include
crashes that occurred in ‘‘Daylight,” ‘‘Dawn,” ‘‘Dusk,” ‘‘Other,” or
‘‘Unknown.”

Variables are broken into four groups: infrastructure, users,
vehicles, and situation (Table 1). Six of the variables (functional
classification, number of lanes, speed limit, alignment, driver dis-
traction, and urbanized area) changed data elements or data files
in the FARS database during the study period. However, consistent
classifications across the data elements and data files allowed for
analysis over the desired timeframe. All variables are categorical
except for pedestrian age.

We first employed one-way ANOVA or two-sample t-tests (de-
pending on the number of categories in each variable) to compare
the frequency of fatal nighttime pedestrian crashes between cate-
gories within each variable. We performed this test separately for
2002 to 2009 and for 2010 to 2017. Using the functional classifica-
tion variable as an example, we answer: is there a statistically sig-
nificant difference in the frequency of fatal nighttime pedestrian
crashes between the different functional classification categories?

We then illustrated trends for each variable between 2002 and
2017 using scatterplots and use two-sample t-tests to compare

fatal crash frequencies in the before versus after time periods
(2002–2009 vs. 2010–2017) for each category of each variable to
determine whether there has been a statistically significant
increase in fatal nighttime pedestrian crashes. Again, using the
functional classification variable as an example, we answer: has
there been a statistically significant increase in the frequency of
fatal nighttime pedestrian crashes on arterials? Has there been a
statistically significant increase in the frequency of fatal nighttime
pedestrian crashes on collectors? And so on for each category of
each variable.

Linear regressions then allowed us to explore the changes in
proportions of the categories in each of the variables between
2002–2009 and 2010–2017. This allowed us to answer, for
instance, whether the likelihood that a pedestrian fatality occurred
on an arterial increased or decreased throughout the study period.
We were able to identify whether trends within the time series
were statistically significant. We tested for temporal auto-
correlation in these regression models using Breusch-Godfrey
Lagrange multiplier tests, a general test of serial correlation used
for identifying temporal autocorrelation of any order and a com-
mon approach for time series traffic safety data (Abdulhafedh,
2017; Bernal et al., 2017; Lavrenz et al., 2018).

3. Results

We first wanted to understand whether pedestrians involved in
motor-vehicle collisions were more likely to be killed later in the
study period. This would help illuminate whether the increase in
pedestrian fatalities has been a result of increasing severity or sim-
ply increasing exposure. We used data from NHTSA’s National
Automotive Sampling System (NASS) General Estimates System
(GES) to derive the proportion of injured pedestrians that were
killed for each study year (regardless of lighting condition, for
which data was not available). NASS GES was replaced by the Crash
Report Sampling System (CRSS) in 2016. The 2016 and later year
estimates from CRSS were not comparable to earlier year estimates
fromNASS GES. Our proportion analysis therefore covered the years
2002 until 2015. Findings suggest that pedestrians in 2015 were
more likely to be killed (7.85% of injured pedestrians were killed)
than those in 2010 (6.14%) (Fig. 3). However, these numbers are
on average consistent with those in the before period. Pedestrians
involved in motor-vehicle collisions between 2002 and 2009 were
actually more likely to be killed (7.00%) than those in 2010–2015
(6.93%) (one-tail t-test p-value = 0.417). While these exploratory
findings indicate that severity did increase from 2010 to 2015, that
severity was not significantly different from pre-2010 levels,
suggesting that the 2010–2017 increase in pedestrian fatalities is
likely a result of both increasing severity and frequencies. More

Table 1
Variables and source from FARS.

Field Worksheet

Infrastructure
Functional classification ROAD_FNC Accident

FUNC_SYS Accident
Relation to intersection LOCATION Person
Number of lanes NO_LANES Accident

VNUM_LAN Vehicle
Speed limit SP_LIMIT Accident

VSPD_LIM Vehicle
Alignment ALIGNMNT Accident

VALIGN Vehicle
Lighting condition LGT_COND Accident

Users
Drinking by driver DR_DRINK Vehicle
Drinking by pedestrian DRINKING Person
Drug use by pedestrian DRUG Person
Gender of pedestrian SEX Person
Age of pedestrian AGE Person
Driver’s license status of driver L_STATUS Vehicle
Hit and run HIT_RUN Vehicle
Driver distraction DR_CF Vehicle

MDRDSTRD Distract

Vehicles
Body type of striking vehicle BODY_TYP Vehicle
Age of vehicle MOD_YEAR Vehicle
Vehicle speed TRAV_SP Vehicle

Situation
Time of day HOUR Accident

MINUTE Accident
Day of week DAY_WEEK Accident
Month MONTH Accident
Weather WEATHER Accident
Urbanized area ROAD_FNC Accident

RUR_URB Accident
Fig. 3. Proportion of injured pedestrians that were killed.
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detailed work – likely at a subnational level – is needed to explore
the entire injury severity spectrum to further answer this severity
versus exposure question.

3.1. Infrastructure

Adopting a 0.05 significance level, there was statistically signif-
icant within-variable variation in each time period for all the infra-
structure variables except for lighting condition (see the two
ANOVA columns in Table 2). This means that – except for lighting
condition – there is a statistically significant difference between
categories’ frequencies of fatal pedestrian crashes. There was not
a statistically significant difference between the number of fatal
nighttime pedestrian crashes with lighting present versus without
lighting present during the before period or during the after period.

The average annual count of fatal nighttime pedestrian crashes
increased by 440.8 for arterials from the before to after period, repre-
senting 81.1% of the known increase (Fig. 4a). Over this time, average
annual fatal crashes on interstates/freeways increased by 64.4, col-
lectors increased by 9.8, and local roads increased by 28.4, which
were not statistically significant changes (see the t-test column in
Table 2). There was a strong increase in the proportion of pedestrian
fatalities that occurred on arterials from 2010 to 2017 (Table 3). The
coefficient value of 1.285 for arterials from 2010 to 2017 in Table 3
means that the proportion of pedestrian fatalities that occurred on
arterials increased 1.285% per year over the period (Table 3).

These fatal crashes primarily occurred at non-intersection loca-
tions away from a crosswalk, where there were an additional 576.8

average annual crashes in the after period, representing 80.8% of
the known change (Fig. 4b). Non-intersection, non-crosswalk loca-
tions also saw a strong and statistically significant increase in the
proportion of fatalities from 2010 to 2019 (coef. = 0.218;
p-value = 0.025) (Table 3).

Five-lane roads saw a 270.1% increase in frequency (statistically
significant) from before to after, representing the largest categori-
cal change at 40.7% of the total known change (Fig. 4c). Five-lane
roads also had the strongest increase in the proportion of fatalities
from 2010 to 2017 (coef. = 2.074; p-value = 0.001) (Table 3). This is
interesting as relatively few of the fatalities occurred on five-lane
roads in the before period. This is interesting as relatively few of
the fatalities occurred on five-lane roads in the before period.

Roads with speed limits of 40 mph or 45 mph saw the largest
and only statistically significant growth in frequency from before
to after, representing 54.6% of the total increase (Fig. 4d). The pro-
portion of these 40 mph or 45 mph roads experienced the largest
increases for both 2002–2009 (coef. = 0.524; p-value = 0.036) and
2010–2017 (coef. = 0.237; p-value = 0.020) (Table 3). Interestingly,
the proportions for 30/35 mph and 50/55 mph roads decreased for
both time periods.

All of the known increase occurred on straight alignments, as
average annual crashes on curves actually decreased (Fig. 4e).
The percentage increases in crashes with lighting present and
without lighting present were similar (19.4% and 13.0%, respec-
tively) and the proportion differences were weak and not statisti-
cally significant, indicating that the presence of lighting was not
as strong a factor as other infrastructure variables (Fig. 4f and

Table 2
Statistical analysis of infrastructure variables.

Variable Mean t-test
(02–09 vs. 10–
17)

ANOVA
(2002–09)

ANOVA
(2010–17)

2002–09 2010–17 % increase % of total increase t p F p F p

Functional Classification 1240.1 0.000 101.3 0.000

Interstate/Freeway 535.5 599.9 12.0 11.9 1.856 0.096
Arterial 1688.6 2129.4 26.1 81.1 2.797 0.027
Collector 336.1 345.9 2.9 1.8 0.338 0.744
Local 513.1 541.5 5.5 5.2 0.825 0.429

Location 1142.2 0.000 239.0 0.000

Intersection (Crosswalk) 194.0 272.6 40.5 11.0 4.068 0.004
Intersection (No Crosswalk) 248.4 305.5 23.0 8.0 4.035 0.001
Non-Intersection (Crosswalk) 19.4 20.6 6.2 0.2 0.370 0.717
Non-Intersection (No Crosswalk) 1998.5 2575.3 28.9 80.8 3.556 0.006

Number of Lanes 937.9 0.000 162.3 0.000

One 35.3 50.1 41.9 2.6 3.018 0.009
Two 1755.4 1781.9 1.5 4.6 0.388 0.703
Three 411.8 564.9 37.2 26.5 2.893 0.023
Four 633.3 728.9 15.1 16.5 2.487 0.038
Five 87.1 322.4 270.1 40.7 2.679 0.032
Six or More 113.0 165.6 46.5 9.1 1.960 0.091

Road Speed Limit (mph) 304.8 0.000 68.0 0.000

25 or less 185.1 215.0 16.2 5.6 1.458 0.179
30 or 35 775.3 881.1 13.6 19.9 2.089 0.066
40 or 45 890.4 1180.3 32.6 54.6 3.789 0.005
50 or 55 651.0 697.9 7.2 8.8 1.442 0.175
60 or more 461.1 519.6 12.7 11.0 1.734 0.111

Alignment 53.2a 0.000 19.01a 0.000

Straight 2880.3 3358.4 16.6 100.6 2.758 0.025
Curve 202.1 199.1 �1.5 �0.6 0.301 0.770

Lighting Condition 1.2a 0.270 1.2a 0.265

Lighting Present 1573.8 1879.4 19.4 60.8 2.801 0.026
No Lighting Present 1521.3 1718.6 13.0 39.2 2.067 0.066

a t-test performed as only two categories existed.
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Table 3). The sharp increase in fatal nighttime pedestrian crashes
in the after period is clearly focused on specific roadway types:
straight, non-intersection, and unmarked locations of arterials, pri-
marily signed at 40 mph or 45 mph and consisting of five lanes.

3.2. Users

Examining each time period, there was statistically significant
within-variable variation for all user variables except for pedes-
trian age (which was not applicable as a discrete variable) and dis-
traction for the before period (which could not be analyzed
because of a lack of data) (Table 4).

The most significant changes in user variables were in pedestri-
ans under the influence of alcohol and drugs and pedestrian age.
Increases the frequencies of both pedestrian alcohol and drug
involvement from before to after were statistically significant

(Fig. 5b). However, the proportion of pedestrian fatalities with a
pedestrian under the influence of alcohol actually had a strong
decrease from 2010 to 2017 (coef. = �0.917; p-value = <0.001)
(Table 3). The proportion of pedestrian fatalities with a pedestrian
under the influence of drugs increased during the after period too,
but the increase in pedestrian drug involvement during the before
period was actually stronger (Table 3). However, little research has
been conducted on the dose-risk response relationship between
drug use and driving or walking, leading to differences in measure-
ment validity between drunk (valid) and drugged (unknown valid-
ity) road user testing (Pasnin & Gjerde, 2021). These results suggest
that while changes in pedestrian alcohol and drug involvement are
of interest, more research is needed to clarify the importance of
their role in the overall trends.

The median age of pedestrians killed rose from 44.3 years to
52.3 years from before to after (an 18.1% increase, statistically sig-

Fig. 4. Fatal nighttime pedestrian crash trend by infrastructure.
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Table 3
Linear regression results for changes in proportions (BG Test = Breusch-Godfrey p-values).

2002–2009 2010–2017

Coef. S.E. p-value BG Test Coef. S.E. p-value BG Test

Road Type
Interstate/Freeway 0.127 0.129 0.363 0.536 �0.074 0.133 0.599 0.874
Arterial �0.022 0.211 0.922 0.407 1.285 0.221 <0.001 0.722
Collector �0.111 0.033 0.016 0.029 0.103 0.152 0.525 0.295
Local 0.006 0.208 0.977 0.867 �1.314 0.378 0.013 0.259

Location
Intersection (Crosswalk) �0.018 0.135 0.896 0.976 0.091 0.061 0.187 0.051
Intersection (Non-Crosswalk) 0.207 0.186 0.308 0.623 �0.319 0.052 <0.001 0.413
Non-Intersection (Crosswalk) �0.020 0.042 0.656 0.288 0.010 0.024 0.704 0.116
Non-Intersection (Non-Crosswalk) �0.169 0.168 0.353 0.287 0.218 0.074 0.025 0.536

Number of Lanes
One Lane 0.030 0.047 0.544 0.717 �0.016 0.034 0.644 0.074
Two �0.984 0.161 <0.001 0.837 �1.682 0.234 <0.001 0.716
Three 0.146 0.124 0.282 0.500 0.704 0.148 0.003 0.250
Four 0.447 0.106 0.006 0.187 �1.544 0.421 0.010 0.739
Five 0.220 0.021 <0.001 0.869 2.074 0.358 0.001 0.822
Six or More 0.141 0.063 0.068 0.750 0.464 0.101 0.004 0.836

Speed Limit
25 mph or less 0.042 0.103 0.694 0.891 0.234 0.058 0.007 0.977
30 or 35 �0.320 0.142 0.065 0.691 �0.096 0.156 0.560 0.843
40 or 45 0.524 0.194 0.036 0.885 0.237 0.076 0.020 0.130
50 or 55 �0.328 0.122 0.036 0.500 �0.382 0.065 0.001 0.334
60 or more 0.081 0.184 0.676 0.967 0.008 0.076 0.918 0.070

Alignment
Straight �0.172 0.034 0.002 0.883 0.023 0.055 0.693 0.811
Curved 0.172 0.034 0.002 0.883 �0.023 0.055 0.693 0.811

Lighting Condition
Lighting Present 0.249 0.245 0.349 0.601 0.091 0.151 0.569 0.208
No Lighting Present �0.249 0.245 0.349 0.601 �0.091 0.151 0.569 0.208

Driver Drinking
Driver No Drinking 0.282 0.096 0.026 0.241 0.454 0.063 <0.001 0.173
Driver Drinking �0.282 0.096 0.026 0.241 �0.454 0.063 <0.001 0.173

Ped Drinking/Drug
Drinking (by ped) 0.791 0.272 0.027 0.792 �0.917 0.098 <0.001 0.542
Drugs (by ped) 0.553 0.093 <0.001 0.408 0.511 0.131 0.008 0.280

Pedestrian Gender
Male 0.035 0.141 0.811 0.996 0.065 0.111 0.578 0.965
Female �0.035 0.141 0.811 0.996 �0.065 0.111 0.578 0.965

Driving License
Properly Licensed �0.008 0.066 0.914 0.058 �0.283 0.065 0.005 0.543
Not Licensed/Suspended/Revoked 0.008 0.066 0.914 0.058 0.283 0.065 0.005 0.543

Crash Type
No Hit and Run 0.064 0.247 0.805 0.755 �0.209 0.093 0.066 0.021
Hit and Run �0.064 0.247 0.805 0.755 0.209 0.093 0.066 0.021

Distraction
Inside �0.103 0.104 0.357 0.941 �0.027 0.026 0.351 0.381
Outside na na na na �0.056 0.034 0.159 0.253
Inattention na na na na 0.021 0.070 0.770 0.873
Other na na na na 0.050 0.065 0.470 0.579
Cell Phone na na na na 0.006 0.030 0.852 0.169
Not Distracted na na na na �0.046 0.072 0.544 0.025

(continued on next page)

N.N. Ferenchak and Masoud Ghodrat Abadi Journal of Safety Research 79 (2021) 14–25

19



Table 3 (continued)

2002–2009 2010–2017

Coef. S.E. p-value BG Test Coef. S.E. p-value BG Test

Vehicle Type
Sedan/Coupe �0.419 0.130 0.018 0.669 �0.070 0.167 0.690 0.434
Van/Minivan �0.263 0.091 0.028 0.202 �0.332 0.072 0.004 0.019
SUV 0.669 0.101 <0.001 0.069 0.361 0.100 0.011 0.154
Pickup/Light Truck �0.136 0.129 0.336 0.341 0.034 0.072 0.658 0.926
Bus �0.007 0.019 0.710 0.847 �0.043 0.020 0.082 0.615
Heavy Truck 0.054 0.040 0.232 0.281 �0.029 0.075 0.712 0.031

Vehicle Speed
25 or less �0.185 0.122 0.179 0.391 0.021 0.080 0.801 0.939
26–35 �0.031 0.189 0.875 0.116 0.445 0.186 0.054 0.330
36–45 0.002 0.282 0.994 0.423 0.520 0.112 0.004 0.968
46–55 �0.284 0.292 0.367 0.919 0.046 0.144 0.762 0.660
56 or more 0.499 0.342 0.195 0.084 �1.032 0.323 0.019 0.423

Weather Condition
Clear/Cloudy �0.026 0.110 0.817 0.813 �0.013 0.079 0.878 0.227
Rain 0.026 0.110 0.817 0.813 0.013 0.079 0.878 0.227

Area
Urban 0.136 0.164 0.439 0.446 1.157 0.202 0.001 0.386
Rural �0.136 0.164 0.439 0.446 �1.157 0.202 0.001 0.386

Table 4
Statistical Analysis of User Variables.

Variable Mean t-test
(02–09 vs. 10–17)

t-test
(2002–09)

t-test
(2010–17)

2002–09 2010–17 % increase % of total increase T p t p t p

Driver Drinking 54.1 0.000 15.4 0.000

Driver Not Drinking 2739.8 3317.8 21.1 103.8 2.924 0.019
Driver Drinking 355.4 334.1 �6.0 �3.8 1.402 0.186

Pedestrian Drinking/Drug 19.8 0.000 13.7 0.000

Drinking 754.1 875.6 16.1 22.1 3.428 0.004
Drugs 141.0 295.3 109.4 28.0 3.988 0.003

Pedestrian Gender 31.4 0.000 10.6 0.000

Male 2286.1 2666.3 16.6 69.6 2.501 0.037
Female 862.8 1029.0 19.3 30.4 3.054 0.016

Driving License 64.6 0.000 18.5 0.000

Not Licensed/Suspended 231.6 292.4 26.3 12.0 2.526 0.035
Properly Licensed 2412.8 2859.9 18.5 88.0 3.179 0.013

Crash Type 42.9 0.000 13.3 0.000

Hit and Run 715.1 787.6 10.1 13.1 1.309 0.219
Not Hit and Run 2379.9 2859.0 20.1 86.9 3.173 0.013

Distraction n/a n/a 822.1a 0.000

Inside 52.6 56.4 7.2 1.3 0.520 0.614
Outside n/a 39.4 n/a n/a n/a n/a
Inattention n/a 113.0 n/a n/a n/a n/a
Other n/a 36.6 n/a n/a n/a n/a
Cell Phone n/a 26.8 n/a n/a n/a n/a
Not Distracted n/a 2847.9 n/a n/a n/a n/a

Pedestrian Age n/a n/a n/a n/a

Age 44.3 52.3 18.1 n/a 5.628 0.000

a One-way ANOVA performed as more than two categories existed.
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Fig. 5. Fatal nighttime pedestrian crash trend by users. Note: The secondary y-axis on the right of the distraction (f) graph is for the "Not Distracted" category while the
primary y-axis is for all other categories.

Table 5
Statistical analysis of vehicle variables.

Variable Mean t-test
(02–09 vs. 10–
17)

ANOVA
(2002–09)

ANOVA
(2010–17)

2002–09 2010–17 % increase % of total increase t P F p F p

Vehicle Type 1021.4 0.000 182.6 0.000

Sedan/Coupe 1339.8 1562.4 16.6 44.1 2.550 0.031
Van/Minivan 239.1 210.9 �11.8 �5.6 2.029 0.065
SUV 415.9 616.4 48.2 39.7 4.041 0.003
Pickup/Light Truck 533.1 602.4 13.0 13.7 1.996 0.077
Bus 24.5 26.5 8.2 0.4 1.116 0.285
Heavy Truck 133.9 172.8 29.1 7.7 3.883 0.004

Vehicle Speed (mph) 187.6 0.000 125.6 0.000

25 or less 84.3 94.6 12.2 7.6 2.207 0.046
26–35 250.1 292.3 16.9 31.3 2.973 0.011
36–45 408.6 475.9 16.5 49.9 3.228 0.007
46–55 270.3 264.6 �2.1 �4.2 0.507 0.620
56 or more 232.6 253.5 9.0 15.5 1.188 0.256
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nificant) while the median age in the United States rose from
36.4 years to 37.6 years (3.2%) (Table 4).

While there were other statistically significant increases, none
seem to be primary drivers of the nighttime pedestrian fatality
trend. The increases in frequency of male pedestrians killed and
female pedestrians killed were both statistically significant, but
the increases were nearly equal (16.6% and 19.3%, respectively),
and the differences in proportion change were weak (Fig. 5c and
Table 3). The frequency of drivers with revoked licenses increased
(statistically significant) more than the frequency of those properly
licensed, but still only represented 12.0% of the total known
increase (Fig. 5d).

The frequency of crashes involving a driver that had been drink-
ing decreased from before to after and was not statistically signif-
icant (Table 4). The proportion of driver drinking crashes in the
after period actually decreased (coef. = �0.454; p-value = <0.001)
(Table 3). The frequency of hit-and-runs increased less than the
frequency of non-hit-and-runs and was not statistically significant
(Fig. 5e). The proportion of hit-and-runs increased from 2010 to
2017 but the change was not statistically significant (coef.
= 0.209; p-value = 0.066) (Table 3).

FARS began providing much of their distraction data in 2010.
Therefore, we perform much of the distraction analysis from
2010 to 2017. Annual crashes where the driver was distracted
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Fig. 6. Fatal nighttime pedestrian crash trend by vehicles.

Table 6
Statistical analysis of situation variables.

Variable Mean t-test
(02–09 vs. 10–17)

ANOVA
(2002–09)

ANOVA
(2010–17)

2002–09 2010–17 % increase % of total increase t p t p t p

Weather Condition 51.1a 0.000 18.3a 0.000

Clear/Cloudy 2705.3 3145.3 16.3 91.0 2.763 0.025
Rain 294.7 338.1 14.7 9.0 2.402 0.040
Area 31.8a 0.000 10.4a 0.000

Urban 2226.8 2763.1 24.1 99.7 2.886 0.020
Rural 861.6 863.1 0.2 0.3 0.062 0.951

Month 63.8 0.000 17.4 0.000

January 308.8 337.8 9.4 5.3 1.193 0.267
February 249.9 292.5 17.0 7.7 2.468 0.036
March 240.1 278.6 16.0 7.0 2.269 0.047
April 200.6 236.4 17.8 6.5 2.523 0.036
May 190.5 228.0 19.7 6.8 2.454 0.034
June 193.9 215.8 11.3 4.0 1.506 0.166
July 207.8 246.1 18.4 6.9 2.838 0.014
August 235.9 266.3 12.9 5.5 1.546 0.161
September 253.8 301.8 18.9 8.7 2.361 0.036
October 317.5 397.4 25.2 14.5 2.938 0.015
November 348.0 412.3 18.5 11.7 2.517 0.036
December 353.9 438.8 24.0 15.4 4.077 0.003

Day of Week 86.7 0.000 10.2 0.000

Sunday 508.4 565.6 11.3 10.4 1.595 0.137
Monday 345.9 448.5 29.7 18.6 3.437 0.009
Tuesday 350.5 436.3 24.5 15.6 3.030 0.016
Wednesday 388.6 445.5 14.6 10.3 1.993 0.081
Thursday 377.8 480.1 27.1 18.6 3.026 0.016
Friday 512.0 597.4 16.7 15.5 2.809 0.023
Saturday 617.0 678.1 9.9 11.1 1.956 0.079

a t-test performed as only two categories existed.
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inside the vehicle increased by only 5 between 2010 and 2017, dis-
traction outside the vehicle increased by 1, and inattention
increased by 30, compared to an increase of 1,384 for all nighttime
pedestrian fatalities over the same time period (Fig. 5f). Distraction
inside the vehicle was the only category for which we had data for
the entire before period, and the change in frequency of these
crashes from before to after was not strong or statistically signifi-
cant (Table 4). There were no strong or statistically significant
changes in distraction proportion (Table 3). However, it is impor-
tant to note that there are limitations with the distraction data,
as detailed in the Conclusions.

3.3. Vehicles

There was statistically significant within-variable variation for
all the vehicle variables (Table 5). There were three vehicle type
categories that experienced statistically significant frequency
increases from before to after: sedan/coupe, sport utility vehicle
(SUV), and heavy truck (Table 5). Much of the overall frequency
increase in the after period was a result of increases in sedan/coupe
and SUV. Sedan/coupes represented 44.1% of the known increase.
However, because sedan/coupe was relatively common to begin
with, the category only increased 16.6%. On the other hand, SUVs
represented 39.7% of the known increase and the category saw a
48.2% increase. While heavy trucks had a statistically significant
increase, they were only 7.7% of the total known change (Fig. 6a).
In terms of proportions, SUVs had the only statistically significant
increase from 2010 to 2017 (coef. = 0.361; p-value = 0.011)
(Table 3). While it appears that SUVs played a key role in the over-
all increase in pedestrian fatalities since 2009, it is interesting to
note that the SUV proportion actually had a much stronger
increase in 2002–2009 (coef. = 0.669; p-value = <0.001), calling
into question the degree to which this variable was responsible
for the post-2009 increase.

Echoing posted speed limit findings, much of the increase in
fatalities happened with vehicle speeds between 36 mph and 45
mph (49.9% of the total known increase) and 26 mph and 35
mph (31.3% of the total known increase) (Fig. 6b). While these find-
ings support the posted speed limit findings, reported vehicle
speeds had a small sample size (for example, only 1,519 crashes
out of 4,380 total crashes had data reported in 2017).

3.4. Situation

There was statistically significant within-variable variation for
all the situational variables (Table 6). Urban context had the stron-
gest relationship with the fatal nighttime pedestrian crash trend.
Urban crashes increased 24.1% from before to after (representing

99.7% of the total known increase) while rural only increased
0.2% (Fig. 7b). The proportion of pedestrian fatalities that occurred
in urban areas also had a strong and statistically significant
increase (coef. = 1.157; p-value = 0.001) (Table 3).

There were also interesting patterns for month and day of the
week. October, November, and December had the highest average
crashes in the before period, experienced the largest percentage
increases, and were responsible for the largest proportion of the
total change (Table 6). Inversely, Monday, Tuesday, and Thursdays
had the lowest counts in the before period but saw the largest per-
centage increases and were responsible for a large proportion of
the total change.

The frequency of crashes occurring in rain increased less than
clear/cloudy weather and was only responsible for 9.0% of the
total known change (Fig. 7a). There were no strong or statistically
significant difference for weather proportion (coef. = 0.013;
p-value = 0.878) (Table 3).

4. Conclusions

The increase in fatal nighttime pedestrian crashes is most
strongly correlated with infrastructure factors. Specifically, non-
intersection unmarked locations of 40–45 mph, five-lane urban
arterials are host to much of the increase in pedestrian fatalities.
Not only have nighttime pedestrian fatalities concentrated on
these roadways, but these roadways only began to experience
higher proportions at the same time that overall pedestrian fatali-
ties began increasing in 2010. This suggests that infrastructure has
played a key role in the recent increase in pedestrian fatalities.

In addition, an increasing prevalence of SUV involvement was
identified. While SUV involvement warrants further investigation,
it is important to note that the proportion of nighttime pedestrian
fatalities involving SUVs had a stronger increase in 2002–2009,
when overall pedestrian fatalities were still decreasing.

The age of pedestrians killed has increased significantly more
than the national average. Increases in pedestrian alcohol and drug
use justify further exploration. However, while pedestrian alcohol
use has increased significantly, the proportion of pedestrian fatal-
ities with an alcohol-intoxicated pedestrian actually decreased.
Drug results should be interpreted cautiously because of unknown
measurement validity (Pasnin & Gjerde, 2021).

Future research might investigate to what degree these findings
are related as causal hints probably lie in the interactions among
variables. For instance, recent research exploring Albuquerque,
NM found that pedestrian fatalities and serious injuries are con-
centrated near alcohol establishments, which are often located
along arterial roads (Long & Ferenchak, 2021). In this way, the
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Fig. 7. Fatal nighttime pedestrian crash trend by situation.
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infrastructure and alcohol findings from this paper may be depen-
dent upon land use changes and attendant shifts in social behavior
over the 16 year-period of the study. In addition, as the U.S. popu-
lation ages, older pedestrians may be more likely to visit these
alcohol establishments, leading to increased exposure for older
and more vulnerable populations, a further association among
variables. Pedestrian safety outcomes in Albuquerque were also
found to be especially poor in minority neighborhoods (Long &
Ferenchak, 2021), suggesting the need for further analyses explor-
ing how socio-demographic and socio-economic factors interact
with these trends (Ferenchak & Marshall, 2019; Marshall &
Ferenchak, 2017).

While past studies have hypothesized that increased driver dis-
traction may be related to increased pedestrian fatalities (Retting,
2019), our analysis suggests that this is not the case. However, fur-
ther investigation is warranted as distraction may be prone to
reporting issues and the reported sample size was relatively low.
Also, pedestrian distraction is not tracked by FARS and may be
worth examining with future research.

Another variable that had a surprising lack of relationship was
lighting condition. Crashes with and without lighting saw similar
increases, suggesting that a lack of lighting is not a primary issue.
However, we expect lighting would be installed in areas with high
pedestrian activity, meaning that further analyses accounting for
exposure are needed.

Another limitation of the current work is our lack of accounting
for temporal autocorrelation. Future work might explore alterna-
tive statistical methods – such as autoregressive integrated moving
average (ARIMA) models or generalized linear mixed models
(GLMM) – that account for such autocorrelation. However, we used
Breusch-Godfrey tests to identify autocorrelation issues and only
found five categories with statistically significant autocorrelation
issues out of 103 possibilities. None of the identified autocorrela-
tion issues impacted key categories (the identified autocorrelation
issues were for collectors 2002–2009; hit and run 2010–2017; not
distracted 2010–2017; van/minivan 2010–2017; and heavy truck
2010–2017). We imagine that the lack of autocorrelation issues
is at least in part a result of the removal of seasonality from the
data.

Exposure is an important factor to account for in future
research. The increase in nighttime pedestrian fatalities may be
driven by more people walking or driving at night (although a
45.5% increase in pedestrian fatalities is unlikely to be a result of
increased exposure alone). The 2017 National Household Travel
Survey (NHTS) estimates that pedestrian trips per household
decreased 9.1% and private vehicle trips decreased 10.4% from
2009 to 2017, suggesting that the issue is not simply a result of
more pedestrians or vehicles on the road and that there are most
likely other contributing factors at play (McGuckin & Fucci,
2018). However, these exposure estimates were not specific to
nighttime activity. Similarly, while the U.S. population increased
5.1% from 2010 to 2017, the per capita pedestrian fatality rate
increased at a significantly higher rate of 32.4% (from 1.39 to
1.84 pedestrian fatalities per 100,000 population). This again sug-
gests that the increase in pedestrian fatalities is being driven by
more than just increases in exposure, although population esti-
mates do not necessarily correlate with nighttime pedestrian activ-
ity. These exploratory exposure analyses – along with the analysis
of the proportion of injured pedestrians that are killed from the
beginning of the Results section – all indicate that increasing
pedestrian fatalities are not simply a result of more pedestrians
or vehicles on the streets, but instead have resulted from some
contributing factors and changes to severity. These factors may
be related to infrastructure or vehicle design (as our study sug-
gests), or they may consist of complex interactions between such
factors and underlying political or social changes (for which more

research is needed). We did not use vehicle miles travelled (VMT)
as an exposure metric because pedestrian conflicts and collisions
are more dependent upon pedestrian volumes than vehicle vol-
umes (Ferenchak & Marshall, 2018).

The relationships identified in this research may also be a result
of changes in exposure for specific variables. For instance, the
increase in pedestrian fatalities observed on arterials may be a
result of more pedestrians walking on arterials. However, obtain-
ing pedestrian exposure data specific to nighttime activity on a
national level to match our analysis variables is not currently fea-
sible. Even if we were able to obtain such data, a lack of historical
data would preclude a proper longitudinal study of the trend.
Future work might focus on specific sections of cities that already
collect comprehensive pedestrian exposure data to better under-
stand these nighttime trends.

To provide a preliminary exposure analysis of contributing fac-
tors, we obtained data detailing changes in prevalence of arterials
and SUVs in the United States. According to Bureau of Transporta-
tion Statistics data, mileage of urban arterials saw a 9.3% increase
from the before to after periods (2002–2009 vs. 2010–2017), while
overall urban road mileage saw a 15.8% increase (U.S. Department
of Transportation, 2018). The fact that 80.1% of the known increase
in fatal nighttime pedestrian crashes occurred on arterials, while
the proportion of urban arterials relative to all urban roads
decreased, suggests that fatalities on arterials are highly overrepre-
sented relative to their exposure and present a safety issue worthy
of further investigation. According to NHTS data, SUVs increased
from 18% of household vehicles in 2008 to 24% in 2017 (Federal
Highway Administration, 2018). Crashes involving SUVs saw a
48.2% increase and represented 39.7% of the total known increase,
suggesting that while some of the crash increase is explained by
increased SUV exposure, this is another safety issue that warrants
further investigation.

In addition to exploring exposure for the identified variables,
future work might examine all pedestrian injuries to see if this
safety trend is present across the injury severity spectrum. Future
research may also investigate specific cities that have experienced
increases in nighttime pedestrian fatalities so that crash reports
can be inspected, as they may be better able to illuminate causes
than broad national trends. Furthermore, geocoding nighttime
pedestrian fatalities into GIS would allow future researchers to
examine factors that are not reported by FARS, such as surrounding
land use and clustering. Finally, once pertinent variables have been
identified, future research should work toward identifying coun-
termeasures to best fix the identified problems.

4.1. Practical applications

Although our paper helped to better define a problem, we did
not explore the effectiveness of any solutions. However, we now
propose practical applications, noting that they are currently spec-
ulative and more work is needed. Engineering solutions may be
used to combat the infrastructure issues. Specifically, design solu-
tions such as road diets or traffic calming may help lower vehicle
speeds and road widths and provide more protection to pedestri-
ans, thereby reducing frequency and severity of crashes and the
number of pedestrian fatalities. Such design solutions are currently
promoted by traffic safety philosophies Vision Zero and Safe Sys-
tems and deserve more investigation.

However, we must also keep in mind that Safe Systems pro-
motes a non-linear, systems-based approach to traffic safety,
meaning that solving the pedestrian safety crisis is likely not as
simple as solely improving road design (Collaborative Sciences
Center for Road Safety, 2021). Just like the previous discussion
about the interaction between variables, the problems giving rise
to these pedestrian fatalities are likely a result of not only engi-
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neering issues but also interrelated social and political factors.
Solutions should be correspondingly comprehensive. For example,
the suburbanization of poverty has been identified as a possible
driver of recent pedestrian safety trends (Benediktsson, 2017;
Schmitt, 2020; Sheller, 2015). As disinvestment occurs in aging
suburban areas and capital is transferred to gentrifying urban cen-
ters, the cost of postwar suburban housing has declined. This has
caused a migration of poverty, with more than half of the people
living below the poverty line in the United States now residing in
suburban areas (Benediktsson, 2017). Poor suburban residents
must increasingly navigate auto-centric roads on foot, with key
destinations often located along fast and busy arterials. In this
way, solutions may require coordinated changes to existing prac-
tice across players within diverse societal sectors including hous-
ing availability, land use, homelessness, alcohol/drug treatment,
and road design.
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a b s t r a c t

Introduction: The growth of the European market for road-freight transport has recently led to important
changes. The growing number of foreign pavilion drivers transiting in France, which plays a bridging role
among European countries, has influenced the lives of truck drivers by increasing competition, pressure
on day-to-day activities, and constraints related to delivery deadlines. Adding this new pressure to those
inherent in the road-freight transport sector has raised concerns, especially ones linked to levels of per-
ceived stress by truck drivers.Method:With safety concerns in mind, we devised a questionnaire aimed at
understanding how French truck drivers and non-French truck drivers, passing through four highway rest
areas in France perceive stress, organizational factors, mental health, and risky driving behaviors. A sam-
ple of 515 truck drivers took part in the survey (260 French nationals), 97.9% of whom were male. Results:
The results of a structural equation model indicated that perceived stress can increase self-reported risky
driving behaviors among truck drivers. Furthermore, organizational factors and mental health were clo-
sely linked to perceived stress. Finally, some differences were found between French and non-French
truck drivers with respect to mind-wandering and mental health, and to perceive driving difficulties to
overcome and driving skills. Practical Applications: Several recommendations based on the findings are
provided to policymakers and organizations.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

In 2014, truck drivers represented almost three million
employees working in more than 549,000 companies throughout
the European Union and were involved in 15% of all crashes
(European Commission, 2017; European Road Safety Observatory,
2019). At that time, the road freight transport sector was generat-
ing approximately 330 billion euros in revenue, with the largest
companies situated in countries including Germany, France, and
the Netherlands (European Commission, 2017). According to a
review of social issues related to road-freight transport (Brasseur,
Paquel, Colussi, Rageau, Lambrey, Sarron, & Prat, 2018), the esti-
mated activity of European Union road-freight transport in 2015
was approximately 1,768 billion tons/kilometer, which represents
an increase of 2.4% over 2014. However, this increase was not
equally distributed among all of the European Union members.

The activity of companies from the EU-131 members rose by 5.2%,
whereas that of EU-152 members grew by only 1.2%. Furthermore,
the total number of road-freight companies decreased in EU-15
but increased in EU-13, especially in Romania (10.3%) and Poland
(2.5%) (Brasseur et al., 2018). This new reality is leading to a greater
number of foreign pavilion (foreign flag) drivers transiting through
various European countries.

In this context, France plays a bridging role, allowing truck dri-
vers to link Eastern Europe to Southern and Western Europe
(Limbourg & Jourquin, 2009), which implies that France is one of
the most widely traveled countries in Europe by truck drivers.
Recently, Brasseur et al. (2018) pointed out that approximately
34.5% of all truck drivers circulating in France in 2015 were regis-
tered under a foreign company.

Taking into account truck drivers’ high exposure to traffic, the
risk of crashes represents a significant concern. In the early
2000s, a period of constant decline in mortality from crashes
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involving heavy trucks was due both to new policies on legal daily
work hours and better technical conditions of trucks, improved
infrastructures, and better road signaling (Medina-Flintsch et al.,
2017). However, between 2015 and 2016 an increase of 4.2% in
mortality from crashes involving heavy trucks prompted a
renewed awareness of this issue. The situation is worrisome if
we also consider the severity of these crashes. In France, for
2016, Brasseur et al. (2018) found that 176 persons were killed
for every 1,000 crashes involving heavy trucks, almost three times
as many as for road crashes in general, where the count was 60
deaths for every 1,000 crashes. Furthermore, more fatal crashes
involving heavy trucks occur on divided highways (31%) as com-
pared to fatal road crashes in general (10%) (Brasseur et al.,
2018), and as a consequence, 18% of persons killed and 27% of per-
sons injured in crashes involving heavy trucks in 2016 occurred on
divided highways (Observatoire National Interministériel de la
Sécurité Routière, 2017).

Speeding has constantly been found to be the most common
offense among vehicle drivers in general (Elvik, Vadeby, Hels, &
van Schagen, 2019) and has consistently been linked to the number
of crashes and their severity (Imprialou, Quddus, Pitfield, & Lord,
2016). Truck drivers also report speeding more often than any
other driving offense (Newnam, Lewis, & Warmerdam, 2014;
Tseng, Yeh, Tseng, Liu, & Lee, 2016).

To create actions aimed at reducing crashes and risky behaviors
among truck drivers, one approach is to gain a better understand-
ing of their behavior. The particular reality faced by professional
truck drivers such as long working hours, constraints due to deliv-
ery deadlines, tiredness due to loading/unloading, work routines,
concentration loss (e.g., Sabbagh-Ehrlich, Friedman, & Richter,
2005), as well as changes brought about by the free circulation of
goods across the EU (resulting in pressure from business competi-
tion) increase the complexity of their working environment (e.g.,
increase in the number of truck drivers leading to more pressure
to find a parking place to rest in highway rest areas). This is leading
to serious consequences in terms of stress and mental health. It is
therefore important to analyze the behavior, organizational factors,
perceived stress, and mental health not only of truck drivers from
foreign countries but also the behavior of truck drivers from
France. To our knowledge, there are too few studies that look into
these factors in the current European setting.

The present paper aims to fill in that gap by analyzing how the
perceived stress of truck drivers (French and non-French) is con-
nected to organizational support and job characteristics, mental
health, perceived risk, and risky driving behavior. The paper is
divided into four main sections. The first section focuses on truck
drivers’ perceived stress. It is divided into two subsections, one
dealing with factors contributing to truck drivers’ perceived stress,
the other focusing on the impact of perceived stress on truck dri-
vers. The second section focuses on the method used in the present
study. The third section provides the results. The fourth and last
section discusses the findings, implications, and future research.

1.1. Truck drivers’ perceived stress

Perceived stress is the ‘‘degree to which individuals find their
life unpredictable, uncontrollable, and overloading” (Lesage,
Berjot, & Deschamps, 2012, p. 178).

1.1.1. Factors contributing to drivers’ perceived stress
Here, we are considering two factors: organizational (such as

organizational support, supervisor pressure, job satisfaction) and
individual factors (such as mental health, physical health, and
perceived driving skills).

1.1.1.1. Organizational factors. Organizational support has been
shown to have an impact on stress and on driving performance
by way of working conditions, management style, and training,
and also through job satisfaction. On one hand, management and
working conditions are considered crucial to ensuring productivity
and safety. For example, management style and more specifically,
supervisor pressure (Johnson, Bristow, McClure, & Schneider,
2009), was connected to transgressive work behaviors, stress,
and a greater intention to leave the organization (Spector & Fox,
2010). Hege, Lemke, Apostolopoulos, and Sönmez (2019) corrobo-
rated these findings by linking supervisor support and work hours
per day to truck drivers’ stress levels. Working conditions, espe-
cially, were shown to contribute to employees’ stress levels. Truck
drivers have often indicated poor working conditions such as long
work hours, repetitive tasks, and frequent constraints due to deliv-
ery deadlines (often in contradiction with safety regulations).
These conditions are imposed by trucking companies who are
forced to deliver to customers whose goods are out of stock or lack
a place to store them, thus requiring truck drivers to work on a
just-in-time basis, with long periods of separation from their fam-
ily, and overly strict regulations (such as speed limits, highly regu-
lated work hours, and breaks). These things can even cause them to
lose their drivers’ license, one the main drawbacks of this occupa-
tion. Such working conditions have been shown to raise everyday
levels of stress (Hege et al., 2019; Johnson et al., 2009; Semeijn,
de Waard, Lambrechts, & Semeijn, 2019).

On the other hand, training and adequate safety awareness pro-
grams implemented by the organization have been shown to lower
employee stress by increasing the level of perceived preparedness
in case of an emergency (Atombo, Wu, Tettehfio, Nyamuame, &
Agbo, 2017) and contributing to the creation and maintenance of
a safety-oriented work environment (Murphy, Huang, Lee,
Robertson, & Jeffries, 2019). Not all truck drivers’ jobs are stressful
or difficult. Some aspects are seen as positive, especially those
linked to the salary level, which is one of the most important fac-
tors of satisfaction (Prockl, Teller, Kotzab, & Angell, 2017) along
with the amount of freedom the job involves. These factors con-
tribute to the attractiveness of the occupation insofar as most truck
drivers appreciate the independent nature of their work and are
quite satisfied with their wages. All of these factors contribute to
job satisfaction, and previous studies have shown that low job sat-
isfaction is linked to high levels of stress and poor health (Hoboubi,
Choobineh, Ghanavati, Keshavarzi, & Hosseini, 2017; Peltzer,
Shisana, Zuma, Van Wyk, & Zungu-Dirwayi, 2009).

1.1.1.2. Individual factors. As far as individual factors are concerned,
mental health (e.g. well-being, burnout, mind-wandering), physi-
cal health, and job skills have all been linked to stress. First, stress
has been connected to poor mental health (Alavi et al., 2017). Well-
being, for example, has frequently been correlated to low levels of
stress. Low levels of well-being have been linked to a greater inten-
tion to leave the organization and to poor work performance
(Bliese, Edwards, & Sonnentag, 2017). In the same vein, burnout
is strongly correlated to high-stress levels and low levels of wellbe-
ing and has been shown to have critical effects on the organization
as a whole. Burnout is known to be linked to lower performance
and a higher frequency of transgressive behaviors (Bliese et al.,
2017; Lazaro, Shinn, & Robinson, 1984; Selamu, Thornicroft,
Fekadu, & Hanlon, 2017). Evidence of the link between stress and
mind-wandering has been provided by several studies showing
that stressed participants were more likely to manifest mind-
wandering behaviors (Vinski & Watter, 2013). Mind-wandering is
especially dangerous for drivers because it has been associated
with crashes (Walker & Trick, 2018). Another important factor fre-
quently linked to drivers’ proneness to crashes is driver fatigue.
Sleep quality is crucial for drivers because it affects their ability
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to stay alert and make good decisions while driving (Filtness et al.,
2020). Insomnia is known to correlate with higher levels of stress
and depression (Hall et al., 2000). Among truck drivers, difficulty
sleeping and getting proper rest in their cabins at highway rest
areas are common complaints.

Secondly, physical health is known to be linked to stress. The
physical fitness of persons who drive for a living is one of the
largest concerns in the industry (Filtness et al., 2020) since it has
been found to be correlated to higher stress levels and caffeine
consumption. Furthermore, some of the complaints of truck drivers
involve food quality and lifestyle (Johnson et al., 2009).

Finally, some studies have pointed out that stress can also be
correlated with driving skills. Research has also shown that drivers
with low levels of perceived driving skills feel more stressed in
complex traffic situations (Ringhand & Vollrath, 2019) and that dri-
vers with little confidence in their driving abilities report higher
levels of driving-related stress (Siren & Meng, 2013).

1.1.2. Consequences of perceived stress on truck drivers’ driving
performance and risky behaviors

The main consequences of stress have frequently been linked to
poor driving performance and accident proneness (Christian,
Bradley, Wallace, & Burke, 2009; Gao, González, & Yiu, 2020;
Sutherland & Cooper, 1991). Other studies have shown that driver
behavior and driver performance can be influenced by stress (Day,
Brasher, & Bridger, 2012; Taylor & Dorn, 2006). Stress can affect
drivers’ performance in two ways: it can interfere with their ability
to focus on the task at hand by triggering feelings of anxiety
(Hoseinabadi et al., 2015; Matthews et al., 1998), and high-stress
levels can impair drivers’ judgments, thereby contributing to poor
decision-making while driving and also increasing crash risk (Day
et al., 2012). Riskier driving behaviors (Öz, Özkan, & Lajunen, 2010;
Useche, Ortiz, & Cendales, 2017), as well as higher perceived risk
(Rundmo, 1995), were also linked to higher levels of stress.

The following section describes the main concerns noted in the
literature concerning risky driving behaviors. Compared to car dri-
vers, truck drivers have been shown to drive more often with their
seat belt unfastened (Cook, Hoggins, & Olson, 2008). In France in
2016, among 44 truck drivers killed in road crashes for whom
information was available, 11 had not fastened their seatbelt
(Observatoire National Interministériel de la Sécurité Routière,
2017). Another risky driving behavior is phone use while driving.
Studies have found that truck drivers link hand-held phone use
to causing and experiencing potentially dangerous situations
(Troglauer, Hels, & Christens, 2006). Finally, transgressions regard-
ing working hours (such as driving over the daily time limit per day
or counting loading and unloading times as break times3) can sig-
nificantly contribute to increased risk of fatigue (Friswell &
Williamson, 2019).

There is still a need for a more systematic and comprehensive
understanding of how organizational and individual factors can
influence truck drivers’ perceived stress, and how perceived stress
can affect perceived risk and risk-taking behaviors. The initial ver-
sion of the model proposed in this study is the one tested by Hege
et al. (2019), who argued that working conditions and organiza-
tional support can have an impact on stress. To develop this start-
ing point, we relied on the international and European (European
Commission, 2017; European Road Safety Observatory, 2019) liter-
ature, as well as French analyses (Brasseur et al., 2018;
Interministériel, 2017), to create a somewhat more comprehensive

picture of the perceived stress of truck drivers circulating in France
and its impact on perceived risk and risk-taking behaviors.

The aim of this study, carried out with a face-to-face survey
administrated to truck drivers circulating in France, was twofold.
Our first aim was to look into both the stress level of truck drivers
(whose job conditions can be difficult, repetitive, and subject to
many constraints) and its connection to organizational and indi-
vidual factors. The second aim was to analyze how individual
and organizational factors affect perceived stress and what its con-
sequences are on perceived crash risk and risky behaviors, includ-
ing whether these relationships depend on whether the driver is
French or non-French. We hypothesized that non-French drivers’
lack of familiarity with the environment, the different types of
training received in their country of origin, and language and cul-
tural differences might lead to a different pattern of relationships
between perceived stress and organizational, individual, self-
reported risky behaviors, and perceived crash risk than those found
for French drivers.

2. Method

The survey addressing the truck drivers’ characteristics and
behaviors was conducted using a questionnaire displayed on an
iPad in various highway rest areas of France (Center, Southeast,
Southwest, and Ile-de-France). The rest areas were chosen based
on two criteria: their use by truck drivers of different nationalities
and the easiness of obtaining permission for data collection.

The research program was conducted in compliance with the
ethical standards of the French Society of Psychology and was sys-
tematically monitored for compliance with the ethical guidelines
of the Ethical Committee of the French institute of science and
technology for transport, development, and networks.

2.1. Participants

The participants were all truck drivers who were transiting
French highways. Overall, the sample had 515 respondents (11
women) with an average of 20.5 years of work experience
(SD = 11.42, range: 0–48) who took part in the survey. The mean
age in the sample was 45.83 (SD = 10.18, range 21–70). The drivers
covered an average of 588 km per day (r = 162.34, range: 100–
900) in their truck. Most of the participants indicated that they
are employed (91.1%), while fewer said they were owners or self-
employed (8.9%). Many truck drivers (94.8%) acknowledged exist-
ing pressure to respect strict schedules and timetables, as well as
direct supervisor pressure under threat of financial penalties if
the organization loses the client.

2.2. Measures

2.2.1. Questionnaire
The content of the questionnaire was based on a literature

review and two series of preliminary, semi-structured interviews.
The interviews aimed to: obtain up-to-date knowledge of truck
drivers’ experiences while on the road and during rest periods;
their opinions and impressions about their occupation; and their
driving behaviors, difficulties, and work conditions in general.
The information collected made it possible for us to devise appro-
priate ad hoc measures.

The questionnaire, developed in French, was translated into
Bulgarian, English, Italian, Polish, Portuguese, Romanian, and Span-
ish by native speakers specialized in transport and transportation.
Most of the questions required answers on five-point Likert scales
of frequency ranging from 1 (never) to 5 (very often), and intensity
of agreement ranging from 1 (not at all) to 5 (absolutely). Some

3 Setting loading and unloading as break time means that while truck drivers who
are working loading and unloading their truck they should not register that time as a
break. However, this illegal practice is a common practice since it allows the drivers
to increase their work time period.
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questions required a simple yes or no answer. The reliability of the
scales was assessed using Chronbach Alpha test.

The questionnaire contained six sections assessing four organi-
zational factors and six categories of individual factors.

2.2.2. Organizational factors
Supervisor pressure. Participants were asked whether they felt

their supervisor was pressuring them to meet delivery deadlines.
There was only one item assessing supervisor pressure and the
answers ranged from 1 (not at all) to 5 (almost all the time).

Discontent. The discontent scale was aimed at assessing several
known problems linked to truck driving. An average of the
responses was computed from items assessing various issues such
as safety and deadlines, healthy lifestyle, food quality, and con-
straints for truck drivers (e.g., I feel there is a contradiction between
safety and deadlines). The answers to each item ranged from 1 (not
at all) to 5 (all the time) (a = 0.65).

Training. Training assessed the investment in training made by
the organization. Participants were asked to indicate whether the
organization they belonged to offered training activities related
to road safety in general and specific risks such as sleepiness, inat-
tention, or distractibility. The higher the final score, the more such
training activities the company offered. The scores ranged from 0
(none of the programs listed) to 4 (all of the training programs
listed).

Job satisfaction. This factor assessed participants’ job satisfaction
on five items. Participants were asked to rate, on a scale from 1 (not
at all) to 5 (completely): whether their work-life corresponded to
their ideal, whether their work conditions are excellent, if they
are satisfied with their professional life, whether they have
achieved the most important things in their professional life, and
whether they would change something if they could start again
(e.g., My professional life is completely in line with my ideals). The
scale was adapted to the French population by Fouquereau and
Rioux (2002) (a = 0.85).

2.2.3. Individual factors
a. Mental health was assessed on three factors:
Wellbeing. This factor was measured with the World Health

Organization’s (WHO) five-item wellbeing scale (World Health
Organization. (1998) (1998), 1998). Participants were asked to rate
items such as I feel calm and happy on a scale from 1 (never) to 6
(all the time) (a = 0.90). The individual score could vary between
0 and 100.

Burnout. This was measured using a French version (Doppia,
Estryn-Béhar, Fry, Guetarni, & Lieutaud, 2011) of the six-item per-
sonal burnout subscale of the Copenhagen Burnout Inventory
(Kristensen, Borritz, Villadsen, & Christensen, 2005). Participants
were asked to rate items such as I feel empty on a scale from 1
(never) to 5 (all the time) (a = 0.90). The participants’ scores could
vary between 0 and 100.

Mind-wandering. This was measured using a French translation
of Mrazek, Phillips, Franklin, Broadway, and Schooler (2013) five-
item scale. The scale assesses concentration issues and difficulties
such as I have trouble maintaining my focus during simple or repeti-
tive tasks on a scale from 1 (almost never) to 6 (almost always)
(a = 0.85). An individual’s score could vary between one and five.

Insomnia severity. Insomnia was measured using the seven-item
Insomnia Severity Index (Bastien, Vallières, & Morin, 2001;
Gagnon, 2012). Participants were asked about whether they had
trouble falling and staying asleep, had difficulties waking up,
how happy they were with the sleep they were currently getting,
and whether they felt worried about sleeping issues, on a scale
ranging from 1 (not at all) to 5 (completely) (e.g., Please estimate
the current gravity (last month) of your sleep difficulties: Trouble fall-
ing asleep) (a = 0.74).

b. Physical health was assessed via a composite index derived
from several questions. We took into account whether participants
said they smoked, has gained weight in the last three years, felt
their diet was unbalanced, did not exercise, had blood pressure
issues, drank alcohol, and whether they perceived their overall
health as poor or acceptable (versus good and excellent). The
higher the score, the less physically healthy the participant was.
An individual’s score could vary between 0 (none of the above
issues) and 6 (at least six of the above issues).

c. Driving skills were measured via two factors:
Perceived driving skills. This index assessed general and specific

driving situations such as keeping a safe inter-vehicle distance,
managing downhills or dangers on the road, and maneuvering into
parking spaces (e.g., I feel competent at foreseeing dangers on the
road). The seven items were measured on a scale ranging from 1
(not at all) to 5 (completely) and were averaged to obtain a per-
ceived driving skills index (a = 0.92).

Perceived driving difficulties. This index measured the perceived
driving difficulty to overcome of various general and specific driv-
ing situations. The six items assessed maneuvers such as manag-
ing blind spots, breaking while driving downhill, and managing
driving in rain or snow, on a scale ranging from 1 (very hard to
manage) to 5 (very easy to manage) (e.g., When driving my truck
blind spots are ..) (a = 0.82).

d. Perceived stress was measured using the 10-item Perceived
Stress Scale (Cohen, Kamarck, & Mermelstein, 1983; for the French
version, see Lesage et al., 2012). The Perceived Stress Scale (PSS)
measures ‘‘the degree to which respondents find their life unpre-
dictable, uncontrollable, and overloading” (p. 178, Lesage et al.,
2012). Participants used a scale ranging from 1(never) to 5 (very
often) the give their answers for items such as How often were
you disturbed by an unexpected event? (a = 0.80).

e. Perceived crash risk was measured by averaging eight items
related to the perceived risk of having a crash with various road
users such as another truck, a car, a motorcycle, a highway patrol
car, a caravan, a bus, while loading/unloading, when another truck
is changing lane, when I am changing lane (e.g., The risk of having a
crash with another truck is..). Participants were asked to indicate
their answers on a scale ranging from 1 (very low) to 5 (very high)
(a = 0.86).

f. Self-reported risky behaviors were assessed by averaging
participants answers to eight self-reported risky-behavior items
such as going over the speed limit, driving under the influence of
alcohol or drugs, driving more hours than the legal daily time limit,
or reporting loading time to breaks and vice versa (a = 0.70). Partic-
ipants had to indicate their answer using a Likert scale from 1
(never) to 5 (almost all the time) (e.g., I drive over the speed limit).

g. Demographic characteristics such as gender, marital status,
nationality, daily kilometers driven on the highway, age, truck
driving experience, demerit points (anywhere in the EU and only
when driving a truck), and involvement in road crashes (within
the last three years) were also collected. They are summarized in
Table 1.

2.3. Procedure

Professional interviewers administered the questionnaire at
four highway rest areas in France where truck drivers of different
nationalities frequently stop. About three or four interviewers
were stationed at each area from about 5 p.m. to about 9 p.m. on
nine workdays in mid-March 2018. Truck drivers were contacted
in the parking zones and/or in the vending facilities of the rest
areas. Participants were asked to choose the language in which
they wished to answer the questionnaire (from the list of eight lan-
guages available). They were informed that the study was about
the perceived risks inherent in truck driving, and told that the
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study was anonymous and confidential, and abided by current
legal regulations. They were also told that at least 30 minutes were
needed to answer all of the questions. Then the truck driver could
decide whether or not he/she wanted to participate. The average
responding time was around 35 min. A scarf and coffee were
offered as gifts to thank the participants.

3. Results

In line with our first aim, which was to examine the perceived
stress level of truck drivers and its connections to organizational
and individual factors, we conducted a descriptive analysis by
looking at means, standard deviations, and correlations to better
understand the sample and to be able to identify relevant relations
between stress, self-reported risky driving behaviors, individual
factors such as mental and physical health, and organizational
factors.

In line with our second aim, which was to explain how per-
ceived stress is experienced by truck drivers and to test whether
it differs according to the drivers’ familiarity with the environment
(French or non-French drivers), we used path analysis (measure-
ment and structural modeling) to test a model implying different
relations between perceived stress, self-reported risky driving
behaviors, organizational factors, and individual factors. All analy-
ses were conducted in SPSS or AMOS.

3.1. Descriptive statistics for stress and organizational and individual
factors

3.1.1. Organizational, individual factors, and mental health
Training programs are offered in many organizations to increase

safety. In our sample, 36.1% of the participants indicated that their
organization was taking training seriously and provided sessions
for all of the four issues in the questionnaire (see section 2.2.1,
Measures) whereas 34% said their organization was offering train-
ing for at least one or more of these issues, but not for all four. The
rest of the participants (29.9%) stated that their organization

provided none of the above training programs. Training also
correlated with low stress, low supervisor pressure, and high well-
being and perceived driving skills, indicating that the truck drivers
felt more prepared and safer when the organization provided train-
ing. Supervisor pressure scored quite low in the sample but had a
high standard deviation, indicating a large dispersion in the
answers of our truck drivers. Higher scores for supervisor pressure
correlated with low job satisfaction, low wellbeing, and high burn-
out and insomnia scores, indicating that the impact of supervisor
behavior significantly impacted the overall work and home lives
of the truck drivers. Participants seemed to be rather discontent
concerning the working conditions at their current jobs but were
satisfied with their job, presenting higher means for job satisfac-
tion than the general population. Discontent correlated with low
levels of job satisfaction and wellbeing, and with high levels of
supervisor pressure, burnout, and mind-wandering. Job satisfac-
tion, however, was linked to high levels of wellbeing and low levels
of insomnia severity and burnout. Concerning mental health, the
participants reported quite a high level of wellbeing and low levels
of burnout and mind-wandering. On driving skills, the participants
felt confident in their driving abilities, displaying high means for
perceived driving skills and low means for perceived difficulties
to overcome. This suggests that they felt they can manage the var-
ious driving situations that might arise during their activity.

3.1.2. Perceived stress level of truck drivers
We used descriptive statistics to achieve the first aim of exam-

ining the perceived stress level of truck drivers. As seen in Table 2,
perceived stress was present among the participants in the sample,
as reflected by both the range (42) and standard deviation of the
ratings on this scale. Furthermore, more than half of the sample
(53.2%) scored higher than the midpoint of the scale (22), suggest-
ing that perceived stress is common among truck drivers. No sig-
nificant difference in perceived stress between French and non-
French participants was observed in terms of (t = 0.067(513);
p = 0.50). As seen in Table 3, perceived stress correlated highly with
mental health variables such as wellbeing, burnout, and insomnia,
suggesting that high levels of wellbeing and low levels of burnout
and insomnia are linked to low levels of stress. A somewhat more
moderate correlation was identified between stress and organiza-
tional factors such as discontent and supervisor pressure as well
as with individual factors such as perceived driving skills. More
specifically, the lower truck drivers perceived their driving skills,
the higher their perceived stress. Also, the higher their discontent
with the job, the higher the perceived stress. Finally, perceived
stress correlated positively with both self-reported risky behaviors
and perceived crash risk, suggesting that high perceived crash risk
is linked to high perceived stress.

3.1.3. Perceived crash risk and Self-reported risky behaviors
Perceived crash risk scores were near the high end of the scale,

indicating that truck drivers perceived crash risk as quite elevated.
Furthermore, perceived car crash-risk correlated positively with
stress, insomnia severity, mind-wandering, and burnout. The
risky-behaviors mean was very low in the sample, indicating that
the truck drivers said that they did not engage in risky behaviors,
and it correlated positively with stress, discontent, insomnia sever-
ity, and burnout. Therefore, drivers who reported being less able to
sleep and get well-rested (i.e., ones reporting high insomnia sever-
ity), were not happy with their job conditions (high scores on the
discontent scale); they thus reported high levels of stress and were
more likely to have high scores on risky behaviors and perceived
car-crash risk.

Fig. 1 summarizes the main correlations between the variables.

Table 1
Descriptive statistics for sociodemographic variables.

Sex Men 97.9%

Marital status Single 19.8%
Couple 64.1%
Separated 16.1%

Kilometers on highway 50 km 3.7%
150 km 6.6%
250 km 6.6%
350 km 15.1%
450 km 68.0%

French or non-French Number Percent
French
N = 260

50.5%

Non-French
N = 255

45.5%

Nationality Romanian 7.8%
Portuguese 7.4%
Spanish 6.4%
Polish 6.2%
Italian 5.6%
Bulgarian 4.9%
Belgian 4.7%
Other 7.2%

M SD

Age 45.83 10.18
Experience 20.47 11.41
Demerit points 1.05 1.98
Car crashes 0.28 0.74
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3.2. Testing for the relations between perceived stress and
organizational and individual factors

The structural equation modeling (SEM) technique is generally
used to analyze structural relationships. SEM represents a combi-
nation of factor analysis and multiple regression analysis allowing
to identify and to emphasize paths between latent variables, which

serve the purposes of the current paper (Byrne, 2004; Streiner,
2006). The first purpose was to develop and test a model indicating
the relationships between stress and various organizational and
individual factors. The second purpose was to use the Fig. 1 model
to compare two samples: French and non-French truck drivers.
This comparison was meant to identify whether the baseline
model varied with familiarity with the environment (French

Table 2
Descriptive statistics for organizational and individual factors, perceived crash risk and risky driving behaviors.

Minimum Maximum Mean Std. Deviation

Organizational Factors
Discontent 1.00 5.00 3.13 0.90
Supervisor Pressure 1.00 5.00 2.44 1.38
Job Satisfaction 1.00 5.00 3.53 0.93

Individual Factors

Driving Skills
Perceived driving competences 1.00 5.00 4.37 0.79
Perceived difficulties to overcome 1.00 5.00 3.49 0.80

Mental Health
Wellbeing 0.00 100.00 70.41 19.78
Burnout 0.00 100.00 26.13 21.75
Mind-wandering 1.00 5.00 2.33 0.94
Insomnia severity 1.00 26.00 8.24 5.30

Perceived stress 10.00 43.00 23.08 6.91
Perceived crash risk 1.00 5.00 2.79 0.90
Self-reported risky behaviors 1.00 4.00 1.62 0.51

Table 3
Covariance added to the overall model.

Pearson correlation Modification Indices (M.I.) r

Driving skills < –> Organizational support 17.95 0.57***

Mental health < –> Organizational support 33.10 0.78***

Mental health < –> Driving skills 18.17 0.49***

*** p < 0.000.

Fig. 1. Pearson correlations between perceived stress, perceived crash risk, risky behaviors, organizational factors, and individual factors.
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drivers know the highways, understand the written and spoken
warnings better, can reserve parking spaces and navigate rest areas
more easily than non-French drivers, and are closer to their fami-
lies). The use of structural equation modelling was considered sui-
ted to the aims of the paper since relations between the constructs
can be considered simultaneously and tested holistically (Byrne,
2004; Hair, Black, Babin, Anderson, & Tatham, 2010). The two anal-
yses were carried out in AMOS (Arbuckle, 2006) using maximum
likelihood estimation The model comprised three latent variables:
(a) organizational support for which discontent, supervisor pres-
sure, training, and job satisfaction were considered as observed
variables; (b) driving skills for which perceived driving compe-
tences and perceived driving difficulties to overcome were consid-
ered; and (c) mental health for which we considered well-being,
burnout, mind-wandering, and insomnia severity. Finally, per-
ceived stress, self-reported risky behaviors, perceived car-crash
risk, and health were treated as observed variables. The model
tested can be seen in Fig. 2. However, based on the goodness of
fit indicators, this model was considered to have a somewhat poor
fit (v2 = 332.58(73), p < 0.00, TLI = 0.78, CFI = 0.83, RMSEA = .083 C.I.
[0.074–0.092]). Acceptable goodness of fit indicators are consid-
ered to be over 0.90 for TLI and CFI and around 0.05 for RMSEA
(Byrne, 2010). To improve the models’ fit, and in line with the
somewhat exploratory nature of the analysis, we decided to add
several covariances (see Table 3) as well as a direct path between
the observed mind-wandering and risky-behaviors variables
(marked in Fig. 2 with a dotted line). The decision was based on
modification indices values, as suggested by Byrne (2010). Follow-
ing these model re-specifications, the fit indexes improved and
were considered to be acceptable (v2 = 201.50(68), p < 0.00,
TLI = 0.89, CFI = 0.91, RMSEA = .062 C.I. [0.52–0.72]).

As seen in Fig. 2, stress was directly linked to mental health and
to risky behaviors, suggesting that highly stressed truck drivers are
less likely to report good mental health and could therefore be
more prone to engaging in risky behaviors. Organizational support
affected stress and driving skills. Both variables had negative load-
ings, suggesting that the higher the organizational support and

driving skills the lower the truck drivers’ stress. The relations
between organizational support and driving skills were further
strengthened by the covariance added to the model, suggesting
that strong organizational support is linked to good driving skills.
Furthermore, organizational support was strongly linked to mental
health as well, implying that drivers who perceive high organiza-
tional support are more likely to indicate good mental health. A
very interesting result was the direct link that emerged following
model re-specifications based on modification indices (M.I.
= 20.34). It indicated that mind-wandering influences risky behav-
iors, suggesting that drivers who are not able to concentrate are
more likely to engage in risky behaviors.

The analysis used the model identified above and compared the
structure of the two samples: French and non-French. In testing for
between group equivalencies, a set of parameters are put to the
test in a logical order and in an increasingly restrictive fashion.
After analyzing the baseline model (the freely estimated model),
the test usually starts with the analysis of the measurement model.
When analyzing the measurement model, the pattern of factor
loadings for each measure is tested for equivalence across the
two groups: French and non-French. Following this stage a new
set of parameters is constrained and the new models are tested.
The constraints follow an increasing restrictive direction from con-
straining measurement (factor loadings), to structural weights (re-
gression paths), to structural covariances (covariances), to
structural residuals (residuals of latent factors). The unconstrained
model has no constraints added and functions as a baseline model
(Byrne, 2004). Based on nationality verification, we eliminated a
French-Belgian national due to his dual citizenship that went
against our split variable (we could not decide where to place
the participant). The final sample thus had 514 participants, 260
of French nationality, and 254 of various other nationalities (see
Table 1 for full details on nationality). The same model was used
for the two groups. The model proved to have a good fit
(v2 = 303.64(138), p < 0.00, AGFI = 0.89, CFI = 0.89, RMSEA = .048 C.
I. 0.41–0.56). The italicized numbers in Fig. 3 are those of the
non-French nationals.

Fig. 2. Structural equation modelling on overall sample. Lines between latent variables and observed variables depict factor loading values, while lines between observed variables
depict path weights.
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First, we checked for the invariance of the measurement and
structural model. The results can be seen in Table 4. Based on these
results, if the unconstrained model is correct, then the significant
chi-square difference is evidence of a lack of invariance between
the two models. The other results suggested the invariance of the
models across the two groups.

Taking into account that the chi-square difference between the
unconstrained model and measurement model was marginally sig-
nificant (p = 0.051, see Table 4), and in line with the exploratory
nature of our analyses, we chose to compare the paths of these
two models (one by one) to identify where those differences
appeared. Following verification, two significant differences
emerged. There was a significant difference for perceived driving
difficulties to overcome and driving skills (t(512) = 2.52, p = 0.01)
and for mind-wandering and mental health (t(512) = 2.65,
p = 0.008) between the two samples (French and non-French). For
the French participants, perceived driving difficulties to overcome
contributed more to defining driving skills than for the non-French
participants. Similarly, for the French participants, mind-
wandering contributed significantly more to mental health than
for the non-French participants (Table 5).

4. Discussion

Road freight transport by truck drivers is indispensable for the
proper functioning of our countries, as we were able to see during
the Covid-19 lockdown (International Transport Forum, 2020).
Therefore taking an interest in the well-being of truck drivers is
of utmost importance. Truck drivers represent a very particular
population among professional drivers. Their behavior, as well as
any factors that influence stress levels, mental health, or physical
health, need to be assessed by taking into account their very pecu-
liar work context.

The current paper had two aims: (a) assess the perceived stress
levels of truck drivers and how they perceive their work, and look
at some relevant individual (mental and physical health) and orga-
nizational (support, management, working conditions) factors; (b)
analyze the impact of individual and organizational factors on per-
ceived stress and its consequences on perceived crash risk and
risky behaviors, and determine whether these relationships are dif-
ferent for French and non-French truck drivers.

The results, as Fig. 2 revealed, that among our sample of truck
drivers circulating in France, organizational factors were linked
to increased stress, in line with the findings of Hege et al. (2019).
Lack of job control, strong time pressure caused by just-in-time
freight delivery systems, and long work hours were frequently
linked to greater stress among truck drivers (Apostolopoulos,

Fig. 3. Structural equation modelling for comparing French and non-French samples. Lines between latent variables and observed variables depict factor loading values, while
lines between observed variables depict path weights. Values italicised and between parenthesis represent the values for the non-French national model.

Table 4
Invariance model testing for differences between French and non-French truck
drivers.

Invariance test Chi-square
difference

p

Unconstrained vs Measurement weights 18.23 (10) 0.051
Measurement weights vs. Structural weights 6.12 (6) 0.408
Structural weights vs. Structural covariances 5.75(5) 0.330
Structural covariances vs. Structural

residuals
4.81(3) 0.186

Table 5
Covariance added to the comparison model.

Pearson correlation French r non-French r

Driving skills < –> Organizational support 0.59*** 0.44***

Mental health < –> Organizational support 0.80*** 0.82***

Mental health < –> Driving skills 0.68*** 0.31***

*** p < 0.000.

P. Delhomme and A. Gheorghiu Journal of Safety Research 79 (2021) 341–351

348



Peachey, & Sonmez, 2011). Furthermore, the results showed that
low job satisfaction coupled with discontent related to working
conditions, such as unhealthy lifestyle and low-quality food, can
increase driver’s stress levels (Sabbagh-Ehrlich et al., 2005). Even
though not extremely strong (in our findings as well those of
Hege et al., 2019), particular attention must be paid to the relation
between perceived stress levels and health consequences, since
their long-term effects can be extremely serious. The fact that
stress can lead to overeating and lack of energy for exercising
can impact the long-term health of truck drivers and thereby lead
to severe health problems (Apostolopoulos et al., 2011; Sabbagh-
Ehrlich et al., 2005).

Stress was directly linked to risky driving behaviors. The fact
that stress can affect behavioral outcomes is well known in organi-
zational psychology, where stress is considered an antecedent of
poor employee performance (Jamal, 1984; Nisar & Rasheed,
2020). Our results corroborate the findings showing that psycho-
logical stress is linked to risky driving behaviors (Oliveras et al.,
2002; Useche, Cendales, & Gómez, 2017). Drivers exposed to stress
might experience decreased cognitive abilities, which can lead to
poorer decision-making (Michailidis & Banks, 2016). Furthermore,
other studies have shown that individuals exposed to stress will
rely more heavily on low-level, automatic processes (Porcelli &
Delgado, 2009), an aspect that can lead to negative outcomes in
highly complex situations.

Aside from these findings, an interesting relation between the
role of perceived driving skills and stress emerged here. Self-
confidence is well known among drivers (e.g., Delhomme, 1991;
Sundström, 2008) and it could be able to reduce a driver’s perceived
stress (Wohleber & Matthews, 2016). The effect of self-confidence
on perceived stress seems to be similar to the one played by organi-
zational factors. However, although these findings seem to point to
the importance of confidence in one’s skills, overconfidence while
driving has been frequently linked to crashes. Measures aimed at
increasing drivers’ skills should thus be taken cautiously.

In line with individual factors, perceived stress was correlated
here with low levels of well-being (Rony & Ahmed, 2019), high
levels of burnout (Useche, Cendales, Alonso, & Serge, 2017), and
high levels of mind-wandering (Vinski & Watter, 2013). This par-
ticular set of relations is of great interest, since mind-wandering,
in particular, has been linked to crashes (Gil-Jardiné et al., 2017;
Yanko & Spalek, 2014), while burnout and well-being have fre-
quently been linked to a greater intention to leave one’s job (Lee,
Kim, Gong, Zheng, & Liu, 2020; Moneta, 2011). Particular attention
should be given to the relationship between stress and sleep. A
positive correlation was found here between the level of self-
reported stress and the insomnia index, indicating that poor sleep
was connected to high levels of stress. Pylkkönen, Sallinen,
Forsman, Holmström, Hyvärinen, Mutanen, and Sirola (2013) also
found that sleep quality was linked to long-haul drivers’ stress.
Furthermore, low sleep quality has recently been linked to risky
driving and crash involvement (Shams, Mehdizadeh, & Khani
Sanij, 2020).

Finally, as seen in Fig. 3, we noted that the link between stress
and all of the other factors analyzed were very close regardless of
whether the drivers were familiar (French truck drivers) or not
(non-French drivers) with the traffic environment, had different
training depending on their country of origin, or had different cul-
tural backgrounds and native languages. However, it should be
noted that some differences were identified between French and
non-French truck drivers with respect to mind-wandering and
mental health and to perceive driving difficulties to overcome
and driving skills. It is possible that French drivers who are very
familiar with the traffic environment are less alert and thus allow
themselves to daydream more frequently compared to non-French
drivers, whom, being in a less familiar environment stay more

alert. With respect to the perceived driving difficulties to over-
come, it is possible that differences in initial truck driver training
is responsible for the difference identified. Awareness campaign
linked to mind-wandering should help all road traffic users (not
only truck drivers) to increase understanding of the phenomena
and increase vigilance. Similarly, training could be offered to truck
drivers who feel they need to improve certain skills (such as
managing dead angles). Another useful approach could be to
increase awareness among all road traffic users on specific truck
drivers’ difficulties as well as providing various driving assistance
systems.

Based on the findings, several other recommendations can be
advanced. Firstly, particular attention must be paid to the long-
term consequences on truck drivers’ mental and physical health.
In terms of physical health, making healthy food and beverages
more available and easy to see in rest areas, at affordable prices,
could be a start. Besides, clear information about healthy nutrition
should be available through training sessions provided by the orga-
nizations and also in the rest areas themselves. Another possibility
worth investing in would be to give drivers access to sports facili-
ties both at the organization’s headquarters and at rest areas, inso-
far as a proper diet and physical exercise are considered vital to the
well-being of an individual, especially in the long term
(McNaughton, Crawford, Ball, & Salmon, 2012). Another useful
approach would be to reduce work constraints and difficulties that
are specific to truck drivers since our results seem to suggest these
factors have a direct impact on stress levels. One potential course
of action could be to reduce delivery time pressure so that truck
drivers could have more control over their time and increase their
job autonomy, satisfaction, and identification with their job.
Another course of action could be to introduce surveillance (video
or patrol led) in parking lots and rest areas to make drivers feel
safer and able to rest better. Employers could and should be
encouraged to take steps towards monitoring and reducing
employee stress. In an industry where it is well known that truck
drivers are increasingly difficult to find (IRU, 2019), managers
should strive to monitor and reduce the stress levels of their
employees. Since organizational factors seem to have a strong
impact on truck drivers’ perceived stress, employers could consider
creating an on-site diagnosis procedure and then addressing the
most stringent needs identified therein, in view of reducing the
stress levels of their employees. Furthermore, employers could
consider implementing wellness programs tailored to the organi-
zation’s needs.

Some limitations of this paper should be considered. The first is
linked to the use of self-reported measures, which may be sensitive
to social desirability. Another limitation is linked to the translation
of the survey questionnaire, even though many precautions were
taken (e.g., only native speakers with expertise in transport psy-
chology were used as translators), and there were no complaints
from the participants about the comprehensibility of the
questionnaire.

Future research should focus on assessing the effects of actions
and interventions based on the recommendations made here on
the perceived stress levels of truck drivers.
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a b s t r a c t

Introduction: As transportation network companies (TNC) are on the rise, assessing the safety of children
traveling in these vehicles is imperative. For this reason, this study developed and adopted a scoring
system to assess states’ safety standards for children traveling in TNC vehicles. Methods: The scoring
was based on two parameters pertaining to child car seat laws for TNCs: clarity and stringency. For each
parameter, three criteria that could impact child safety in TNC vehicles were formulated. If a state met a
certain criterion it got 1 point and 0 otherwise. The authors gathered all the necessary information by
reviewing state statutes in Nexus Uni, a legal research database. These reviews took place between
December 2019 and October 2020, and this study evaluated state laws in effect on October 28, 2020.
Results: During this assessment, the authors observed a lack of clarity in state child car seat laws, which
could compromise safety of children traveling in TNC vehicles. For clarity of laws, Georgia and Indiana
received the highest scores (3 out of 3 points), while 16 states scored only 1 point, which was the lowest
score in this category. In terms of stringency of laws, Pennsylvania received the highest score (3 out of 3
points), while Indiana scored the least (0 points). Conclusions: Besides one state (Oregon), all other states
defined TNCs in their state laws. All states except for Indiana and Washington required child car seats in
TNC vehicles. The responsibility for child car seat use was clearly defined in 35 states. The fine for child
car seat violation was $50 or more in 28 states. Practical Application: This study will help TNCs, policymak-
ers, and stakeholders identify states that need to improve their standards for child safety in TNC vehicles,
and comprehensively address the issue.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, a new travel option has evolved:
transportation network companies (TNC), better known as
ride-sharing or ride-hailing companies. TNCs provide pre-
arranged transportation services using an online-enabled applica-
tion or platform (California Public Utilities Commission, n.d.). In
the United States, Uber and Lyft are the frontrunners of TNCs
(Statista.com, 2020). In 2017, TNC vehicles transported over 2.6
billion passengers, a 37% increase from 2016 (Schaller Consulting,
2018). TNC services are predominantly used by younger people
and concentrated in urban areas (Jiang, 2019). A survey conducted
in the first quarter of 2017 found that 65% of all ride-share service
users are between the ages of 16 and 34 (Mazareanu, 2018). With
the average age at which women first become mothers in the
United States being 26.4 (Livingston, 2018), the majority of U.S.

ride-sharing service users fall within the age group that is most
likely to have young children. A rapidly growing trend in the use
of TNC services makes it only logical to assume that their use by
families with children is on the rise as well, and will likely continue
to grow in the future. The lack of clarity in the states’ regulations of
child car seat use by TNCs may negatively affect the safety of chil-
dren traveling in TNC vehicles (Owens et al., 2019).

The objective of this study was to assess the states’ safety stan-
dards for children traveling in TNC vehicles. The assessment was
performed using a scoring system that was based on a host of fac-
tors that directly and indirectly influence child safety in TNC vehi-
cles. The scoring system presented in this paper will be valuable to
policymakers, TNCs, transportation professionals, and social acti-
vists, among others, to identify states with lower safety standards
for children traveling in TNC vehicles and tackle the issue of child
safety comprehensively.
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2. Background

In the United States, motor-vehicle crashes are the leading
cause of death among children. According to reports released by
the National Highway Traffic Safety Administration (NHTSA), 880
children aged 12 years and younger died, and nearly 190,000 chil-
dren aged 0–14 years old were injured in motor-vehicle crashes in
2018 in the United States (NHTSA, 2020).

The use of child car seats and booster seats in passenger cars
reduces the risk of fatal injury by 71% for infants (younger than
1 year old) and 54% for toddlers (1–4 years old; Greenwell, 2015).
Therefore, parents and caregivers can make a lifesaving difference
if appropriate restraint measures are used to secure children in car
seats. There are primarily three types of child car seats: rear-facing,
front-facing, and booster seats. NHTSA recommends different types
of car seats depending on a child’s age, height, and weight. Cur-
rently, all 50 states and Washington DC have laws requiring chil-
dren to be transported in appropriate child car seats. These state
laws vary by age and type of child car seat (IIHS, 2020).

Since for-hire vehicles like taxis have operated in the United
States for a long time, several states have specifically formulated
laws to deal with the use of child car seats in taxis. To that end,
most states (except for California and Mississippi) exempt taxis
by law from the use of car seats for children. However, as TNC vehi-
cles are a relatively recent emergence on U.S. roads, the laws gov-
erning the use of car restraint systems in TNC vehicles barely exist.
Furthermore, current information on regulations surrounding child
restraint systems exists mainly in publicly available legal docu-
ments, which are vague and may have different interpretations.
This results in confusion for TNC vehicle drivers, riders, and law
enforcement officers.

While taxi drivers are not obligated to provide child car seats for
their riders, both Uber and Lyft have introduced a ‘‘child car seat”
feature that offers passengers the opportunity to ride in vehicles
equipped with a child car seat. This feature is offered for an
additional fee of $10 to prospective riders (Uber, n.d.; Lyft, n.d.).
Importantly, both Uber and Lyft only offer the option of one
forward-facing car seat (no rear-facing or booster seats) for a child
who is at least 2 years old, weighs between 22–48 pounds, and is
31–52 inches in height.

Past research has shown that there may be multiple sources of
ambiguity when it comes to fully understanding child car seat laws
for TNCs, including a lack of clarity as to which types of vehicle
classes are exempt from child car seat laws and uncertainty about
who is legally responsible for the use and installation of appropri-
ate child restraint systems in vehicles (VTTI, 2020). Among other
regulatory issues, the lack of legal clarity regarding child car seat
laws may create challenges for enforcement of such laws.

There are additional challenges associated with the use of child
car seats in TNC vehicles, such as increased fare for the use of the
child car seat feature for riders, access to only one forward-facing
child car seat per ride, and limited number of U.S. cities where
the feature is currently being offered by TNCs. Given these limita-
tions, safety of children traveling in TNC vehicles might be compro-
mised. Children, while constituting a small share of all TNC riders,
may be among the most vulnerable groups of riders whose safety
must be protected (Womack, 2020). A rapid rise in the use of
ride-share services also means that the matter of child safety in
TNC vehicles may become a pressing issue in the years to come
and thus needs to be addressed through further research and pol-
icy work (Statista.com, n.d.). Hence, this study may also provide
safety advocates with information related to child safety standards
for TNCs across the United States.

3. Methods & materials

This research was primarily based on information publicly
available in state statutes. It involved entering various keywords,
search connectors, and commands in Nexus Uni, a legal research
database. Each state’s laws were thoroughly studied one at a time
and extensively reviewed to determine key questions about
whether child restraints were required in TNC vehicles, who was
responsible for ensuring that child restraint laws were followed,
and what the penalties were for non-compliance. These reviews
took place between December 2019 and October 2020 and this
study evaluated state laws in effect on October 28, 2020.

Child safety standards in TNC vehicles were assessed at the
state level using two parameters: clarity and stringency of the state
child car seat laws. To perform the assessment, the authors devel-
oped a scoring system that included six scoring categories with an
equal weight of 1 point per category and therefore a maximum
score of 6 points for each state. A higher score implied higher stan-
dards for child safety (a higher level of legal clarity and stringent
laws). Using a rating system to compare legislative landscapes
across different jurisdictions is a common practice in legal and pol-
icy research and has been widely used across different research
areas including healthcare, parity policy and implementation,
prison policy, gun laws, and others (Franki, 2013; Renaud, 2019;
Giffords Law Center, 2019).

Using the scoring system described above, authors ranked the
50 states and Washington DC across two major parameters: clarity
and stringency of laws from a safety standpoint.

� To assess a state’s law on its clarity in addressing child car
seats in TNC vehicles, the following questions have been
formulated:
(a) Do state child car seat laws specifically address TNCs?

(Yes = 1, No = 0)
The formulation of laws specifically targeting TNCs and child
car seats are ideal as they address issues specifically related
to these vehicles. However, states typically only address the
specific vehicle classes that they want to exclude from the
child car seat requirement. It is possible though that a state
intends to require child car seat usage in TNC vehicles but
will not directly mention TNCs in its statute. Consequently,
it is difficult to determine whether a state has excluded TNCs
either because child car seat usage is not exempt in TNC
vehicles or TNCs did not exist at the time the statute and
exemptions were created. This leaves little clarity in the
intent behind the law unless a state directly communicates
it through official media outlets, like it was in the case of
Georgia.

(b) Are TNCs specifically defined in the state laws? (Yes = 1,
No = 0)If a state does not explicitly address child car seat
laws for TNCs, the next best option is to define TNCs in gen-
eral rather than to completely ignore the presence of these
types of vehicles. It is important to determine whether TNCs
are defined elsewhere because the definition of a TNC could
help understand whether they fit into one of the other vehi-
cle classes where child car seat usage is exempted. Examples
of other vehicle classes that may be excluded by law are for-
hire vehicles, commercial vehicles, or limousines. When
TNCs are not defined by statute, the next option is to look
up the definition of excluded vehicle class
(e.g., taxis) to determine if TNCs fall within their legal defini-
tion. However, if TNCs are specifically defined, this extra step
of reviewing definitions of other vehicle classes is not
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required, and one would only have to review the definition
of TNCs. If a state gets 1 point for criteria a it will automat-
ically get 1 point for b.

(c) Do the state laws clearly state who is responsible for child
car seat use? (Yes = 1, No = 0)If the law does not clearly
define who
(parent/guardian, driver, etc.) is responsible for ensuring
proper installation and use of car restraint systems, the dis-
crepancy could cause significant confusion about enforce-
ment of the law.

� To assess a state’s law on its rigor in ensuring the safety of
children traveling in TNC vehicles, the following questions
have been formulated:
(d) Do the state laws require the use of a child car seat in TNC

vehicles? (Yes = 1, No = 0)
Irrespective of whether TNCs are explicitly mentioned in
state laws, the authors analyzed existing statutes to deter-
mine if child car seats are required in TNC vehicles.

(e) Do TNCs (Uber, Lyft, etc.) offer child car seat programs any-
where in the state? (Yes = 1, No = 0)
Uber and Lyft are highly dominant in urban areas. As this
study was conducted at the state level, the authors gave 1
point to a state where at least one of the cities within the
state had child car seat programs offered by either Uber or
Lyft. The ideal case, of course, would involve having child
car seat programs available in all cities where ride-sharing
companies operate.

(f) How stringent are the monetary penalties for the first
offense in each state? (<$50 = 0, >=$50 = 1)This scoring crite-
rion assumes that higher monetary penalties for violations
of child car seat laws may help improve the rate of compli-
ance with the law. This assumption is consistent with past
research that a state’s traffic and public safety can be
improved by increasing minimum fines for violating seat
belt laws
(Houston & Richardson, 2006; Nichols et al., 2010). A cutoff
of $50 is chosen because it represents the median dollar
amount penalty for the first offense across all states.

Nexis Uni was used extensively in this study to find answers to
questions a through d and f. To answer question e, Lyft and Uber
websites were combed to identify which cities offered the child
car seat feature. Additionally, the authors installed Uber and Lyft
mobile applications on their personal mobile devices and searched
for the presence of child car seat programs in the 30 most popu-
lated U.S. cities (Table 1A).

For questions a) through f), states were given 1 point if the
answer was ‘‘yes” and 0 points if the answer was ‘‘no.” For each
state, the total score was calculated by summing individual scores
received under these six criteria. A total score of six represents the
clearest laws and most stringent safety standards for children trav-
eling in TNC vehicles.

4. Results

Our findings suggest that all states could improve in some
aspect when it comes to the clarity and stringency of child car seat
laws for TNCs. In addition to states’ individual scores for each of
these criteria, mean and sum values were estimated and presented
at the end of Table 1.

4.1. Do state child car seat laws specifically address TNCs?

Only one state specifically mentioned TNCs in its child car seat
statutes: Indiana. Additionally, in Georgia, even though the law did

not specifically mention TNCs, the state’s Governor’s Office of
Highway Safety expressly stated that child car seat usage was
required in TNC vehicles. Thus, the authors gave 1 point to Georgia
under this metric as the enforcement community acknowledged
and explicitly addressed the issue of TNCs and child car seats. A
sum value close to 0 indicates that almost all the states could
improve with this criterion.

4.2. Are TNCs specifically defined in the state laws?

In order to analyze states that did not directly address TNCs in
their child car seat statutes, the authors verified whether TNCs
were defined in other relevant statutes. For example, TNCs might
not be explicitly defined in a state’s child car seat statute but could
be defined elsewhere as being excluded from the definition of for-
hire vehicles like taxis. This analysis found that Oregon was the
only state that neither specifically addressed TNCs in its state child
car seat laws nor defined TNCs in its state laws. Among the remain-
ing states that did not specifically address TNCs in their child car
seats, TNCs were defined in state laws and distinguished from
for-hire vehicles or taxis.

4.3. Do state laws clearly identify who is responsible for the use of child
car seats?

Since most of the states did not have an explicit law formulated
for TNCs and child car seats, standard child car seat laws served as
a reference for the authors to identify who was responsible for the
use of child car seats in TNC vehicles. State laws included a wide
variety of terminology (such as driver, vehicle operator, and par-
ent/guardian) to specify who was responsible for securing a child
properly in the car seat. The absence of a specific law addressing
child car seat use in TNC vehicles created significant confusion
about who should be held liable in case of child car seat violations
in TNC vehicles. Some state laws, for instance, used terms like ‘‘per-
son transporting the child,” which may be construed as either the
parent transporting the child or vehicle operator transporting the
child and thus, may ultimately lead to issues in enforcing these
laws. The sum of the scores for this criterion was 36; �30% of
the states could improve on this criterion. Fig. 1 shows the break-
down of the information at the state level.

4.4. Do state laws require the use of a child car seat in TNC vehicles?

After analyzing state child car seat laws, the authors found that
all states except for Indiana and Washington required child car
seats to be used in TNC vehicles. In the case of Indiana, there were
no laws that require the use of child restraint systems in TNC vehi-
cles. In the case of Washington, once publicly available documents
were thoroughly reviewed, it was unclear whether the state had
any laws in place that would require the use of child car seats in
TNC vehicles. Hence, both Indiana and Washington scored a 0 on
this metric.

4.5. Do TNCs (Uber, Lyft, etc.) offer car seat programs anywhere in the
state?

Only two states (New York and Pennsylvania) and Washington
DC received one point for having the child car seat options avail-
able in ride-sharing companies in the states’ largest cities. Particu-
larly, Uber offered the child car seat program in New York City,
Philadelphia, and Washington DC, while Lyft offered the child car
seat program only in New York City.
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4.6. How stringent are the monetary penalties for the first offense for
each state?

Penalties for not using an appropriate child restraint system
depend on the state, number of driver offenses, and child’s age.
States were found to impose monetary penalties of $25 to over
$250 (Fig. 2).

Across all states, the median penalty value for violating the
child car seat law was $50 for the first offense. A state got 1 point

if its fine was greater than or equal to $50 and 0 points otherwise.
In cases where there was a range in penalties, if the lowest value in
the range was greater than or equal to $50, then a state got 1 point,
and 0 points otherwise. In addition to monetary penalties, a hand-
ful of states also imposed non-monetary penalties on violators of
child car seat laws. Such non-monetary penalties included extra
court costs, points taken off driver’s license, and community ser-
vice hours. Nevada was the only state that offered violators the
option of either paying monetary penalty amounts or performing

Table 1
Scoring Clarity and Stringency of Child Car Seat Laws for TNCs By State

State Do state child
car seat laws
specifically
address TNCs?
(Yes = 1,
No = 0)

Are TNCs
specifically
defined in
the state
laws?
(Yes = 1,
No = 0)

Do the state laws
clearly state who
is responsible for
child car seat
use? (Yes = 1,
No = 0)

Sub-
Score
(Clarity
of Law)

Do the state laws
require the use of
a child car seat in
TNC vehicles?
(Yes = 1, No = 0)

Do TNCs (Uber,
Lyft, etc.) offer car
seat programs
anywhere in the
state? (Yes = 1,
No = 0)

How stringent are
the monetary
penalties for the
first offense for
each state? (<
$50 = 0, >=$50 = 1)

Sub-Score
(Stringency
of Law)

Total
Score
(Out
of 6)

Alabama 0 1 0 1 1 0 0 1 2
Alaska 0 1 1 2 1 0 0 1 3
Arizona 0 1 1 2 1 0 1 2 4
Arkansas 0 1 1 2 1 0 0 1 3
California 0 1 1 2 1 0 1 2 4
Colorado 0 1 1 2 1 0 1 2 4
Connecticut 0 1 0 1 1 0 1 2 3
Washington,

D.C.
0 1 1 2 1 1 0 2 4

Delaware 0 1 0 1 1 0 0 1 2
Florida 0 1 1 2 1 0 1 2 4
Georgia 1 1 1 3 1 0 1 2 5
Hawaii 0 1 1 2 1 0 1 2 4
Idaho 0 1 1 2 1 0 1 2 4
Illinois 0 1 1 2 1 0 1 2 4
Indiana 1 1 1 3 0 0 0 0 3
Iowa 0 1 0 1 1 0 1 2 3
Kansas 0 1 1 2 1 0 1 2 4
Kentucky 0 1 1 2 1 0 1 2 4
Louisiana 0 1 1 2 1 0 1 2 4
Maine 0 1 1 2 1 0 1 2 4
Maryland 0 1 0 1 1 0 1 2 3
Massachusetts 0 1 0 1 1 0 0 1 2
Michigan 0 1 1 2 1 0 0 1 3
Minnesota 0 1 1 2 1 0 1 2 4
Mississippi 0 1 0 1 1 0 0 1 2
Missouri 0 1 1 2 1 0 1 2 4
Montana 0 1 0 1 1 0 0 1 2
Nebraska 0 1 1 2 1 0 0 1 3
Nevada 0 1 0 1 1 0 1 2 3
New

Hampshire
0 1 1 2 1 0 1 2 4

New Jersey 0 1 1 2 1 0 1 2 4
New Mexico 0 1 0 1 1 0 0 1 2
New York 0 1 1 2 1 1 0 2 4
North

Carolina
0 1 1 2 1 0 0 1 3

North Dakota 0 1 0 1 1 0 0 1 2
Ohio 0 1 1 2 1 0 0 1 3
Oklahoma 0 1 1 2 1 0 1 2 4
Oregon 0 0 1 1 1 0 1 2 3
Pennsylvania 0 1 1 2 1 1 1 3 5
Rhode Island 0 1 0 1 1 0 1 2 3
South Carolina 0 1 1 2 1 0 0 1 3
South Dakota 0 1 1 2 1 0 0 1 3
Tennessee 0 1 0 1 1 0 1 2 3
Texas 0 1 1 2 1 0 0 1 3
Utah 0 1 1 2 1 0 0 1 3
Vermont 0 1 1 2 1 0 0 1 3
Virginia 0 1 1 2 1 0 1 2 4
Washington 0 1 0 1 0 0 1 1 2
West Virginia 0 1 1 2 1 0 0 1 3
Wisconsin 0 1 0 1 1 0 0 1 2
Wyoming 0 1 1 2 1 0 1 2 4
Sum 2 50 36 49 3 28
Mean 0.04 0.98 0.71 1.73 0.96 0.06 0.55 1.57 3.29
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a specified number of community service hours. The analysis
showed that 22 states and Washington DC had penalties for the
first violation of the child car seat law that were less than $50,
while 28 states had a penalty for the first violation of at least $50.

This study’s findings indicate that for the clarity of law param-
eter, Georgia and Indiana received the highest scores (each state
scored 3 out of 3 points). Sixteen states scored 1 point each, which
was the lowest score in this category. The remaining states scored
2 points each. For the stringency of law parameter, Pennsylvania

was the only state that secured 3 points, while Indiana scored
the lowest with 0 points. The mean value for the clarity of law
parameter is higher than the mean value of the stringency of law
parameter. This study shows that all states could improve on at
least some of the adopted criteria and use it for evaluation of their
state laws’ clarity and stringency. A majority of states lost points in
categories a (Do state child car seat laws specifically address
TNCs?) and e (Do TNCs (Uber, Lyft, etc.) offer car seat programs
anywhere in the state?).

Fig. 1. Responsible party for child car seat use in vehicles by state.

Fig. 2. Penalties for first offense of not using an appropriate child restraint system in TNC vehicles.
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The total score provided in the last column of Table 1 indicates
the overall safety measure of children riding in TNC vehicles for
each state. Based on the total score, Georgia and Pennsylvania
scored the highest when both clarity and stringency of state child
car seat laws were taken into account (each state scored 5 out of 6
points). At the same time, nine states (Alabama, Delaware, Mas-
sachusetts, Mississippi, Montana, New Mexico, North Dakota,
Washington, and Wisconsin) scored the lowest (each state scored
2 out of 6 points). Additionally, 19 states and Washington DC each
scored 4 out of 6 points, while each of the remaining 20 states
scored 3 out of 6 points.

All but one state’s laws (Oregon) defined TNCs. All states, except
for Washington and Indiana, required child car seats in TNC vehi-
cles (Table 1). At the same time, only two states’ child car seat laws
(Georgia and Indiana) specifically addressed TNCs, and only two
states (New York and Pennsylvania) and Washington DC had TNC
child car seat programs available to riders (Table 1). Laws in 35
states clearly defined responsibility for proper child car seat use,
and the monetary penalties for child car seat violations was at least
$50 in 28 states (Table 1).

5. Discussion

Due to the rapid growth of TNCs in the United States, there is an
increased interest from researchers, policymakers, and other stake-
holders towards the subject of effective regulation and oversight of
ride-sharing companies. At the same time, the use of child car seats
in TNC vehicles is one aspect of this rapid increase that has not been
widely studied or addressed by lawmakers and researchers alike.

The current ambiguity surrounding state-level child car seat
laws for TNCs is mainly due to a lack of laws specifically addressing
the use of child car seats in TNC vehicles. Applying private vehicle
laws to TNCs is creating confusion among TNC riders and drivers
about specific child car seat requirements in their local regions, as
well as pressing the question of who is responsible for safely trans-
porting children in ride-sharing vehicles (Owens et al., 2019). This
study emphasizes this issue and provides a holistic view of child
safety in TNC vehicles. The results of this study should urge leaders
in the child safety arena to improve safety of children traveling in
TNC vehicles. Additionally, the aforementioned scoring system
makes it compare states in terms of clarity, stringency, and overall
safety standards of their child car seat regulations.

The scoring system in this study serves as a first step towards
developing a standardized method for assessing safety of children
traveling in TNC vehicles. Additional factors for future consideration
under a more mature framework may include penalties for the sec-
ondor third offenses of not using appropriate child restraint systems
in TNC vehicles and enforcement of child car seat laws by police.

The law enforcement community may face a dilemma when
enforcing state child car seat laws as a result of their lack of clarity.
In the future, the authors plan to conduct a survey of the law
enforcement community to better gauge how the latter enforce
child car seat laws in TNC vehicles when the laws do not clearly
state who is responsible for child safety in TNC vehicles.

In many states, state and municipal-level TNC ordinances coex-
ist (Moran, 2016). TNC policies at the local level may carry addi-
tional rules and requirements that are not typically found in TNC
policies developed at the state-level (Moran, 2016). Such local reg-
ulations tend to be more restrictive in nature and usually address
permit registrations, drivers’ background check regulations, auto-
mobile insurances, and vehicle safety requirements and inspec-
tions among others. As a part of this study, the authors also
checked for municipal-level child car seat regulations in the 30 lar-
gest U.S. cities by population. This study found that, among these
cities, each implemented their respective state’s regulations when

it came to child car seat laws. If states fail to address the issue of
lack of clarity in their child car seat laws described earlier, cities
could improve safety of children by forming more stringent and
clearer TNC ordinances. The Appendix provides a list of the 30 lar-
gest U.S. cities by population (World Population Review, n.d.) for
which local ordinances related to child car seat laws in TNC vehi-
cles were examined in this study.

The authors acknowledge certain limitations in this study. In
particular, this study did not consider variation of legislation over
time. Further, the search for state laws regarding child restraint use
in TNC vehicles was limited to reviewing state statutes and did not
include any thorough evaluation of relevant case laws. Addition-
ally, since a majority of state child car seat laws contained no men-
tion of TNCs, the authors interpreted the statutes and drew their
own conclusions in determining whether child restraints were
required in TNC vehicles. Importantly, the authors only interpreted
how state statutes were written and had no additional information
about whether law enforcement agencies enforce child restraint
laws in TNC vehicles in their respective states.

Finally, while clarity‘‘ and ”stringency‘‘ are concepts that can be
distinguished analytically, they may also overlap. The analytical
strategy followed by the authors could indeed vary, which may
or may not result in changing the overall scores of each state.

6. Conclusion

In this paper, the authors developed a rudimentary scoring sys-
tem for states to assess stringency and clarity of laws targeting child
safety in TNC vehicles. Georgia and Pennsylvania had the highest
scores and, thus, held the highest safety standards for children trav-
eling in TNC vehicles while nine states (Alabama, Delaware, Mas-
sachusetts, Mississippi, Montana, New Mexico, North Dakota,
Washington, and Wisconsin) received the lowest scores (each of
these states scored 2 points). The results of this study suggest that
all states could improve when it comes to clarity and stringency of
child car seat laws targeting TNCs. A majority of states do not
specifically mention TNCs in their state child car seat laws. This
study also revealed that even though TNCs operate in most U.S.
cities, only a handful of them offer the child car seat feature.

In addition to the technical contribution, the authors provided
the data curated during this study through Mendeley
Data (https://data.mendeley.com/datasets/mz3z94ppbn/draft?a=
59fd4760-0fc7-4b7e-b4ff-efa10225e6a8), which researchers or
traffic safety officials could use for their own research or to
improve safety of children traveling in TNC vehicles.

This study is a starting point towards identifying issues in laws
regulating child car seat usage in TNC vehicles as well as recogniz-
ing gaps in research on child car seat laws. Although the authors
identified limited studies documenting perspectives of TNC drivers
and riders regarding child car seat laws for TNCs, further research
is needed to better understand law enforcement officers’ percep-
tions of the topic. Additionally, the authors observed a gap in
research addressing the question of effectiveness of existing child
car seat laws for TNCs and sufficiency of existing penalties for vio-
lations of child car seat laws by TNC riders or drivers.

As TNCs continue to expand their presence in the transportation
services market across the nation, there is a growing need among
researchers, policymakers, and other stakeholders to better under-
stand the application of state child car seat laws in TNC vehicles.
The scoring system presented in this paper can help key stakehold-
ers assess their state’s score relative to the other states, consider
implications of existing child car seat laws for both TNC riders
and drivers, and identify areas of improvement. This scoring sys-
tem can help legislators and policymakers gauge different accom-
modations needed for their constituents with children and may
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possibly help increase the demand for ride-sharing services by
families with young children.

7. Declarations of interest

None.

Funding

This work was funded by the Alabama Transportation Institute,
The University of Alabama, Tuscaloosa, AL, USA.

Appendix List of 30 largest U.S. cities by population

Rank Name State 2020
Population

1 New York City New York 8,323,340
2 Los Angeles California 4,015,940
3 Chicago Illinois 2,694,240
4 Houston Texas 2,340,890
5 Phoenix Arizona 1,703,080
6 Philadelphia Pennsylvania 1,591,800
7 San Antonio Texas 1,578,030
8 San Diego California 1,447,100
9 Dallas Texas 1,382,270
10 San Jose California 1,033,670
11 Austin Texas 988,218
12 Fort Worth Texas 932,116
13 Jacksonville Florida 926,371
14 Columbus Ohio 922,223
15 Charlotte North Carolina 905,318
16 San Francisco California 896,047
17 Indianapolis Indiana 875,929
18 Seattle Washington 783,137
19 Denver Colorado 734,134
20 Washington District of

Columbia
720,687

21 Boston Massachusetts 710,195
22 El Paso Texas 685,575
23 Nashville Tennessee 673,167
24 Detroit Michigan 667,272
25 Portland Oregon 664,103
26 Las Vegas Nevada 662,000
27 Oklahoma

City
Oklahoma 655,407

28 Memphis Tennessee 647,374
29 Louisville Kentucky 624,890
30 Baltimore Maryland 590,479
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a b s t r a c t

Introduction: Railroad grade crossings (RRGCs) have emerged as critical transportation infrastructures
from the point of safety and operational aspects because two modes of transportation intermingle at
the intersecting zone; the understanding of safety and traffic operation at RRGC is of prime concern while
planning and designing this transportation facility.Method: In this context, this work tries to comprehend
RRGC performance-related parameters from published literature and figure out critical gaps. An interna-
tional synthesis on the identified potential parameters influencing the RRGC performance (i.e., safety, dri-
ver behavior, and operational impact) was carried out by critically reviewing the articles published
worldwide. Furthermore, key findings, used variables, analysis methods, research gaps, and recommen-
dations were studied. Results: The review revealed that many researchers had explored the driver behav-
ior and safety aspect based on past crash data and violations prevailing at RRGC. However, little research
has been done to evaluate the effect of highways’ operational characteristics on the performance of RRGC.
Moreover, limited investigation has been carried out to understand the dilemma of drivers and the proac-
tive safety evaluation of pedestrians and non-motorized vehicles at RRGC. A total of seven critical
research gaps concerning parameters are recognized, facilitating a clear agenda for further research per-
taining to RRGC performance.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Rail and highway networks play vital roles in enhancing socio-
economic growth and uniting the nation by devoting significantly
to the mass transportation system in order to serve multiple pur-
poses (Li & Cheng, 2011; Feng et al., 2019). The efficient transporta-
tion of people and goods across various nations requires a properly
designed and well-planned transport network. Due to the geomet-
rics requirement of transportation networks, many sites in the net-
works cross each other, forming intersection zones. At grade
intersections there can be bottlenecks where performance is con-
sidered critical compared to the overall performance of a road net-
work system (Yan et al., 2018). Likewise, for various reasons in
many places, two distinct modes of transport network intersect
each other at the same or different grade. Railroad grade crossings
(RRGCs) are one of them, where two distinct transportation infras-
tructures share a common space placed under diverse liabilities
and performances in their normal operation period, which makes
it unique in the world of transport (Indian Railways Year Book,
2017–2018). At RRGCs, railway and road are crossing each other

on the same level, and the priority of movement is always given
to the train due to the technical constraints (long breaking dis-
tance) associated with railway vehicles. RRGCs become a risky
and complex location as users of diverse nature interact distinctly
to traverse the intersecting zone. Most of the RRGCs across the
world are designed and operate in one of the two ways; (a)
equipped with passive warning system indicating the presence of
the crossing but do not inform about the approaching train; and
(b) equipped with active warning systems including flashing lights
and/or audible bells and provides a warning about the approaching
train (Wigglesworth & Uber, 1991).

To satisfy the escalating rail and road traffic, the expansion of
rail and road networks has been done, which has increased the
number of RRGCs. But, due to progressive safety and traffic conges-
tion issues, planning for RRGCs removal or consolidation is hap-
pening across the globe.

In the United States, there is one RRGC at every 0.6 km of rail-
way line, constituting around 250,000 RRGCs across the nation.
Approximately 30% of the crossings have been upgraded with dual
gates and 0.6% with four quad-gates (Federal Highway
Administration, 2007). Whereas, in India, there are 25,299 RRGCs
or one for 2.6 km of railway track, out of which 19,507 are manned
RRGCs and 5,792 are unmanned RRGCs (Indian Railway Year Book,
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2017–2018). Likewise, there are more than 23,000 RRGCs in Aus-
tralia, with one crossing at every 1.8 km of railway track, and
New Zealand with 3,000 RRGCs at every 1.3 km of railway track
(Rail Industry Safety and Standards Board, 2009). Similarly, there
are around 11,8000 RRGCs in the European Union covering 28
countries having one RRGC per 2 km stretch of the railway line.
About 30% of railway accidents are reported with an annual aver-
age of 300 fatalities (European Railway Agency, 2014). France rail-
way network is expanded over 30,000 km, which constitute
around 18,000 RRGCs, out of which 13,000 RRGCs are held with
high volume railway and roadway traffic (SNCF Reseau, 2011).
Also, there are around 206 RRGCs in Israel and one crossing at
every 2.6 km of the railway line, aggregating a total of 500 RRGCs
across the nation (Gitelman & Hakkert, 1996). Country-wise RRGCs
density per kilometer of the rail line and the total number of RRGCs
has been portrayed in Fig. 1 for reference.

Owning to the complexity of traffic operation at RRGC, in the
past few decades, many researchers have explored the driver
behavior and safety aspect based on previous crash data and viola-
tions prevailing at RRGC. However, little research has been done to
evaluate the effect on highways’ operational characteristics linked
to RRGC. Moreover, little investigation has been done to figure out

the other aspects of safety, like the dilemma of drivers and pedes-
trians at RRGC.

To the best of the authors’ knowledge, there are few published
review papers on RRGCs. Lobb (2006) highlighted the review on
pedestrian trespassing at RRGC. The author mainly focused on fac-
tors responsible for train pedestrian collisions, various intervention
programs to minimize such collisions (e.g., educational awareness,
environmental changes, punishment for safe and unsafe crossing
behavior), and physiological research. Further, Yeh and Multer
(2008) reviewed the driver behavior at RRGCs from 1990 to
2006. The authors focused on various factors that influence the dri-
ver behavior such as traffic control devices, crossing characteris-
tics, driving skill and style, organizational behavior, and
environmental context. Edquist et al. (2009) reviewed counter-
measures like education, enforcement, speed reduction, sight dis-
tance, signs, warning credibility, queue prevention, obstacle
detection, and pedestrian safety. Freeman et al. (2013) highlighted
various crossing attributes of pedestrians such as contextual fac-
tors and human factors (including error and deliberate violation
at RRGCs). While previously published review papers mainly high-
light the driver behavior and safety aspects prevailing at RRGC,
operational impact at RRGCs is not encompassed. However, De

Nomenclature

AC Active Crossing
BPM Binary Probit Model
CC Crossing Control
CD Crash Data
CDB Crash Database
CF Crossing Features
DSA Descriptive Statistical Analysis
DZ Dilemma Zone
EM Empirical Model
EN Environmental
HF Highway Features
MO Manual Observation
MS Microsimulation
MV Motorized Violation

NMV Non-Motorized Violation
OS Official Source
OT Others
PC Passive Crossing
RM Regression Model
RRGC Rail Road Grade Crossing
SR Sensors
TC Traffic Characteristics
UC User Characteristics
UP User Perception
VC Vehicular Characteristics
VG Videography

(a)  Country wise analysis of RRGC density (b) Country wise analysis of total RRGCs 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

enil liar fo erte
molik/ ytisned 

C
G

R
R

Country

0

50000

100000

150000

200000

250000

T
ot

al
 n

um
be

r 
of

 R
R

G
C

Country

Fig. 1. Country wise RRGC density per kilometer of the rail line and the total number of RRGCs. Source: (Federal Highway Administration, 2007; Railway Year Book, 2017–
2018; Rail Industry Safety and Standards Board, 2009; European Railway Agency, 2014; SNCF Reseau, 2011; Gitelman & Hakkert, 1996).
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Gruyter and Currie (2016) reported various RRGC impacts includ-
ing transport, social, economic, and environmental impact. The
authors under transport impacts have covered various aspects,
including safety based on accidents, but other attributes such as
safety based on the violation, dilemma zone, and driver behavior
are untouched. Therefore, the present study provides a compre-
hensive look at the potential parameters affecting RRGC perfor-
mance (e.g., driver behavior, safety based on crash data, violation
and dilemma zone, and operational impacts) and delivers useful
yields in the form of considered variables, analysis method, and
research gaps pertaining to identified parameters. Thus, this article
will focus on the following known RRGCs issues: collisions and

their consequences; road user behavior; and their effects on traffic
flow.

Section 2 of this paper depicts the review methodology, starting
from selecting research topics to identifying research gaps and rec-
ommendations of future work. The overall methodology is split
into three steps and portrayed in the form of a flow chart. Section 3
covers the identification of potential parameters influencing RRGC
performance based on the comprehension of a detailed literature
survey. Findings of each parameter are discussed in subsections
separately, and variable types and analysis methods used in vari-
ous studies are portrayed in Table 1, 2, and 3. Section 4 includes
critical observations, identified research gaps, and future research

Table 1
Summary of variables used and analysis methods associated with driver behavior studies.

Authors Country RRGC
Type

Data Collection Method Variable Types Analysis Method

AC PC CDB VG MO SR UP VC UC HF CF CC TC EN OT DSA MS EM RM BPM

Berg and Oppenlander, 1969 United States U U U U U U U U U U

Mounce, 1981 United States U U U U U U U U

Aberg, 1987 Sweden U U U U U U

Richards and Heathington,
1988

United States U U U U U U

Meeker and Barr, 1989 United States U U U U U U

Tenkink and Horst, 1989 Netherlands U U U U U U U

Fambro et al., 1994 United States U U U U U U

Ward & Wilde, 1995 United
Kingdom

U U U U U U U U

Meeker et al., 1996 United States U U U U U

Raslear, 1996 United States U U U U U U U U

Ward & Wilde, 1996 United
Kingdom

U U U U U U U U

Coleman and Moon, 1997 United States U U U U U U U U

Picha et al., 1997 United States U U U U U

Osemenam, 1998 United States U U U U U U U U

Moon and Coleman, 1999 United States U U U U U U

Carroll et al., 2001 United States U U U U U U U U

Smailes et al., 2002 United States U U U U U U U U

Radalj & Kidd, 2005 Australia U U U U U U U

Oh et al., 2006 Korea U U U U U U U U U U

Peltola, 2006 Finland U U U U U U U U

Park, 2007 United States U U U U U U U U U U U U U

Russell et al., 2007 United States U U U U U U U U

Davey et al., 2008 Australia U U U U U U U

Lenne et al., 2011 Australia U U U U U U U

Tey et al., 2011 Australia U U U U U U U U

Kasalica et al., 2012 Serbia U U U U U U

Kumar, 2012 India U U U U U

Salmon et al., 2012 Australia U U U U U U U U

Tey et al., 2012 Australia U U U U U U U U U

Basacikl et al., 2013 United
Kingdom

U U U U U U U

Lenne et al., 2013 Australia U U U U U U U U U U

Turner et al., 2013 United
Kingdom

U U U U U U U U U

Mulvihill et al., 2014 Australia U U U U U U U U

Kim et al., 2015 Australia U U U U U U U U

Larue et al., 2015 Australia U U U U U

Tung and Khattak, 2015 United States U U U U U U U

Young et al., 2015 Australia U U U U U U U U U

Metaxatos and Sriraj, 2016 United States U U U U U U U U U

Mulvihill et al., 2016 Australia U U U U U U U U

Beanland et al., 2017 Australia U U U U U U U

Cale et al., 2017 Israel U U U U U U U

Larue and Wullems, 2017 Australia U U U U U

Larue et al., 2017 Australia U U U U U U U U

Larue et al., 2018a Australia U U U U U U U

Larue et al., 2018b Australia U U U U U U U U U

Young et al., 2018 Australia U U U U U U U

Larue et al., 2019a Australia U U U U U U

Larue et al., 2019b Australia U U U U U U U U

Larue et al., 2019c Australia U U U U U U

Russo et al., 2020 United States U U U U U U U U U U
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Table 2
Summary of variables used and analysis methods associated with safety studies.

Authors Country RRGC
Type

Study Type Data Collection Mode Variables Types Analysis Method

AC PC CD MV NMV DZ CDB VG MO SR UP VC UC HF CF CC TC EN OT

Gitelman and Hakkert,
1996

Israel U U U U U U U Descriptive statistical analysis

Coleman and Moon, 1997 United States U U U U U U Simulation technique (CROSSIM)
Carlson and Fitzpatrick,

1999
United States U U U U U U U Logistic regression models

Lobb et al., 2000 New Zealand U U U U Descriptive statistical analysis
Austin and Carson, 2002 United States U U U U U U U U U Negative binomial regression
Lobb et al., 2002 New Zealand U U U U U Descriptive statistical analysis
Moon and Coleman, 2002 United States U U U U U U Empirical models
Ko et al., 2007 United States U U U U U U Descriptive statistical analysis
Khattak and McKnight,

2008
United States U U U U U U Descriptive statistical analysis & Negative binomial model

Hu et al., 2009 Taiwan U U U U U U U Generalized logit model
Millegan et al., 2009 United States U U U U U U U Descriptive statistical analysis & Negative binomial regression
Yan et al., 2009 United States U U U U U U Hierarchical tree-based regression model
Yan et al., 2010 United States U U U U U U U U U Logistic regression model
Evans, 2011 United

Kingdom
U U U U U U Descriptive analysis & Poisson log linear model

Khattak and Luo, 2011 United States U U U U U U U Poisson model
Meiers et al., 2012 Australia U U U U U U U U Descriptive statistical analysis
Hao and Daniel, 2014 United States U U U U U U U U U U Ordered probit model
Khattak, 2014 United States U U U U U U Descriptive statistical analysis & Poisson regression model
Freeman and

Rakotonirainy, 2015
Australia U U U U Descriptive statistical analysis

Haleem and Gan, 2015 United States U U U U U U U U U U U Descriptive Statistical analysis & Mixed logit model
Laapotti, 2015 Finland U U U U U U U U U U Descriptive statistical analysis
Liu et al., 2015 United States U U U U U U U Descriptive, Path analysis & Ordered logit model
Read et al., 2015 Australia U U U U U U Descriptive statistical analysis
Stefanova et al., 2015 Australia U U U U U U U U Descriptive statistical analysis
Zhao and Khattak, 2014 United States U U U U U U U U U Multinomial logit model, Ordered probitmodel&Random

parameter logit model
Haleem, 2016 United States U U U U U U U U U U Mixed logit model & Binary logit model
Hao et al., 2016 United States U U U U U U U U U U U Ordered probit model
Lu and Tolliver, 2016 United States U U U U U U U U Poisson regression models
Barić et al., 2017 Croatia U U U U U U U Descriptive statistical analysis
Hao et al., 2017 United States U U U U U U U U U Mixed logit model
Liang et al., 2017a France U U U U U U Descriptive statistical analysis
Liang et al., 2017a France U U U U U Descriptive statistical analysis
Liu and Khattak, 2017 United States U U U U U U U U U Descriptive statistical analysis & Binary logistic model
Zhang et al., 2017 United States U U U U U Artificial intelligence-based computer vision algorithm
Larue et al., 2018 Australia U U U U U U U Generalized linear mixed models
Liu and Khattak, 2018 United States U U U U U U U U U U Descriptive statistical analysis & Binary logit model
Zhang et al., 2018 United States U U U U U U U U Descriptive analysis & Ordered logistic regression model
Tjahjono et al., 2019 Indonesia U U U U U U U U Ordered probit model
Keramati et al., 2020 United States U U U U U U U U Descriptive statistical analysis
Larue and Naweed, 2020 Australia U U U U U U Descriptive statistical analysis
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direction along with their significance, and ultimately, the conclu-
sions drawn from the study are presented in Section 5.

2. Review methodology

The overall methodology of the study is mainly comprised of
three steps, as shown in Fig. 2. RRGC was chosen as a research
topic, then various relevant articles were obtained using different
keywords (such as level crossings, at grade railroad crossings, rail-
way crossings, railroad crossings, and railroad grade crossings).
Multiple scientific databases were used for collecting relevant arti-
cles, such as Google Scholar, Science Direct, Scopus, ProQuest, and
research reports. In addition, the snowball criterion was used to
obtain additional articles through citations from multiple publica-
tions. Thereafter, each article was analyzed in detail and potential
parameters in context to RRGC impact on road users were identi-
fied. The identified parameters are safety, driver behavior, and
operational impact. Safety was further analyzed in context to past
crash data, violations by motorists, pedestrians and bicyclists, and
dilemma zone. Likewise, driver behavior at passive and active
RRGCs was analyzed separately. Ultimately, on comprehension of
complete analysis, various research gaps were identified and future
works were recommended.

3. Parameters influencing RRGC performance

Based on the comprehension of a detailed literature survey, it
was recognized that the performance of RRGC greatly depends on
driver behavior, safety, and operational characteristics. Each influ-
encing parameter and findings from various studies across the
world are discussed in the following subsections separately. Also,
the studies in association with the mentioned parameters are pre-
sented in Tables 1, 2, and 3. Each table presents the details of the
country where the study was carried out, the type of RRGC, the
data collection method utilized, variables used, and the analysis
method for each study. Various nomenclature used in this study
are compiled in the form of a table, and the table is presented as
nomenclature.

3.1. Driver behavior (motorized and non-motorized)

In this study, driver behavior was carried out in the context of
motorized and non-motorized road users. Motorized road users
include two-wheeler riders, car and heavy vehicle drivers, and
non-motorized road users (including pedestrians and bicyclists).
Despite the widespread installation of active protection devices

such as warning bells, flashing lights, and barrier gates at RRGCs,
traffic collisions appear to be a serious issue (Meeker et al.,
1996). The prime cause of collision at RRGCs is risky driving behav-
ior, as many drivers do not comply with the traffic rules due to
human, vehicular, and environmental factors (Tey et al., 2012;
Larue et al., 2019). Therefore, driver behavior contributes signifi-
cantly to the safety of RRGCs. Risky movement of road users during
multiple stages of gate operation can lead to single vehicle collision
as well as with the approaching train and road users (Khattak,
2014). Driver behavior at RRGC is segregated into two categories
based on the type of RRGC (i.e., active and passive). The detailed
synthesis of literature pertaining to driver behavior is presented
in the following two sub-sections. Studies related to driver behav-
ior are presented in Table 1 in chronological order. Under variable
types, Vehicular Characteristics (VC) covers vehicle length and
type. User Characteristics (UC) encompasses age, gender, head
movement, eye movement, driver experience, reaction time, and
user perception. Highway Features (HF) encircles road geometry
and the presence of rumble strips. Crossing features (CF) includes
crossing geometry and roughness. Crossing Control (CC) covers
types of warnings and protection devices and warning times. Traf-
fic Characteristics (TC) encircles roadway and railway traffic oper-
ational characteristics. Environmental (EN) includes climatic
condition and visibility, and Others (OT) covers license status,
crossing time, the time between consecutive trains, vehicle lateral
position, the distance between vehicle and train, and topography.

3.1.1. Driver behavior at active RRGCs
The effectiveness of the RRGC protection system is mainly

reflected in the form of driver’s response because often poor
decision-making skills and improper awareness of the drivers per-
ceived at RRGC lead to crashes (Meeker et al., 1996; Salmon et al.,
2012; Berg & Oppenlander, 1969; Caird, 2002; Green, 2002). Many
researchers have examined driver compliance at active RRGCs
using videography tools. Aberg (1987) revealed that RRGCs
installed with flashing lights are 10 times riskier than those
equipped with gates. Therefore, RRGCs equipped with only flashing
lights should be designed in such a manner so that all necessary
information can be gathered by road users against the approaching
train (Tey et al., 2012). Descriptive statistical analysis of collected
data by Meeker et al. (1996) revealed that around 67% and 38%
of drivers crossed the RRGC equipped with flashing light and gates
before the approaching train, respectively. Larue et al. (2018a)
investigated errors, rising risks, and interactions among various
road users using videotaped data for two days. The authors
observed a high non-compliance rate and high congestion was

Table 3
Summary of variables types used and analysis methods associated with operational studies.

Authors Country RRGC
Type

Data Collection Mode Variables used Analysis Method

AC PC VG MO UP OS VC HF CF CC TC OT DSA MS EM

Powell, 1982 United States U U U U U U U

Hakkert and Gitelman, 1997 Israel U U U U U U

Chandler and Hoel, 2004 United States U U U U U

Rilett and Appiah, 2008 United States U U U U U U U

Okitsu et al., 2010 United States U U U U U

Protopapas et al., 2010 United States U U U U U U U

Mitrovic, 2011 United States U U U U U U

Tey et al., 2012 Malaysia U U U U U U U

VicRoads, 2010 Australia U U U U U U

Hasnat et al., 2016 Bangladesh U U U U U

Nguyen-Phuoc et al., 2017 Australia U U U U U U U

Trivedi and Gor, 2017 India U U U U U U

Beanland et al., 2018 Australia U U U U U U U

Larue et al., 2020 Australia U U U U U
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observed due to high train frequency, short stacking issues, fewer
options for pedestrians to traverse, and synchronization-related
issues. The color of the flashing light was found to affect the com-
pliance rate. Tenkink and Horst (1989) observed that red light
compliance shown by car drivers against white light was relatively
on the better side as all drivers stopped their cars after 6 seconds
from the onset of the red signal at RRGCs. Various countermeasures
such as speed breakers and posted speed limits can effectively
lower vehicular speed (Radalj & Kidd, 2005; Oh et al., 2006;
Peltola, 2006; Park, 2007). These countermeasures enable the road
users sufficient time to understand the situation and respond
accordingly. To force drivers to slow down and become careful
on approach to RRGC, Cale et al. (2017) developed three cognitive
designs: lines with distance shortening, bottleneck, and pictogram
with safety blue carpet. The driving simulator results indicated
that drivers do reduce their speed significantly concerning each
intervention. Moon and Coleman (1999) concluded that a signifi-
cant reduction in vehicular speed is observed as the driver moves
toward RRGCs, and speed reduction in the case of the platoon is
relatively more than that of a single-vehicle.

Tey et al. (2012) reported that a micro-simulation tool (VISSIM)
with some modification could be employed effectively to investi-
gate traffic-related safety indicators, including collision likelihood
and temporal collision at RRGCs. The authors also concluded that
active RRGCs are at least 17% safer than passive RRGCs. Simulation
results of dual gated RRGCs by Coleman and Moon (1997) showed
that aggressive drivers traversing the crossing against the
approaching train generally cross the safe stopping distance and
penetrate beyond the railway track, which can lead to a serious
collision. The driving simulation tool is effective in evaluating
behavioral parameters, including stress level, secondary activity
while driving, and familiarity with RRGCs (Lenne et al., 2011; Tey
et al., 2011;Tung & Khattak, 2015; Young et al., 2018) and the
use of driving simulator has been validated for RRGC (Larue
et al., 2018). Young et al. (2018) revealed that drivers spend more
than 50% of their time texting without looking ahead on driving
through RRGCs, which could make them unaware of the instant sit-
uation. Additionally, Tung and Khattak (2015) reported that
around 33% of drivers traversing the crossing were engaged in sec-
ondary activities such as operating cellular phones and talking to
car passengers. Likewise, Russo et al. (2020) conducted an observa-

Fig. 2. Flow chart demonstrating the proposed review methodology.
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tional study utilizing videotaped data and reported that 9.5% of
pedestrians and 7.7% of bicyclists were distracted while traversing
RRGC, and most of these distractions were observed using head-
phones. Larue et al. (2019c) suggested that the installation of illu-
minated lights in the footpath can be effective in attracting the
attention of distracted pedestrians engaged with smartphones
while crossing the RRGC.

Moreover, Young et al. (2015) examined novice and experi-
enced drivers’ attention on approaching urban RRGC. The authors
reported that most of the drivers, including novice and experi-
enced, were less focused on RRGC and relied on the behavior of
surrounding drivers. Lenne et al. (2013) utilized instrumented
vehicle to explore the factors that affect the driver behavior at
active RRGC equipped with flashing lights with or without gates
and at passive RRGC with stop and give way controlled. The
authors revealed that the number of head checks decreases as sight
distance decreases, and the number of head checks increases with
the provision of rumble strips. Larue et al. (2019a) used an
advanced driving simulator to examine the impact of waiting time
on risky behavior and frustration level of road users. The findings
revealed that waiting time greater than 3 minutes makes the road
users frustrated, and hence, they involve themselves in risky action
by crossing illegally in different gate operation phases.

A comprehensive questionnaire survey revealed the improper
understanding of the commuters of various control devices
installed at RRGC. Richards and Heathington (1988) concluded that
safety at the crossing could be enhanced by installing lifting barri-
ers, flashing lights, or both, educating the road users, and replace-
ment by grade separators. Basacikl et al. (2013) utilized a user
perception survey to estimate road users’ understanding in context
to signs and signals at RRGC. The authors revealed that the road
users well understood the significance of flashing red lights, but
most of the respondents failed to distinguish between danger
warning signs for RRGCs with gates and other RRGCs. Furthermore,
Stanton et al. (2013) conducted a user perception survey for two
weeks to quantify how road users make their decision at RRGC.
The authors observed the variation among the experience and
behavior of different classes of road users. The findings revealed
that in order to be alert about the presence of an approaching train,
motorists and car drivers mostly relied on flashing lights, whereas,
pedestrians and bicyclists mostly relied on audible warning signs.
Moreover, Davey et al. (2008) revealed that heavy vehicle drivers
experience visibility and vehicle clearance issues. Most of the dri-
vers rush through the RRGC to save time and are less aware.
Mulvihill et al. (2014) utilized a two-week diary study and imple-
mented a decision ladder technique to compare road users’
decision-making process during their compliance and non-
compliance state. The main finding from the study indicated that
drivers engaged in non-compliance at the crossing were less con-
cerned of safety. Later, Mulvihill et al. (2016) observed some differ-
ences in decision-making among various road users groups. The
authors concluded that engineering countermeasures such as
flashing lights, intended to improve decision-making, may have
an adverse effect on few road users as the system allows high flex-
ibility for intervention. Also, Metaxatos and Sriraj (2016) con-
ducted interviews with the railway experts and reported that
collision at RRGC can be reduced by enhancing certain areas such
as: (a) advancing consistent standards for warning devices and
treatments; (b) advancing consistent approaches for managing
non-motorist risk; and (c) progressive commitment to education,
engineering, enforcement, and evaluation efforts by enabling
stakeholders to provide adequate resources.

3.1.2. Driver behavior at passive RRGCs
Many researchers have made efforts to investigate the under-

standing of drivers towards warning signs at the passive crossing.

The findings revealed that, although many drivers can figure out
and distinguish the different warning signs, most of them have
inadequate knowledge regarding their responsibility and applica-
tion of various warning signs and pavement markings at RRGCs
(Richards & Heathington, 1988; Picha et al., 1997; Global
Exchange, 1994; Beanland et al., 2017). The user perception survey
conducted by Picha et al. (1997) revealed that around 81% of the
drivers identified the distinct warning signs. Still, only 18% of them
were able to figure out the exact position of signs. A similar survey
report by Fambro et al. (1994) observed that around 30% of the dri-
vers were unaware of conventional and advanced warning signs’
location. Turner et al. (2013) reported that a decision point marker
should be provided before the passive RRGC so road users have to
make their own judgement to safely cross the RRGC. Mounce
(1981) collected the field data using videography and reported that
the compliance rate of drivers increases with a decrease in road
traffic volume. Beanland et al. (2017) identified factors associated
with driver’s compliance and non-compliance level at rural RRGC
with stop signs. The findings revealed that most of the participants
complied with the stop sign, but those who did not comply either
failed to detect stop sign or overestimated the sight distance. In
contrast to the videography technique, Larue and Wullems
(2017) introduced an effective and reliable method to examine dri-
ver behavior at passive RRGC for a longer time. The authors
installed pneumatic tubes on both side of roadway linked to RRGC
to measure approach speed and compliance rate of the drivers.
Larue et al. (2015) utilized a driving simulator tool to access motor-
ist’s acceptance of distinct intelligent transport systems developed
to minimize crashes. Fifty-eight participants actively participated
in the study where three intelligent transport system devices,
namely, an in-vehicle visual intelligent transport system, an in-
vehicle audio intelligent transport system, and an on-road valet
system were tested. The overall findings of the study revealed that
most of the drivers intended to use road-based valet system at pas-
sive RRGC.

Driving through the passive crossing needs considerable atten-
tion from road users as it is quite challenging to predict the train
arrival time at the crossing. At passive RRGC, around 95% of acci-
dental cases have been reported due to careless driving (Serbian
Rail Administration, 2009; Ward & Wilde, 1995, 1996; Hauer,
1984; Raslear, 1996; Russell et al., 2007; Meeker & Barr, 1989;
Kumar, 2012; Larue et al., 2018b). Larue et al. (2017) examined
the veracity of motorist’s perception in judging the speed of an
approaching train and their decision to enter the crossing zone.
The findings suggested that motorists were highly sure with their
speed judgement and would have entered the crossing zone if the
crossings were actively protected. Limited lateral visibility faced by
the drivers approaching the crossing compels them to alter their
usual behavior, and as a result, they commit risky action (Ward
& Wilde, 1996; Caird, 2002; Wigglesworth, 1976; Moon &
Coleman, 1999). Statistical descriptive analysis by Kasalica et al.
(2012) revealed that trains running at high speed possess less
safety margin for road users, and drivers find it difficult to guess
the speed of approaching trains at passive crossings with low lat-
eral visibility. For this reason, drivers engage in risky operations,
which results in a high number of accidents. Larue et al. (2019b)
introduced road vehicle activated advanced signage to improve
the attention of road users about the approaching RRGC. The
authors observed that a high range of advantages could be
achieved using such advanced signage as making the drivers aware
of the level crossing, improved drivers’ attention towards road
signs, gaze behavior, and distinct speed choice. The in-vehicle
warning system helps the driver draw attention to the approaching
train (Osemenam, 1998; Carroll et al., 2001; Smailes et al., 2002).
Kim et al. (2015) employed three intelligent transport system
interventions (visual in-vehicle, audio in-vehicle, and on-road mar-
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ker system) and observed that these interventions mostly influ-
ence driver behavior at passive RRGCs compared to those of pas-
sive to active RRGCs.

3.2. Safety evaluation

Catastrophic outcomes of accidents at RRGCs have captivated
researchers and transport planners to resolve the safety aspects
of them (Lu & Tolliver, 2016). Safety at RRGCs is commonly
reflected in the form of repeated accidents/crashes with varying
levels of severity and generally evaluated utilizing available crash
data of past few decades (City of Greater Dandenong, 2007;
Dodgson, 1984; Powell, 1982; Liang et al., 2017a; Liang et al.,
2017b; Liang et al., 2020). Apart from historical crash data, safety
at RRGCs can also be evaluated by examining violations of road
users utilizing collected field data through videography tech-
niques. Violation at RRGC is significantly responsible for crashes
with a range of severity in injuries to road users (Freeman &
Rakotonirainy, 2015; Khattak & Luo, 2011; Liang et al., 2017a).
Moreover, drivers trapped within the dilemma zone on traversing
the intersection may experience orthogonal or rear-end collision,
which adversely affects road users’ safety (Papaioannou, 2006;
Liu et al., 2007; Zhang et al., 2014). The safety-related aspect based
on crash data, violation, and dilemma zone is discussed in the fol-
lowing subsections. Also, studies pertaining to safety are portrayed
in Table 2 in chronological order. Variable types under the OT cat-
egory include centerline barrier length, punishment, annual crash
frequency, injury level, violation type, and land use. The remaining
variable types contain the same parameters, as mentioned in
Section 3.1.

3.2.1. Accidents analysis
Road users can experience severe injuries and fatalities if a

crash occurs on traversing the RRGC. Approaching high-speed
train, concrete pavement, senior citizens, risky actions, observa-
tional mistakes, heavy vehicle, high speed limit at passive cross-
ings, times of the day, foggy environment, free space, and
number of tracks are the potential factors associated with crashes
with serious injuries (Meiers et al., 2012; Haleem, 2016; Hu et al.,
2009; Hao et al., 2017; Zhao & Khattak, 2014; Laapotti, 2015; Hao
et al., 2016; Keramati et al., 2020). A study conducted by Evans
(2011) in Greater Britain (based on crash data of 26 years) reveals
that the total reported fatalities at active, passive, and railway con-
trolled RRGCs are responsible for 52%, 43%, and 5% fatalities,
respectively, and pedestrians alone contributed 60% of total fatali-
ties. Liu et al. (2015) performed path analysis utilizing crash data of
10 years and concluded that the severity of injury at active cross-
ings is 16% lesser than passive crossings.

Austin and Carson (2002) reported that the frequency of fatality
increases with an increased number of accidents and can be
reduced by upgrading crossbuck with a stop sign. Various mathe-
matical models can be used for analyzing crash-related safety
aspects. Lu and Tolliver (2016) observed that the Poisson regres-
sion model could be effectively used to analyze the frequency of
crashes at RRGCs and also to overcome the crash data-related
issues, including over dispersion where the mean of the sample
is smaller than the variance. Further, Hao and Daniel (2014)
reported that the ordered probit model could be employed to
determine the factors responsible for crashes and prioritize the
severity of injury outcomes at RRGCs. Moreover, a mixed logit
model was reported to have the advantage over multinomial logit,
nested logit, and ordered probit models to trace the effect of unob-
served predictors like driver behavior during the crash (Haleem &
Gan, 2015).

Stratified tree-based regression was reported to be useful in
analyzing and forecasting crashes at passive RRGCs (Yan et al.,

2009). Millegan et al. (2009) reported that negative binomial
regression could be utilized for developing alternate prediction
models. Tjahjono et al. (2019) analyzed four years of crash data
using the ordered probit and logit model and revealed that water-
logged surfaces, two-wheelers, low traffic volumes, and male dri-
vers are among the prime promoters responsible for fatal
accidents at RRGCs. Zhang et al. (2018) developed an ordered logis-
tic regression to quantify the severity of rail-pedestrian crashes at
RRGC and revealed that out of total crashes, 60% were fatal. Addi-
tionally, Stephens and Long (2003) treated urban and rural RRGCs
with noticeable road markings (X inscribed in a box) and reported
a significant reduction in crash rates. Gitelman and Hakkert, (1996)
suggested that unification of limited crash data can be done to
develop hazard indices, and accordingly, several RRGCs can be pri-
oritized based on the development indices; hence, safety can be
ensured.

3.2.2. Violation studies
Gated RRGCs are believed to have a significant impact on low-

ering the collision rate when compared to RRGCs with different
protection system, including flashing lights, audible bells, warning
signs, and pavement markings (Ogden, 2007; Lenne et al., 2011;
Austin & Carson, 2002; Park & Saccomanno, 2005; Elvik et al.,
2009; Raub, 2009). But, violation at gated RRGCs could be the most
dangerous behavior as road users, including drivers, expose them-
selves to the high-risk accidental zone by traversing through and
around the gates in the course of gate operations (Cooper &
Ragland, 2012; Liu et al., 2015). The violation is observed for all
the modes of transport like motorized, non-motorized, and pedes-
trian (Larue et al., 2018a; Larue & Naweed, 2018; Liang et al.,
2017a; Liang et al., 2018a,b). Investigations pertaining to motorist
violation and pedestrian and bicyclist violations are presented in
two separate sections below. Moreover, the studies on safety eval-
uation based on the dilemma zone are given separately.

3.2.2.1. Motorist violation. In general, drivers and road users
traversing the gated RRGCs commit three types of violations: flash-
ing light violation, gate descending violation, and gate blockage
violation. Fitzpatrick et al. (1997) analyzed the videotaped data
and revealed that around 48% of drivers violated in the flashing
light phase, 47% in the gate descending phase, and 5% in the gate
blockage phase. Khattak (2014) developed the Poisson regression
model and concluded that protracted waiting time and greater
accessibility of freedom at dual gated RRGCs result in a higher vio-
lation rate. Liang et al. (2017a) analyzed the data through descrip-
tive analysis and observed that the violation rate increases during
peak hours. Path analysis is efficient in investigating the factors
associated with gate violation and in correlating gate violations
with the severity of injury at RRGCs (Liu & Khattak, 2017, 2018).
The results from path analysis utilizing crash data of nine years
indicated that if a driver crashes during violation at dual gated
RRGC then his/her probability of survival reduces by 7.47%.
Carlson and Fitzpatrick (1999) explored the contributing geometri-
cal and operational parameters responsible for the violation and
developed two models based on regression to determine whether
the driver violates in the flashing light phase or the gate descend-
ing phase. Risk analysis performed by Liang et al. (2017b) at two
and four half barriers equipped with flashing lights revealed that
various factors (including presence or absence of nearby railway
station, vehicular density, and duration of gate blockage) signifi-
cantly influence the violation rate. Zhang et al. (2017) performed
driver’s behavioral analysis utilizing an artificial intelligence-
based computer vision tool having the ability to analyze the data-
base of near-miss events in diverse climatic and visibility condi-
tions at RRGCs. The authors reported that the tool is capable of
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tracking, capturing, and aggregating near-miss events due to tres-
passing with adequate reliability in context to real-world scenar-
ios. The flexible centerline barrier system is effective, economical,
and promising in demotivating the drivers to violate at RRGCs
(Ko et al., 2007; Khattak & McKnight, 2008). The results from
descriptive statistical analysis and negative binomial model
revealed that the violation rate reduces by around 25 times with
the introduction of treatment with centerline barriers.

3.2.2.2. Pedestrian and bicyclist violation. Safety issues encompass-
ing non-motorized road user groups, pedestrians, and bicyclists,
in particular, have collected significant attention in the past few
years due to their vulnerability (Barić et al., 2017). Collision of
pedestrians or bicyclists with motorists or trains even at low speed
is more likely to result in severe injuries or fatalities when com-
pared to motorists or train passengers (Freeman et al., 2013).
Although there are multiple factors responsible for the rising num-
ber of fatalities of pedestrians and bicyclists, with violations among
the prime factors (Larue et al., 2018). Pedestrians and bicyclists
engage themselves in violations at RRGCs in multiple ways such
as crossing before the approaching train, during gate descending,
and in the course of gate blockage after the train passes the inter-
section (Federal Highway Administration, 2007; Nelson, 2008;
Sochon, 2008). Most of the road users fail to detect the RRGC and
fail to notice the approaching train and misjudge train speed.
Hence, they traverse the crossing with high risk (Cooperative
Research Centre for Rail Innovation, 2010; Wallace, 2008). Rela-
tively more pedestrian and bicyclist collision cases have been
reported than that of motorists, and out of the total train-
pedestrian collision, approximately 67% of the cases are fatal
(Lobb et al., 2002; Australian Transport Safety Bureau, 2004). The
leading cause of illegal crossing of pedestrians at RRGC could be
due to purposeful violation or by mistake. Freeman and
Rakotonirainy (2015) conducted a user perception survey and
revealed that 25% of pedestrians intentionally violated the cross-
ing, and 3.5% of them crossed by mistake. Many researchers have
suggested that investigating risky behavior in association with
multiple parameters would be more beneficial (Iorio et al., 2012;
Read et al., 2013; Read et al., 2015; Werkman et al., 2012).

In order to understand the crossing behavior of non-motorists
at RRGCs, Stefanova et al. (2015) developed a system-based non-
motorist unsafe crossing framework and concluded that time of
the day, gender, and age group of the road user significantly con-
tributes to the pedestrian’s risky activities, such as violations.
Males of the younger group and peak hours, as well as other
parameters such as a cluster of pedestrians in haste, undue atten-
tion, types of protection devices, and lateral visibility, are primarily
responsible for such behaviors (Clancy et al., 2007; Edquist et al.,
2011; McPherson & Daff, 2005; Metaxatos & Sriraj, 2013; Searle,
2012; Sposato et al., 2006). Khattak and Luo (2011) reported that
children and younger non-motorists (bicyclists and pedestrians)
violate 1.25 times more than the old group non-motorists. Educa-
tional and access prevention mediation programs can be employed
to enhance awareness of pedestrians on the illegal and unsafe
crossing (Lobb et al., 2000). A study by Lobb et al. (2002) revealed
that although education program is effective in lowering the
unsafe traversing of the pedestrian at RRGCs, punishing the road
users on illegal crossing would reduce the risky crossing a greater
extent. Siques (2002) revealed that pedestrian treatments (includ-
ing automatic barriers, warning devices, and various signboards
such as look both ways and stop at RRGCs) are promising in reduc-
ing the violation rate significantly. Also, Barić et al. (2017) utilized
videotaped data and observed that the violation rate of pedestrians
and bicyclists can be reduced up to 59.23% with the presence of
policemen and installed cameras at RRGCs.

3.2.3. Dilemma of drivers
The dilemma zone concept was first explored by Gazis et al.

(1960). Subsequently, various researchers studied the dilemma
zone at RRGCs (Crawford, 1962; Herman, 1963; Olson & Rothery,
1972; Zegeer, 1977; Sheffi & Mahmassani, 1981). Many studies
have been undertaken in context to dilemma zone at highway sig-
nalized intersection, but, to the best of the authors’ knowledge
Moon (1998), Coleman and Moon (1997), and Moon and
Coleman (2002) are the only researchers who explored dilemma
zone at four-quad gated RRGCs. The authors addressed that motor-
ists that were heading towards the gated RRGC experience almost
the same situation as when approaching a signalized highway
intersection. For identifying the static dilemma zone, the formula-
tion of stopping distance and continuation distance was suggested
by Moon and Coleman (2002). Also, Larue and Naweed (2020) uti-
lized videotaped data and revealed that most of the drivers enter-
ing the dilemma zone during the onset of flashing light violated the
dual gated RRGC due to insufficient warning time for drivers to
respond and to stop before traversing the RRGC. However, the
authors did not reveal how the dilemma zone was identified for
dual gated RRGC.

Simulation technique can be utilized to model the vehicular
dynamic characteristics and contributing factors in context to
motorists stopping at gated RRGCs to figure out the dilemma zone.
Accordingly, gate operations time can efficiently be computed
(Coleman & Moon, 1997). Moon and Coleman (2002) employed a
car-following model to introduce the concept of a dynamic
dilemma zone at four-quad gated RRGC. The authors reported a
relatively higher value of gate delay and gate interval in the case
of platoons than that of single vehicles approaching the crossing.
In contrast to the dilemma zone, an option zone is also identified
where a motorist has an option to stop or drive through the inter-
section. The option zone leads to a probabilistic approach and
defines the zone as the region where at least 10% and at most
90% of motorists tend to stop before the intersection, which reflects
the dynamic nature of the zone (Zegeer, 1977).

3.3. Operational impact assessment

Most road users suffer from congestion and delay in traversing
the signalized intersection. Therefore, the improvement of such
intersection zones is the primary concern of researchers, traffic
planners, and traffic management authorities (Shahi & Choupani,
2009). Delay is the prime measure to quantitatively evaluate the
Level of Service (LOS) of any intersection (Zhang & Prevedouros,
2010). RRGCs are analogous to signalized intersections where road
users face bundles of operational problems (Moon, 1998; Coleman
& Moon, 1997; Moon & Coleman, 2002). Among the operational
parameters, significant studies have been undertaken to encom-
pass vehicular delay at RRGCs (Powell, 1982; Chandler & Hoel,
2004; Rilett & Appiah, 2008; Hakkert & Gitelman (1997). Motorists
are likely to face delay when the vehicle is stopped or traveling at a
speed of less than two kmph and do not exceed five kmph (Tey
et al., 2012). A survey by VicRoads (2010) reported that travel time
decreases significantly (around 22%) in rush hours on upgrading
the RRGC with grade separators. Travel time can be defined as
the total time elapsed for a particular vehicle to travel from one
point to another over a specified path in association with lost time
during the stops, queuing delay, and intersection delay (Mori et al.,
2014). Hakkert and Gitelman (1997) developed a modified delay
model using the model proposed by Ryan and Erdman (1985).

The authors revealed that motorists traversing the RRGC face
delay not only during gate operations but also during gates open
to traffic due to roughness at the intersection zone. Trivedi and
Gor (2017) examined the impact of lane discipline on the delay
faced by motorists at RRGCs using a modified Webster model of
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delay. The authors reported that the delay faced considering lane
discipline is on the lower side when compared to the delay without
lane discipline. Unlike signalized highway intersection, it is very
difficult to compute the delay faced by motorists at RRGC due to
non-cyclic train arrival and gate operation times. Therefore, the
microsimulation technique can be effectively employed to deter-
mine vehicular delay (Chandler & Hoel, 2004; Cline et al., 1987;
Powell, 1982; Mitrovic, 2011; Tey et al., 2012). Powell (1982) uti-
lized a microsimulation tool for vehicular delay analysis at RRGCs
in the United States and reported an average weekly delay of 46
hours. Chandler and Hoel (2004) employed a microsimulation tool
(VISSIM) and concluded that vehicular delay increases with
increased road traffic volume and approaching train frequency at
RRGCs. Another study utilizing VISSIM encircled a total of 152
RRGCs in Melbourne, Australia, by Nguyen-Phuoc et al. (2017).
The study revealed that the aggregated effect of all RRGCs in the
city increased the travel time by 0.3%, congested links by 0.9%,
and total delay by 0.7%. Delay at RRGC affects the traffic flow per-
formance and contributes significantly to economic loss
(Protopapas et al., 2010). Another study by Hasnat et al. (2016)
revealed that a single RRGC is responsible for an annual economic
loss of around 5,491,430 USD in association with vehicular operat-
ing cost and value of travel time. Mitigation measures, including
various treatments and cost-effective design solutions, effectively
optimize the traffic operation condition at RRGCs. Beanland et al.
(2018) proposed three cost-effective design solutions for active
and passive RRGCs: GPS, average speed interface, and ecological
interface design crossing. The authors used a driving simulator to
compare these designs with conventional RRGCs and revealed that
ecological interface design crossing performed the best. Moreover,
Larue et al. (2020) examined the effectiveness of treatments utiliz-
ing simulation technique and concluded that reducing warning
time by 10 to 40 seconds could result in overall travel time reduc-
tion by 7–57%.

Various studies pertaining to operational impact have been por-
trayed in Table 3 in chronological order. Variable types under OT
category include detector location and length, lost time, weekdays,
weekends, speed limit, the distance between the stop line and rail,
and lane discipline. The remaining variable types contain the same
parameters, as mentioned in Section 3.1. A critical review of pub-
lished literature revealed that efficient traffic management plays
a vital role in enabling smooth traffic flow at an intersection in gen-
eral and at RRGCs in particular. But, at bottlenecks like RRGCs,
vehicular delay, formation of queue length, drop-in capacity leads
to congestion during various gate operation phases, which ulti-
mately deteriorates the service level. If the issues mentioned above
are not resolved, it would create numerous operational and safety-
related problems and result in deterioration of the overall perfor-
mance and safety of RRGCs. Therefore, to manage the traffic effi-
ciently at RRGCs: (a) delay faced by road users during and after
various gate operation phases needs to be computed, (b) drop in
capacity is required to be evaluated during various gate operating
phases, (c) queue formation during gate closure time and queue
dissipation time after gate ascending need to be quantified, and
(d) based on the delay and user perception, level of service has
to be estimated. Once all these parameters are determined, various
geometrical and operational attributes could be varied utilizing
simulation tools to check how the overall performance of the RRGC
could be improved. Accordingly, suitable mitigation strategies
could be implemented to enhance the overall performance of
RRGCs, such as:

a) Educating the road users to comply with traffic rules and
making them aware of crossing controls at RRGCs may
reduce the risky action taken by road users.

b) Pavement markings to guide the road users about the safe
available space for their smooth movement may reduce
the collision likelihood between the different classes of road
users to some extent.

c) Installation of centerline flexible barriers on the roads linked
to RRGC to force them to stay at their assigned lane may
ensure the smooth dissipation of queue.

d) Marking ‘‘X” shaped symbol after the RRGC may help the
road users judge whether there is enough space to drive
through the RRGC or stop moving until complete ‘‘X” is vis-
ible. It could help in reducing the queue length formation.

e) Augmentation of road width at the area surrounding RRGCs
could accommodate more traffic and may reduce congestion
and overall delay to road traffic.

f) Construction of foot over bridge at RRGC could result in
uninterrupted pedestrian movement regardless of different
gate operation phases. Further, this strategy could diminish
the interaction between vehicle and pedestrian traffic, lead-
ing to a reduction in vehicular traffic delay during queue dis-
sipation. Moreover, this mitigation measure could result in
enhanced pedestrian safety at RRGCs.

g) Reducing RRGC crossing roughness by making a paved sur-
face or installing a rubber pad may significantly reduce the
additional delay faced by road users due to the rough cross-
ing surface.

h) Optimizing warning, gate descending, and gate blockage
time by utilizing artificial intelligence systems could reduce
the delay faced by road users and promote safety by demor-
alizing the violators.

i) Integrating traffic signals at signalized intersections near
RRGCs with train signals may reduce congestion to road traf-
fic to some extent.

Subsequently, before and after studies could be carried out, and
the outcome from the before and after studies would give suitable
directions to achieve efficient traffic management at RRGCs.

4. Critical observations and future direction

This study investigated three potential parameters (driver
behavior, safety, and operational impacts) that greatly influence
the performance of RRGCs. To date, RRGCs have received substan-
tial attention from researchers, and most of the studies have been
undertaken in context to safety and driver behavior. Whereas, few
investigations have been carried out on the operational aspects
prevailing at RRGCs. A decade-wise analysis covering the number
of studies on various parameters is shown in Fig. 3. A country-
wise study (Fig. 4) depicts that around 49% of the studies on RRGCs
have been undertaken by United States researchers whereas, Aus-
tralian researchers have devoted approximately 29%, and contribu-
tion from the researchers of other developing countries is minimal.
Among the mentioned three parameters, 41%, 45%, and 14% of
studies have been undertaken to date concerning safety, driver
behavior, and operational impacts, respectively, as shown in Fig. 5.

This study has made a synthesis of available literature and iden-
tified the critical parameters affecting the performance of RRGCs in
detail. From a comprehensive review of published research, the fol-
lowing critical observations have been made.

1. Driver behavior is among the prime determinant attributes
reflecting the effectiveness of the protection system and gov-
erning safety-related aspect of RRGCs. The decision made by a
road user while traversing the RRGC primarily depends on
his/her experience, education, self-judgment ability, reaction
time, perceived situation, state of mind, and other psychological
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factors. In addition, the disability of road users, usage of alcohol
and drug, and fatigue not only cap the perceptual performance
and decision-making skills of the driver, but also enhances the
risk of fatal incidents. Therefore, the evolution of a pertinent
risk management approach incorporating driver behavior could
result in more efficient planning and better execution of safety
reform at RRGCs.

2. Careless driving can be catastrophic as it may result in severe
injuries and fatalities (Berg & Oppenlander, 1969; Caird, 2002;
Green, 2002; Fambro et al., 1994; Ward & Wilde, 1995, 1996;
Hauer, 1984; Raslear, 1996; Russell et al., 2007). The prime rea-
sons for careless driving could be due to a high-stress level, gen-
der, age group, and aggressive driving habits of the road users.
Moreover, frustration due to long waiting times at RRGCs, times
of the day, overestimated sight distance, low / non-audible train
horns, and climatic conditions could be the attributing factor for
careless driving. Many studies have been carried out on driver

behavior at active and passive RRGCs incorporating various
attributes related to traffic characteristics, crossing features,
visibility factor, and driver characteristics such as age and gen-
der. But there is a lack of research on investigating factors asso-
ciated with decision-making skills and the self-judgment ability
of drivers. For example, the careless driving behavior at RRGCs
with poor train horn audibility could be scrutinized by instal-
ling roadway side horns in the vicinity of RRGCs. If the installa-
tion is found efficient in reducing the risky action taken by road
users, roadway side horns can be installed at other RRGCs with

Fig. 3. Decade wise global analysis of parameters influencing RRGC performance.
(Source: Authors’ synthesis).
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train horn audibility issues. Therefore, future work exploring
various strategies to diminish careless driving habits will assist
in providing a clear vision on the comprehension of change in
driver behavior at active and passive RRGCs.

3. Safety at RRGCs and its associated factors are mostly examined
by historical crash data (City of Greater Dandenong, 2007;
Dodgson, 1984; Powell, 1982). Considering various geometrical,
operational, and environmental factors, many researchers have
investigated road users’ injury severity levels by developing
accident prediction models utilizing historical crash data. But,
none of the researchers have utilized the historical crash data
to address driver behavior, operational aspects, and effective-
ness of warning devices equipped at RRGC. Therefore, historical
crash data could further be utilized to compare the crash rate of
RRGC equipped with traffic signals to that of RRGC with no traf-
fic signals. Also, the efficacy of the second train warning sign
could be assessed by investigating crash histories at RRGC,
and the effect of such warning signs on road user behavior
could be analyzed. Safety assessment through crash data may
not be efficient as it is inclusive of multiple drawbacks, includ-
ing randomness and the rare occurrence of an accident, lack of
empirical evidence, inaccurate accident reports, and an impro-
per spot of an accident by the respective administrative officers,
which in turn affects the reliability and veracity of safety anal-
ysis (Paul & Ghosh, 2018). Therefore, collision likelihood, the
severity of the injury, and driver behavior can be integrated to
develop models to frame risk management to a large scale.

4. Violation is another crucial aspect contributing to the RRGCs
safety as road users expose themselves into the high-risk acci-
dental zone by traversing through and around the gates in the
course of gate operations (Cooper & Ragland, 2012; Liu et al.,
2015). Many violation studies have been undertaken to incor-

porate multiple factors, but limited studies have examined the
effect of varying warning times and train occupancy time on
violation rate. Also, limited before and after studies have been
carried out with the introduction of treatments based on artifi-
cial intelligence tools. Furthermore, research is needed for
RRGCs with high accident rates to examine whether such RRGCs
have high violation rates during the warning phase. If so, the
cause of the violation should be investigated. It could be due
to false alarms, long warning time, deliberate violation, or other
demographic attributes. In addition, there are several questions
that need to be answered in order to understand the cause of
the violation. Some of them are: (a) Whether the road users vio-
late deliberately or by mistake? (b) What parameters are
needed to develop efficient psychological models? (c) Under
what climatic condition likelihood of violation increases? (d)
Does the distance between the gates affect the rate of violation?
(e) What countermeasures are needed to slow down the viola-
tion rate? Therefore, future research in this context will assist
the transport planners and agencies in optimally allocating
resources and funds and ensuring safety by discouraging the
violators.

5. The dilemma zone also plays a vital role in addressing the
safety-related aspect of RRGC safety. If not identified and elim-
inated, the dilemma zone can lead to motorist entrapment
between the gates (Coleman & Moon, 1997). Studies on
dilemma zone have been undertaken considering four quad
gated RRGCs, and none of the studies has explored the dilemma
zone at dual gated RRGCs. Hence, it is needed to identify the
dilemma zone at dual gated RRGCs and compute optimal gate
delay and gate interval time to reduce collision likelihood and
vehicle entrapment between the gates. Once the dilemma zone
is identified, it is also required to examine how the road users

Table 5
Summary of research gaps and future work.

Parameters
influencing RRGC
performance

Research Gaps Future work Significance

Driver behavior
at active RRGC

Lack of research on factors associated with
driver’s decision making concerning
compliance level

Identify various factors associated with diverse
driving style by incorporating cost-benefit
analysis and establish some technique to
improve compliance

Weightage of cost and benefits significantly
influences the decision-making process of
drivers

Driver behavior
at passive
RRGC

Inadequate consideration over driving
experience level, land use, geometrical
attributes, psychological factors and
educational status in context to driving
behavior

Develop models based on factors contributing to
the self-judgement ability of drivers

Self-judgement ability of drivers plays a vital
role in ensuring their safety as passive
RRGCs are mostly unprotected.

Safety evaluation
based on crash
data

Limited safety-related attributes and lack of
empirical evidence

Integrate collision likelihood, the severity of
injury and driver behavior to build mixed effect
models

Outcomes from the research incorporating
these attributes can assist in framing risk
management to a large scale.

Safety evaluation
based on
motorist
violation

Limited study has been carried out to examine
the violation rate on varying warning time and
train occupancy time

Use simulation technique to optimize warning
time and check whether variation in warning
times affect the violation rate

Warning time optimization can contribute
significantly to enhance safety by
discouraging violators

Safety evaluation
based on
pedestrian
and bicyclist
violation

Limited before and after investigation to
suggest mitigation measures in context to
safety effectiveness

Introduce various intervention measures
including artificial intelligence techniques and
examine pre and post-treatment effects

The investigation can assist the transport
planners and various agencies in allocating
resource and funds in optimal manner

Safety evaluation
based on
dilemma zone

No research has been carried out to identify
dilemma zone at dual gated RRGC

Use empirical models and simulation technique
to identify the dilemma zone and optimize gate
delay and gate interval time to eliminate
dilemma zone

Elimination of the dilemma zone can ensure
the safety up to a greater extent by reducing
collision likelihood and vehicle entrapment
between the gates

Operational
impacts

Lack of evidence over the impact of lane
discipline on delay faced by drivers, and various
operational attributes including the level of
service, capacity and queue characteristics is
under explored

Use empirical models and simulations technique
to examine the impact of lane changing behavior
of drivers on delay and evaluate the level of
service based on user perception

A better understanding of travel time
variability and quality of RRGC can be
achieved

Adheesh Kumar Vivek, T. Khan and Smruti Sourava Mohapatra Journal of Safety Research 79 (2021) 257–272

268



behave in the dilemma zone: whether they choose to safely
stop or illegally traverse the RRGC at the onset of the warning
phase. Also, geometrical and operational attributes can be var-
ied, and road user behavior at the dilemma zone can be exam-
ined utilizing simulation tools during the warning phase of
RRGCs. Numerous research has been undertaken in context to
dilemma zone at signalized intersection but this area, in partic-
ular, is underseen by the researchers at RRGCs in past few dec-
ades. Therefore, further work on the dilemma zone
incorporating a dual gate assembly can ensure greater safety
by reducing collision likelihood and vehicle entrapment
between the gates.

6. Operational attributes are measures of effectiveness to evaluate
an intersection’s performance (Kyte et al., 1991). Among the
operational parameters, significant studies have been under-
taken encircling vehicular delay at RRGCs (Powell, 1982;
Chandler & Hoel, 2004; Rilett and Appiah, 2008), but other attri-
butes (including the level of service, queue characteristics, and
capacity) are underseen by the researchers to date.

7. There is a lack of evidence over the impact of lane discipline on
delays faced by drivers. Lane changing behavior of motorists
has a significant effect on the safety and the capacity of any traf-
fic facility (Ji & Levinson, 2020). Additionally, due to the
multiple-gate closure cycle at RRGCs, highway users cannot uti-
lize full capacity. Therefore, it is needed to compute the high-
way’s drop in capacity, considering the possible factors.
Future work in investigating the aforementioned operational
parameters and their related aspects will provide a better
understanding of travel time variability and quality of a RRGC
in terms of its performance.

In the purview of the above-mentioned critical observations,
the observed research gaps, future directions for research encom-
passing issues related to driver behavior, safety evaluation by crash
data and road user violation, and operational impacts have been
collated in Table 4.

Moreover, in context to mixed traffic conditions prevailing in
the developing world, the research on RRGCs related aspects is
underexplored. In mixed traffic conditions, the traffic operation
at RRGCs becomes very complex and risky as it is associated with
a high degree of heterogeneity in vehicular dimension with varying
operating speed, absence of lane discipline, and diverse decision-
making skills of motorists and pedestrians. Therefore, further to
the above-mentioned research gaps and future scope, all these
aspects could be investigated, emphasizing mixed traffic
conditions.

5. Conclusion

Available literature reveals that due to an increase in the num-
ber of RRGCs due to burgeoning transportation networks and the
associated complexity of driver behavior, the severity of safety
concern and the allied operational and economic impacts has
spurred a growing interest in many researchers to model and ana-
lyze the traffic performance at RRGCs. These efforts have resulted
in many publications related to performance evaluation at RRGCs.
This article presents a comprehensive systematic critical review of
the published research pertaining to the performance of RRGCs and
addresses critical research gaps in the context of this field. This
study provides a critical review of identified potential parameters
influencing the RRGC performance, namely, driver behavior, safety,
and operational impacts, including significant findings, used vari-
ables, analysis methods, research gaps, and recommendations.
Subsequently, the identified parameters were segregated into var-
ious possible components such as driver behavior at active and

passive RRGCs, safety evaluation using crash data, motorist viola-
tions, pedestrians and bicyclist violations, and dilemma zone, to
analyze the research findings in depth with adequate veracity. A
total of seven critical research gaps concerning identified parame-
ters were recognized, facilitating a comprehensive agenda for fur-
ther research pertaining to RRGC performance. The proposed
future research would be beneficial for enhancing the performance
of RRGCs and will result in safer and sustainable transportation.
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a b s t r a c t

Introduction: In the United States, fall-related emergency department (ED) visits among older adults (age
65 and older) have increased over the past decade. Studies document seasonal variation in fall injuries in
other countries, while research in the United States is inconclusive. The objectives of this study were to
examine seasonal variation in older adult fall-related ED visits and explore if seasonal variation differs by
the location of the fall (indoors vs. outdoors), age group, and sex of the faller. Methods: Fall-related ED
visit data from the National Electronic Injury Surveillance System-All Injury Program were analyzed by
season of the ED visit, location of the fall, and demographics for adults aged 65 years and older.
Results: Total fall-related ED visits were higher during winter compared with other seasons. This seasonal
variation was found only for falls occurring outdoors. Among outdoor falls, the variation was found
among males and adults aged 65 to 74 years. The percentages of visits for weather-related outdoor falls
were also higher among males and the 65–74 year age group. Conclusions: In 2015, there was a seasonal
variation in fall-related ED visits in the United States. Weather-related slips and trips in winter may par-
tially account for the seasonal variation. Practical Implications: These results can inform healthcare provi-
ders about the importance of screening all older adults for fall risk and help to identify specific patients at
increased risk during winter. They may encourage community-based organizations serving older adults
to increase fall prevention messaging during winter.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Fall-related emergency department (ED) visits among older
adults (65 years and older) in the United States increased from
2.2 million in 2009 to 3.0 million in 2018 (Centers for Disease
Control and Prevention [CDC], 2003). Each month an estimated
250,000 older adults were seen in an ED for a fall in 2018 (CDC,
2003). Studies in other countries found that a higher number of
fall-related ED visits (Al-Azzani & Mak, 2016; Beynon, Wyke,
Jarman, Robinson, Mason, & Murphy, 2011; Jung et al., 2018;
Wareham et al., 2003) and fractures (Bulajic-Kopjar, 2000;
Grønskag, Forsmo, Romundstad, Langhammer, & Schei, 2010)
occur in the winter months when compared with other seasons.
Findings on the seasonal variation of falls and related injuries in
the United States are inconsistent. One study found that between
1986 and 1990, a higher rate of fall-related fractures was observed

during winter compared with other seasons (Bischoff-Ferrari, Orav,
Barrett, & Baron, 2007). In another study, there were no noted sea-
sonal differences in the rate of fall-related ED visits during 2001–
2002 (Stevens, Thomas, & Sogolow, 2007). While these outcomes
differ (i.e., fall-related fracture and fall-related ED visit), there were
no consistent findings of seasonal variation in fall-related injuries.

Past studies that examined winter falls focused on those that
occurred outdoors due to weather-related factors (e.g., slips or
trips on ice, snow, or freezing rain) (Bobb et al., 2017; Dey, Hicks,
Benoit, & Tokars, 2010; Gevitz, Madera, Newbern, Lojo, &
Johnson, 2017). These studies found that there was a higher risk
for fall injuries during (Dey et al., 2010; Gevitz et al., 2017) and
immediately after periods of snowfall or freezing rain (Bobb
et al., 2017).

Irrespective of season, older adult falls and fall injuries occur
more often indoors than outdoors (Boye et al., 2014; Leavy et al.,
2013; Moreland, Kakara, Haddad, Shakya, & Bergen, 2020;
Schiller, Kramarow, & Dey, 2007). Studies that find seasonal varia-
tion in falls or fall injuries often propose that, in addition to out-
door weather-related events, prolonged periods of time spent
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indoors during winter could be a cause for increased falls
(Campbell, Spears, Borrie, & Fitzgerald, 1988; Jacobsen, Sargent,
Atkinson, O’Fallon, & Melton, 1995; Leavy et al., 2013; Qian,
Chau, Kwan, Lou, & Leung, 2019; Stevens et al., 2007; Wareham
et al., 2003). A potential consequence of staying indoors for
extended periods of time that could increase fall risk include low
physical activity, which leads to diminished muscle strength and
bone loss (Jacobsen et al., 1995; Leavy et al., 2013; Mondor,
Charland, Verma, & Buckeridge, 2015; Qian et al., 2019; Stevens
et al., 2007; Wareham et al., 2003). Other consequences may
include seasonal affective disorder, a form of depression due to
low light and isolation (Jacobsen et al., 1995; O’Hare, O’Sullivan,
Flood, & Kenny, 2016), tripping over objects inside homes and dis-
turbance in circadian rhythms due to low natural light in winter
(Johansen, Boulton, & Neuburger, 2016; Vikman, Nordlund,
Näslund, & Nyberg, 2011). However, there is limited research
examining seasonal variation by location of fall to support this dis-
cussion. Understanding seasonal variation by location could help
us identify the factors driving seasonal variation, if any.

The objectives of this study were to examine seasonal variation
in ED visits among adults age 65 and older and to explore if sea-
sonal variation differs by the location (indoors vs. outdoors) of
the fall, and the age and sex of the faller.

2. Methods

Data and narratives from the 2015 National Electronic Injury
Surveillance System-All Injury Program (NEISS-AIP) were reviewed
to determine the season and location of nonfatal falls that led to an
ED visit among adults age 65 and older (NEISS, 2021). The NEISS-
AIP is a nationally representative data system operated by the Uni-
ted States Consumer Product Safety Commission. It includes data
from a sample of about 66 of 100 NEISS-participating hospitals in
U.S. states and territories. NEISS-AIP captures data from a patient’s
initial ED visit for an injury. The data are then weighted to repre-
sent the U.S. population using the inverse probability of hospital
selection in each stratum and adjusted for non-response
(Schroeder & Ault, 2001). For each ED visit, the date of treatment,
age, sex, primary diagnosis, precipitating cause of injury, intent
of injury, and a 2-line free-form narrative describing the circum-
stance of injury are abstracted from the medical record. Only ED
visits made by adults over the age of 65, and whose precipitating
cause of injury was an unintentional fall, were included in this
analysis making the initial sample size 38,654 ED visits. Date of
treatment was used to define the season in which the fall occurred.
Seasons were defined as spring (March – May), summer (June –
August), autumn (September – November), and winter (December
– February).

The narratives were used to create three additional variables:
place of residence, fall location, and weather-related fall. This
was done by dividing the 38,654 ED records into four groups.
One of four researchers then reviewed each group. A codebook
was developed (Appendix A) by reading 100 narratives and then
updated for every 2,000 narratives read. A second researcher
reviewed 10% of all narratives and the four researchers discussed
coding discrepancies until they reached a consensus. Previous nar-
ratives were recoded based on changes made to the codebook.

Place of residence – If a narrative indicated that the fall occurred
in a residential facility such as a nursing home, assisted living facil-
ity, or another type of facility, the person was considered non-
community dwelling. If the narrative did not mention these key-
words, the person was assumed to be community dwelling. There
were nine cases where a fall occurred in a prison. These nine were
excluded from the analysis reducing the sample size to 38,645.

Fall location – The location of the fall was then assessed for older
adults who resided in the community (n = 34,336). Location was
coded as either indoor (n = 14,131) or outdoor (n = 6,485). Cases
where the narratives did not have sufficient information to identify
indoor or outdoor location were coded as unknown (n = 13,720)
(e.g., falls on stairs without any additional information were diffi-
cult to determine if indoor or outdoor). Events classified as
unknown were excluded from location-based analyses. Location
was not analyzed among non-community dwelling adults given
the small number of events that occurred outdoors (n = 51).

Weather-related fall – Weather was classified for ED visits
among community dwelling adults who sustained a fall outdoors.
The ED visit for a fall was coded as potentially weather related
(n = 1,092) when a term indicative of weather (e.g., rain, snow,
ice) was mentioned in the narrative or non-weather related
(n = 5,393) in their absence. Additional information on how narra-
tives were coded for place of residence, fall location, and weather
are included in the Appendix A.

Percentages and 95% confidence intervals were calculated for
season in which the fall-related ED visit occurred, by place of res-
idence, sex, and age group. For community-dwelling older adults,
percentages were calculated for fall-related ED visits by location
(indoor vs. outdoor), sex, and age group. For weather-related fall
injuries, percentages and 95% confidence intervals were calculated
for each sub-group of season, sex, and age. Percentages for each
sub-group used the number of fall injuries sustained outdoors for
that sub-group as the denominator. All analyses were weighted
to be representative of the 2015 U.S. population. The conservative
method of non-overlapping confidence intervals was used to esti-
mate significant differences between categories. All analyses were
performed using Survey Procedures in SAS version 9.4 (SAS Insti-
tute, Inc., Cary, NC, USA).

3. Results

The 38,645 narratives represented 3.04 million fall-related ED
visits among older adults in 2015. Around 65% of these visits were
made by females (data not shown). Fall-related ED visits were
more common in winter (26.2%; 95%CI = 25.7, 26.8) than in spring
(24.8%, 95%CI = 24.3, 25.4), summer (24.7%, 95%CI = 24.1, 25.2), and
autumn (24.3%, 95%CI = 23.7, 24.8) (Table 1). When examined by
place of residence, both community and non-community dwelling
older adults had more ED visits due to a fall during winter. How-
ever, a statistically significant difference was found only among
the community dwelling adults. Among community-dwelling
males, the percentage of fall-related ED visits was highest in winter
(27.3%; 95%CI = 26.3, 28.4) compared with spring (24.8%; 95%
CI = 23.9, 25.8), summer (24.3%; 95%CI = 23.3, 25.2), and autumn
(23.6%; 95%CI = 22.6, 24.5).

Fall injuries were two times as common indoors (n = 14,131) as
outdoors (n = 6,485) (Table 2). However, a higher percent of ED vis-
its occurred due to a fall sustained outdoors during winter (29.8%,
95%CI = 28.4, 31.2) compared with spring (25.8%, 95%CI = 24.5,
27.1), summer (22.2%, 95%CI = 20.9, 23.4), and autumn (22.2%,
95%CI = 20.9, 23.5). Males had a higher percentage of outdoor inju-
ries during winter (31.4%, 95%CI = 29.2, 33.6) compared with
spring (26.4%, 95%CI = 24.3, 28.4), summer (20.7%, 95%CI = 18.8,
22.6), and autumn (21.5%, 95%CI = 19.6, 23.4). Older adults in the
age group 65 to 74 had more ED visits due to an outdoor fall in
winter compared with other seasons (Table 2).

Out of the 6,485 fall injuries that occurred outdoors, 1,092 were
reported to be weather related. Around 97% of all weather-related
injuries were attributed to slips or trips on ice or snow (data not
shown). The remainder were due to rain. Fig. 1 shows that, out of
all fall injuries sustained outdoors, 34.4% in the winter were
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weather related compared with 14.5% in spring, 0.9% in summer,
and 1.5% in autumn. Out of all fall injuries sustained outdoors by
males, a higher percentage (17.2%, 95%CI = 15.5, 18.9) were
weather related than that for females (12.7%, 95%CI = 11.4, 13.9).
Out of all fall injuries sustained outdoors by 65–74 year olds
(18.9%, 95%CI = 17.2, 20.6), a higher percentage were weather
related than for those who were 75–84 (11.6%, 95%CI = 10.1,
13.1) and 85 years and above (9.8%, 95%CI = 7.8, 11.7).

4. Discussion

In 2015, there was seasonal variation in fall-related ED visits
among older Americans, with a higher percentage of visits occur-
ring in winter compared with any other season. By location, this
seasonal variation was found only among falls sustained outdoors.
That is, the percentage of ED visits due to falls that occurred out-
doors was higher in winter than other seasons.

Table 1
Characteristics of older adults with a fall-related emergency department visit by season and place of residence – National Electronic Injury Surveillance System – All Injury
Program, 2015.

Characteristic Total Spring (March-May) Summer (June-August) Autumn (September-
November)

Winter (December-
February)

n % 95%CI % 95%CI % 95%CI % 95%CI

Total 38,645 24.8 (24.3, 25.4) 24.7 (24.1, 25.2) 24.3 (23.7, 24.8) 26.2 (25.7, 26.8)

Community Dwelling Older Adults
Total 34,336 24.8 (24.3, 25.4) 24.8 (24.3, 25.4) 24.2 (23.6, 24.7) 26.2 (25.6, 26.8)

Sex
Male 12,083 24.8 (23.9, 25.8) 24.3 (23.3, 25.2) 23.6 (22.6, 24.5) 27.3 (26.3, 28.4)
Female 22,253 24.8 (24.1, 25.6) 25.0 (24.3, 25.8) 24.5 (23.8, 25.2) 25.6 (24.9, 26.4)

Age Group
65–74 12,591 25.0 (24.0, 25.9) 25.1 (24.1, 26.1) 23.4 (22.5, 24.4) 26.5 (25.5, 27.5)
75–84 11,716 25.6 (24.6, 26.6) 24.0 (23.0, 24.9) 24.3 (23.3, 25.3) 26.2 (25.1, 27.2)
85+ 10,029 23.8 (22.8, 24.8) 25.3 (24.2, 26.4) 24.9 (23.8, 26.0) 26.0 (24.9, 27.1)

Non-Community Dwelling Older Adults
Total 4309 24.7 (23.0, 26.3) 24.0 (22.4, 25.7) 25.1 (23.4, 26.8) 26.2 (24.5, 27.9)

Sex
Male 1271 25.2 (22.1, 28.3) 26.9 (23.7, 30.1) 20.5 (17.6, 23.4) 27.5 (24.2, 30.7)
Female 3038 24.5 (22.5, 26.4) 22.9 (21.0, 24.8) 26.9 (24.9, 28.9) 25.7 (23.7, 27.7)

Age Group
65–74 530 25.6 (20.7, 30.4) 20.7 (16.3, 25.1) 24.3 (19.6, 29.0) 29.5 (24.2, 34.7)
75–84 1184 25.9 (22.7, 29.1) 24.4 (21.2, 27.6) 25.9 (22.7, 29.2) 23.8 (20.5, 27.0)
85+ 2595 24.0 (21.9, 26.1) 24.4 (22.3, 26.5) 24.9 (22.8, 27.0) 26.7 (24.5, 28.9)

n - Unweighted sample size.
% - Weighted percent.
95%CI - 95% Confidence interval.

Table 2
Characteristics of community dwelling older adults who sought emergency department care for a fall by season and indoor/outdoor location – National Electronic Injury
Surveillance System – All Injury Program, 2015.

Characteristic Total Spring (March-May) Summer (June-August) Autumn (September-
November)

Winter (December-
February)

n % 95%CI % 95%CI % 95%CI % 95%CI

Fall Injury Occurred Indoors
Total 14,131 24.4 (23.6, 25.3) 25.4 (24.5, 26.3) 24.6 (23.7, 25.5) 25.6 (24.7, 26.5)

Sex
Male 4392 23.8 (22.2, 25.4) 25.5 (23.8, 27.1) 24.1 (22.5, 25.7) 26.7 (25.0, 28.3)
Female 9739 24.7 (23.7, 25.8) 25.3 (24.2, 26.4) 24.8 (23.7, 25.9) 25.1 (24.0, 26.2)

Age group
65–74 4334 25.0 (23.4, 26.6) 25.7 (24.1, 27.3) 24.5 (22.9, 26.2) 24.8 (23.1, 26.4)
75–84 4880 25.3 (23.8, 26.8) 24.6 (23.1, 26.1) 24.3 (22.8, 25.8) 25.8 (24.2, 27.3)
85+ 4917 23.0 (21.6, 24.5) 25.9 (24.3, 27.4) 24.9 (23.3, 26.4) 26.2 (24.6, 27.8)

Fall Injury Occurred Outdoors
Total 6485 25.8 (24.5, 27.1) 22.2 (20.9, 23.4) 22.2 (20.9, 23.5) 29.8 (28.4, 31.2)

Sex
Male 2794 26.4 (24.3, 28.4) 20.7 (18.8, 22.6) 21.5 (19.6, 23.4) 31.4 (29.2, 33.6)
Female 3691 25.4 (23.6, 27.1) 23.2 (21.5, 24.9) 22.7 (21.0, 24.4) 28.7 (26.9, 30.5)

Age group
65–74 3001 26.1 (24.1, 28.1) 21.7 (19.9, 23.6) 20.8 (18.9, 22.6) 31.4 (29.3, 33.5)
75–84 2253 26.1 (23.8, 28.3) 22.4 (20.3, 24.6) 22.5 (20.3, 24.6) 29.0 (26.7, 31.3)
85+ 1231 24.5 (21.6, 27.5) 22.7 (19.8, 25.6) 25.2 (22.1, 28.2) 27.6 (24.5, 30.7)

n - Unweighted sample size.
% - Weighted percent.
95%CI - 95% Confidence interval.
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Previously, the two studies that investigated seasonal variation
in the United States found conflicting results (Bischoff-Ferrari et al.,
2007; Stevens et al., 2007). Bischoff-Ferrari et al. found that
between 1986 and 1990, there was a higher incidence of all types
of fractures during winter. Stevens et al. studied fall-related ED vis-
its using 2001–2002 NEISS data. Though they found that the rates
of fall-related ED visits were higher in winter, no statistical differ-
ence was found between the seasons. From 2001 to 2015, the age-
adjusted rate of fall-related ED visits in NEISS-AIP increased by 37%
(CDC, 2003). This relative increase in the number of fall-related ED
visits could have powered the current study sufficiently to identify
a statistical difference between the percent of fall-related ED visits
in winter and other seasons.

The percentage of ED visits made due to a fall injury that was
sustained outdoors, was higher in winter compared with other sea-
sons. This may be due to adverse weather conditions. In the current
study, about one-third of outdoor fall-related ED visits in winter
were due to slips or trips on ice, in snow, or rain. No seasonal vari-
ation in ED visits from indoor falls was observed suggesting that
prolonged periods of time spent indoors during winter may not
be a contributing factor for seasonal variation. This is in line with
a 2013 Swedish study that examined seasonal variation by location
of falls. The study found that fractures sustained indoors tended to
peak in February but the findings were not statistically significant
(Leavy et al., 2013).

Among ED visits made due to an outdoor fall, seasonal variation
was found in the 65–74 year age group with the percentage of such
ED visits being higher in winter compared with other seasons. The
percentage of outdoor falls related to a weather event like a slip or
a trip on ice, in snow, or rain was also higher in this age group com-
pared with older age groups. While we could not measure the
amount of time an older adult spent indoors or outdoors, it might
be that 65–74 year olds are more likely to go outside during
adverse weather. The percentage of older adults in the labor force
increased drastically in the past few years (Centers for Disease
Control and Prevention, 2015). The largest increase occurred in
the younger age groups (Kromer & Howard, 2013). Twice as many

65–74 year olds were in the labor force in 2016, compared with
those in the 75–84 year age group (Roberts, Ogunwole, Blakeslee,
& Rabe, 2018). In addition, this subgroup of older adults tends to
be more physically active than adults 75 and older (Keadle,
McKinnon, Graubard, & Troiano, 2016). Therefore, they may have
more exposure to weather-related risk factors whether it may be
getting to and from work, shoveling a driveway, going out to pur-
chase groceries, or other activities.

Similar to the 65–74 year age group, males had a higher percent
of ED visits from outdoor falls in winter than in other seasons. Such
a difference was not found among females. Additionally, a higher
percentage of males sustained a fall-related injury during a
weather-related event compared with females. In relation to this
finding, studies have found mixed results. Some studies found that
older males were more likely to fall and have fractures in winter
and on snowy and icy surfaces than older females (Bischoff-
Ferrari et al., 2007; Duckham et al., 2013), others found no differ-
ences between the sexes (Leavy et al., 2013; Morency, Voyer,
Burrows, & Goudreau, 2012), and one found females had a higher
percentage of fall-related fractures on ice or snow when compared
with males (Al-Azzani & Mak, 2016).

Our study has at least six limitations. First, state or region vari-
ables were not available in the NEISS-AIP data so we could not
examine seasonal variation by geographical weather patterns. Sec-
ond, fall location was unknown for over a third (38.5%) of the sam-
ple. There was no seasonal variation observed in this subset of ED
visits. No seasonal variation was found in any of the three age-
groups or among the sexes (Appendix B). Third, only narratives
that mentioned a weather-related event in the notes were consid-
ered weather related. Therefore, weather-related injuries may have
been underestimated. Fourth, these data do not include all falls but
only those that warranted ED care. Fifth, the amount of time an
older adult spent indoors or outdoors could not be measured. Sixth,
this analysis being descriptive in nature, used non-overlapping
confidence intervals to describe differences. A formal hypothesis
test could have identified additional differences that would have
been overlooked by comparing confidence intervals.

Fig. 1. Characteristics of community dwelling older adults who sought emergency department care for weather-related falls - National Electronic Injury Surveillance System
– All Injury Program, 2015.
Sample for this figure includes only those older adults who made an ED visit due to a fall sustained outdoors (n = 6,485).
Percent for each sub-group was calculated with the denominator as the number of older adults who made an ED visit due to a fall sustained outdoors in that sub-group. E.g.,
Out of all the fall injuries sustained by males in the outdoors, 17.2% were weather-related and 82.8% (not shown) were not weather-related.
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5. Conclusion

In 2015, over 3 million older adults went to the ED for a fall
injury. This study found that there was seasonal variation with
26.2% of these ED visits occurring in winter. This may be in part
due to adverse weather in winter such as ice, snow and rain that
could increase fall risk. Interventions to reduce the risk posed by
weather such as removing snow, treating sidewalks with salt or
sand (Al-Azzani & Mak, 2016; Morency et al., 2012; Stansbury
et al., 1995), promoting work closures or delayed openings during
bad weather (Gevitz et al., 2017), utilizing weather alerts as a pub-
lic health tool (Mondor et al., 2015), and encouraging the use of
gait stabilizing footwear (McKiernan, 2005) have been proposed
by others. Except for the use of gait stabilizing footwear
(McKiernan, 2005), these interventions have not been evaluated
for fall prevention.

6. Practical Implications

While it is important to consider potential risk factors such as
adverse weather, fall risk increases as the number of risk factors
increase (Ambrose, Paul, & Hausdorff, 2013). Therefore, it is impor-
tant to identify all modifiable fall risk factors such as impaired
vision, medications that increase fall risk, and gait and balance dif-
ficulties. CDC’s STEADI (Stopping Elderly Accidents, Deaths, and
Injuries) initiative (www.cdc.gov/steadi) recommends a
physician-directed approach to identify older adult patients who
may be at increased risk for a fall. Acknowledging the potentially
increased risk of an outdoor fall during winter, for some segments
of the older adult population, may help providers address and
intervene to reduce their patients’ unique fall risk. These results
may encourage community-based organizations serving older
adults to increase fall prevention messaging during winter.
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Appendix A. Seasonal variation by location of fall narrative
codebook

Residential status (3 options)

� Residential facility (non-community), includes:
o nursing home, skilled nursing facility, extended care facil-

ity, long term care, assisted living, hospice, rehab, detox,

or Alzheimer’s unit, convalescent home, group home, then
these are coded as nursing home. If it doesn’t mention this
assume it didn’t happen in a nursing home

� Community, includes:
o Doesn’t specifically mention nursing home.
o Adult day care or senior center
o If visiting a family member in a nursing home then

community
� Prison, includes:
o Jail, prison or corrections facility

Location (3 options)

� Indoor, includes:
o Rooms in a house or apartment: bedroom, kitchen, living

room, bathroom
o Stairs: any mention of stairs or steps where evident they

are indoors, otherwise outdoors or unknown. If stairs
have carpet then indoors, if stairs have baseboards then
indoors.

o Public places: restaurant, store, hotel, jail, church, work,
lobby/lounge, stairs in public place, escalator, elevator
(had to be apparent that these occurred inside) If ‘‘at pub-
lic place”, for example fell ‘‘at restaurant” assume inside.

o Recreation area: bowling alley, gym, sports courts where
evident they were inside

o Unspecified: Any mention of cabinets, sink, lamp, AC, hea-
ter, cleaning house, Hoyer lift, or fall out of a window
assume indoor. Falls to the floor or carpet is indoor,
except concrete/cement floor

� Outdoor, includes:
o Yard, porch, garage, balcony, ramp, and stairs if evident

they are outside.
o Recreation area: parks, lakes, camping, rivers, outside

sports courts, RV/camper, tent, national park, tree stand,
beach, and farm.

o Public places: sidewalk, parking lot, curb, outdoor work
place, bus, subway, metal grate, stairs outside a public
place, street, and driveway.

o Any mention of falls to grass, gravel, rocks, ditch, shed,
mud, ice, snow, rain, falling off ladder or a platform that
is greater than 7 feet, uneven concrete.

� Unknown: Can’t tell if location is inside or outside, or if
stairs are inside or outside. When a fall happens on a con-
crete/cement floor, ground. While coming in or out of a
place (and can’t determine whether the fall happened
inside or outside), playing pickle ball, at train station/-
catching train. When fall is associated with electric cord
(unless more context provided), window sills, and ramps
in public places.

Weather: If any mention of ice, snow, rain, hail, heat or any
other term related to weather, then mention the term.

Appendix B

Characteristics of community dwelling older adults who sought
emergency department care for a fall by season and unknown loca-
tion – National Electronic Injury Surveillance System – All Injury
Program, 2015.
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Total 13,720 24.8 (23.9–25.7) 25.4 (24.5–26.4) 24.7 (23.8–25.6) 25.1 (24.1–26.0)
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n - Unweighted sample size.
% - Weighted percent.
95%CI - 95% Confidence interval.
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