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a b s t r a c t

Introduction and Method:We use the arguably exogenous intensity of COVID-19 as an instrument in order
to study the relationship between traffic volume and vehicle collisions in a large metropolitan area. We
correlate data from multiple sources and consider a time interval ranging from about one year before to
one year after the pandemic breakout, which allows to account for preexisting seasonal patterns as well
as the disruption brought by the pandemic. Results: We identify that increased traffic volume is associ-
ated with significantly more collisions with a robust elasticity varying between 1.2 and 1.7. At the same
time, higher traffic volumes are associated with a significant reduction in casualties. Conversely, low traf-
fic volumes are associated with high speeds and with particularly dangerous collisions. In terms of social
cost, we separately calculated the cost of property damage and casualties. We measured that the reduc-
tion in the per-day social cost of collisions during the COVID-19 period is approximately $453,000 in
property damage. However, the increase in casualties from collisions at lower traffic volumes are worth
approximately $2.6 million in injuries and fatalities, entirely offsetting any benefit from reduced colli-
sions. Practical Applications: This research provides valuable insights that policy makers may take into
consideration when shifting traffic volume in relation to social cost and safety, such as congestion taxes.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of traffic congestion and associated collisions has
been the interest of research for a number of decades (Cui,
Henrickson, Ke, & Wang, 2018; De Fabritiis, Ragona, & Valenti,
2008; Jain, Sharma, & Subramanian, 2012), and continues to be
an area of great interest (Faghih-Imani, Anowar, Miller, & Eluru,
2017; Mammen, Shim, & Weber, 2019). Studies focus on a number
of aspects such as traffic patterns predictions (Jain et al., 2012),
traffic flow speed estimation (Cui et al., 2020; De Fabritiis et al.,
2008), relationship between traffic volume and collisions (Noland
& Quddus, 2004; Shefer & Rietveld, 1997; Wang, Quddus, & Ison,
2009), and more (Baghestani, Tayarani, Allahviranloo, & Gao,
2020; Liu, Zheng, Chawla, Yuan, & Xing, 2011).

Many of these studies rely on potentially endogenous factors
(Cullinane, 2004), such as the introduction of car sharing services
(Dills & Mulholland, 2018), taxi ridership (Faghih-Imani et al.,
2017), public transit usage (Iyer, Boxer, & Subramanian, 2018), pol-
icy making (Abouk & Adams, 2013; Mammen et al., 2019), or eco
nomic impact (Parry & Bento, 2002), whose effects are usually vis-

ible over a relatively long period of time, making it hard to under-
stand if, and which, other factors may contribute to the changes.

In this paper, we use the data associated with the COVID-19
pandemic as an exogenous factor to analyze the traffic volume
and vehicle collisions in the boroughs of New York City. This is
not because we are interested in pandemic traffic patterns per se,
but because the pandemic provides a substantive adjustment to
traffic volume without other associated traffic rules changing,
allowing for a consistent estimation of the association between
traffic volume and vehicle collisions (Cullinane, 2004). The New
York area was hit with the pandemic starting March 2020. The
COVID-19 pandemic and the associated health and public policy
implications created an unprecedented scenario that gives us the
ability to observe the largest shift in vehicle traffic that is due to
an exogenous factor. This is novel in a literature where changes
to traffic volume are mostly linked with new transportation or eco-
nomic policies (Green, Heywood, & Navarro, 2016), or the inter-
temporal shifts in volume that may be accompanied by other traf-
fic changes (Shefer & Rietveld, 1997; Zhou & Sisiopiku, 1997). In
particular, we analyze the relationship between the number of
COVID-19 cases, its impact on traffic, and the associated collision
between vehicles. The source data for our analysis are data sets
from both New York city and state. Specifically, we consider the
following distinct data sets: traffic volumes, vehicle collisions, traf-
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fic speeds, traffic summons issued, and COVID-19 testing reports.
These data sets are combined together to generate a comprehen-
sive and unique view of traffic changes around the time period
the exogenous factor is observable. All data sets are publicly avail-
able to enable full verifiability and reproducibility of our study.

For this study, we used an instrumental variable (IV) approach,
where we infer the traffic volume by the number of COVID-19
cases on the week prior (Cullinane, 2004). We control for standard
variables, including time based-fixed effects, the number of traffic
summons, as well as for several possible systemic breaks at the
time of the first COVID-19 case and the stay-at-home order. We
also consider additional robustness checks such as changing the
data window, additional leads of potentially obscuring events,
and variations on the functional form of the instrument.

Among the findings, we observed that the reduction in traffic
volume is associated with a significant reduction in collisions, at
a rate of approximately 1.7% fewer collisions for each 1% reduction
in traffic volume. Conversely, we measure an increase in fatalities
and injuries as traffic volume decreases, suggesting higher volumes
of traffic has a dampening effect on collisions. We also find the sug-
gestion that the casualty/collision rate has increased in the lower
volume traffic. Corroborating on this finding, we point out that
speed is generally higher in lower-volume traffic, and significantly
increased speeds in each borough are associated with declines in
traffic volume. The simple elasticity of speed with respect to vol-
ume is approximately equal to �0.13, suggesting that the policies
still may be double-edged. Lastly, we estimate that the estimated
monetary value in collisions, injuries, and casualties from the
COVID-19 traffic declines across all four boroughs (excluding Sta-
ten Island).

Despite the reduction in collisions, we find an increase in social
costs during the period. We calculate a reduction of $453,000 in
property costs (excluding casualties) and the counter-veiling value
of increased fatalities and injuries during this period are approxi-
mately $2.6 million. This highlights the complex relationship
between traffic volume, speed, and safety, but indicates that the
overriding effect of substantive volume changes does not guaran-
tee improved safety.

The paper is organized as follows: in Section 2 we discuss the
state of the art on the research in this area; in Section 3 we present
the data sets used in this study; in Section 4 we illustrate the
methodology to analyze the data; in Section 5 we discuss the find-
ings and observations; finally, in Section 6 we draw our
conclusions.

2. Literature review

Many works focus on the relationship between traffic, safety,
and economics. In Shefer and Rietveld (1997), authors highlight
the complexity of the relationship between congestion and colli-
sions. The authors highlight three stages of congestion, named
Stage 1, Stage 2, and Stage 3. Stage 1 describes low density traffic
at presumably high speed with substantial variance in speed. In
this stage, there are so few cars that fatalities are rare, but addi-
tional cars greatly contribute to the fatality rate. Stage 2 describes
moderately dense traffic, where additional cars lead to additional
fatalities, but mitigate the speed (and speed variance). Stage 3
describes gridlocked traffic, such that fatalities rarely occur since
the speed (and its variance) is essentially zero. Shefer and Rietveld
appeal to several national hour-of-day traffic decompositions to
make their case; and highlight the fundamental work of Vickrey
(1969) and Pigou (1920) on appropriate approaches to obtain an
optimal level of congestion. The general association between traffic
density and collisions was identified independently around that
time period by Zhou and Sisiopiku (1997), who analyzed traffic

patterns on the interstate I-94 in Detroit. Still, this leaves a great
deal of empirical work to do in identifying the marginal effect of
additional traffic volume.

More recent work, Green et al. (2016) uses a difference in differ-
ences approach against a public congestion tax in order to high-
light the broad safety improvements of the congestion-reducing
tax. Several other researchers investigate the role of additional
public transit services in safety improvements (Anderson, 2014;
Bauernschuster, Hener, & Rainer, 2017; Jackson & Owens, 2011;
Lichtman-Sadot, 2019), and have managed to find that public tran-
sit services simultaneously reduce traffic volume and improve
safety. Edlin and Karaca-Mandic (2006) further builds upon the
relationship between congestion and traffic safety to calculate
the marginal insurance premium for an additional automobile in
the state of California. These successes do not mean that the rela-
tionship is easily estimable. Noland and Quddus (2004) performed
a spatial analysis of London and found suggestive evidence of casu-
alties (fatalities or injuries) being associated with congestion, with
the latter inferred through regional population and employment.
Finally, Wang et al. (2009) found no evidence of an association of
traffic congestion on fatalities in the M25 motorway in England.

Compared to the state of the art, our work differs from the exist-
ing research for the following main factors: first, our between-day
variation in vehicle traffic is substantially larger than the previous
papers we mention (we see a decline in traffic that falls to nearly
16% of the original peak), giving us a broad base for estimation;
second, our traffic variation comes not from public policy targeting
traffic or the potentially endogenous traffic density, but instead
from the entirely uncorrelated daily variation in the severity of
the COVID-19 crisis the day prior.

3. Data sets

In this section, we present the data sources used in this study.
We considered a total of five different data sets, specifically: motor
vehicle collision, number of vehicles on the road, vehicle speeds,
traffic related summons, and COVID-19 test reporting. In total,
we collect these data for the period between 2019/01/01 and
2021/02/21, approximately 1 year before and after the first case
of COVID-19. In the reminder of this section, we briefly discuss
each data set and its nature. The Motor Vehicle Collision data set
contains the records of collisions occurring between vehicles
within the city of New York (NYPD, 2020). The data set is main-
tained and provided by New York Police Department under the
Open-Data (2020) initiative. The NYC Open Data initiative is meant
to provide free and transparent access to data from the city and the
administration to residents and beyond. By New York City law it is
mandatory to report collisions where someone is injured or killed,
or where there is at least $1000 worth of damage, which makes
this data set a fairly complete records of all collisions. Each record
in the data set reports a single collision, specifically: the date and
time of when it occurred; its location; the number of people
injured or killed, broken down into motorists, cyclists, and pedes-
trians; the factors that contributed to the accident; and, the type of
vehicles involved. Note that the data set does not include sensitive
information that would allow one to trace back the people or cars
involved in the collision or the report.

The second data set, the number of vehicles on the road, is also
provided under the NYC Open Data initiative and it is maintained
by the Metropolitan Transportation Authority (2020) of New York.
This data set tracks the vehicles passing through the city bridges
and tunnels on an hourly basis. Specifically, the data set reports
on the number of vehicles that go through individual toll plazas,
every hour, and broken down by: the number of vehicles using
an electronic toll collection system; and, the number of vehicles
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not using the electronic toll collection system or for which such
system malfunctioned. These vehicle counts are also associated
with the direction of the traffic, which allows us to aggregate the
counts to the individual boroughs, which is the geographical aggre-
gation level of reference in our study. Note that this data set does
not carry the exact number of vehicles on every single road: we use
the counts in this data set to evaluate the relative change in the
traffic volume in the boroughs.

The third data set is the traffic speed, provided by the City of
New York Department of Transportation (2020a). The data set is
a collection of vehicle speed records observed from a multitude
of sensors disseminated throughout the boroughs of the city,
mostly on major arterials and highways. Each record in the data
set contains the following information: the date of the observation,
the identifier of the sensor detecting the speed, the speed of the
vehicle (measured as the ratio of the segment of road observed
over the travel time to cover it), and the location of the sensor.
Speed sensors only retain in memory the speed percentiles of vehi-
cles, not the count of vehicles, therefore speed and volume must be
measured at different places.

The fourth data set is the traffic summons issued, provided by
the City of New York Department of Transportation (2020b). This
data set is a record of all traffic summons issued by the city, orga-
nized by borough on a daily basis. This is intended to be a proxy for
measures of enforcement, since some might be concerned that
enforcement has declined during this period.

Finally, the COVID-19 testing data set contains the historical
records of the results from the COVID-19 testing campaign. The
data set is maintained and provided by New York State
Department of Health (2020). The data set begins on March 1st,
and it is currently ongoing. Each record in the data set carries data
for a specific date and New York State county, and contains the fol-
lowing information: the number of new positive cases discovered
during the past 24 hours, with the time cut off set at 12am of
the day for which the report is provided; the number of tests per-
formed in past 24 hours, including positive, negative, and inconclu-
sive; and, the cumulative number of new positive cases and of tests
performed since the beginning of the testing campaign.

3.1. Data summary

A summary of the data is presented in Table 1. Data are sepa-
rated into two coarse groups based on the number of new
COVID-19 cases in the week prior; we will later instrument based
on the number of new cases. We can see a clear difference in days
preceded by no new COVID-19 cases, Table 1a, with a much larger
number of vehicles on the road and a much larger number of col-
lisions, injuries, and fatalities. There does not appear to be a large
difference in the number of traffic summons on these days (13.7 vs
13.5), which suggests traffic enforcement is relatively unchanged.
On days following no new COVID-19 cases, we reason that drivers
believe there is low risk associated with leaving the home, since
there are fewer infections and the pandemic spread appears to
have slowed in the short run. Conversely, Table 1b, on days follow-
ing many new infections, drivers tend to avoid leaving their homes,
since the spread appears to be relatively rapid. At the same time,
collisions drop precipitously on days after new COVID-19 cases,
though no direct traffic safety regulations have been passed (only
an indirect change in the daily traffic volume of automobiles).
Finally, every day has at least one collision, regardless of circum-
stance, suggesting safety is a major problem.

Fig. 1 shows that the number of vehicles on the road (as mea-
sured by tolls) dramatically drop around the time period of the first
COVID-19 case, and again during the second wave (though the
drop is less dramatic). We also indicate the stay-at-home order
issued by the New York State Governor on March 22, 2020, by

the dotted vertical line in the figure. We observe that the stay-
at-home order was preceded, to a large extent, by individuals
choosing to stay home ahead of the legal order as COVID-19 ini-
tially began its onset in the region. This reduction in mobility pre-
ceding state and local stay-at-home policies matches the
observations of others using cell phone records (Badr et al.,
2020). We later take the possibility of a systemic break in time
trends around the stay-at-home order into careful consideration
(Section 5.2). One might also anticipate that the level of collisions
afterwards varies because of policies altering the type of individu-
als on the road. To mitigate this we include fixed effects for each
day, which capture changes in the level of collisions before and
after the policy. A quadratic spline fits the collisions in each bor-
ough before and after the first NYC COVID-19 case. Speed-
measuring observations that have been flagged with an ‘‘error”
by the NYC Department of Transportation have been omitted, but
there are still errors clearly visible in the simple mean speed, such
as the spike in speed for Brooklyn around 2019-07, so we consider
these data somewhat tenuous.

Fig. 1 suggests that the COVID-19 cases caused a sudden and
exogenous shock to the number of vehicles passing through tolls
in the NYC area. A similar but smaller decline follows the so-
called ‘‘second wave” during the winter of 2021. We observe that
this precipitous drop follows the first NYC COVID-19 case (vertical
black line) but precedes the stay-at-home order: individuals
seemed to have already stopped driving prior to the announcement
to a large extent. We assume the decline in vehicles passing
through tolls serves as a proportional measure of the daily traffic
volume.

‘We also observe an increase in speed in Fig. 1 coinciding with
COVID-19 cases, which conforms with the thesis of Shefer and
Rietveld (1997). Lower densities of traffic will have higher speeds
(and higher variances between the speed of vehicles), and there-
fore one might anticipate more collisions or more dangerous colli-
sions from the countervailing consequences of speed. We highlight
that there has been no major change in the posted speed in NYC in
the recent time frame, though there have been major adjustments
6 years ago, in 2014 (Mammen et al., 2019).

In the following sections we use these data to measure the rela-
tionship between daily traffic volume, measured by the volume of
cars passing through tolls, and the number of collisions. For our
experimental variation, we use the number of COVID-19 cases on
the week prior in each borough in order to instrument for the cur-
rent day’s traffic.1 Note that in analyzing and merging the data sets,
we realized that there are no data on traffic volume going to Staten
Island, which we then removed from our analysis.

4. Methodology

In order to identify the relationship between daily traffic
volume and collisions, we use the standard instrumental variables
(IV) technique (Cullinane, 2004) with the primary specification:

ln Collisionsð Þi;t ¼ b0 þ b1ln VehicleCountð Þi;t þ b2boroughFEi

þb3timeFEi þ b4boroughFEi � trendt

þb5boroughFEi � trendt � PostCovidt

þb6ln SummonsCountð Þi;t þ ei;t

ð1Þ

1 We consider in the robustness section several other specifications rather than
simply the 7-day response and find it does not meaningfully alter the estimations.
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With a first stage of:

ln VehicleCountð Þi;t ¼ b0
0 þ b0

1zi;t—7 þ b0
2boroughFEi þ b0

3timeFEi

þb0
4boroughFEi � trendt

þb0
5boroughFEi � trendt � PostCovidt

þb0
6ln SummonsCountð Þi;t þ ei;t

ð2Þ
We have data measured daily (t) for each (and all) borough (i)

with complete data. Our interest is in the consistent estimation of
the parameter b0

1, which represents the elasticity between vehicle
counts and collisions, the percentage change in vehicle collisions
for each 1% increase in vehicle counts (Cullinane, 2004). We use
the IV technique because we are concerned there could be omitted
factors that affect both the count of vehicles and collisions. It could
even be the case that collisions lead to changes in the volume of traf-
fic, resulting in inconsistent estimation of the b0

1 parameter.
To resolve this issue, we exploit plausibly random variation in

the count of vehicles, where fewer cars are on the road the week
following high-infection days. This change in vehicle counts is
uncorrelated with other potentially problematic factors - the pres-
ence of the disease does not alter driving behavior, except as medi-
ated through the volume of traffic. We operate with the
understanding that drivers do drive differently during the pan-
demic, but this is derived from the fact that the density of the traf-
fic is lower and there is additional space (Tucker & Marsh, 2021),
not because drivers have fundamentally changed during the per-
iod. Therefore, COVID-19 serves as an important source of experi-
mental variation for studying the traffic collisions in NYC, and
allows for the derivation of consistent parameter estimates for b0

1

through this technique.
The vector of controls boroughi contains simple fixed effects for

each borough, controlling for the fact that each borough has differ-
ent average populations and commuting patterns. Similarly, the
vector timeFEt contains fixed effects for each day, since certain days
may have unusual weather or be prone to more collisions (new
years). These individual and time fixed effects will be partialled
out by the fixed effect estimation. In our robustness checks, we also
consider that the borough FE undergo some systemic shift during
the stay at home period in order to account for possible changes
in the constitution of drivers during that period. In our preferred

specifications, we include adding borough-specific time trends
(trendt), and further break these trends along important dates like
the first COVID-19 case (or the stay-at-home order), in case there
was a systemic break in commuting patterns during those periods.
We also include the log of traffic summons for each day, since one
might believe police are altering their enforcement or presence
along this data window.2

The instrument zi,t�7 is a simple count of the number of COVID-19
cases that occurred exactly-one week prior (a lag) as a measure of the
severity of the pandemic, which exploits the fact that individuals
appear to have stayed at home of their own volition in response to
the pandemic (Badr et al., 2020). We note that the lag is appropriate
because new cases on day t do not alter driving patterns on day t
(they have already left the home), but cases from the week prior
(t-7) appear to be strongly associated with changes in automobile
traffic.3 We anticipate that while additional COVID-19 cases alters
the number of cars on the road, the virus itself does not directly alter
how people drive (e.g., individuals do not drive slower or more cau-
tiously because of the existence of COVID-19). Any remaining change
in driving habits during this period is likely, therefore, a result of the
altered volume of traffic on the road. Measuring the association
between traffic volume and collisions is critical for forecasting the con-
sequences of such policies like congestion taxes in urban areas, partic-
ularly if they are severe (Green et al., 2016).

5. Results

In this section we present the results of our work. First, we dis-
cuss the changes on the collision patterns, then we elaborate on
the robustness checks built in the methodology of the data
analysis.

5.1. Primary results: change in collisions

In Table 2 we show the association between the count of
collisions and traffic as we sequentially increase the controls:

Table 1
Comparison between days one week after new COVID-19 cases and after no new cases.

a. Characteristics of days 1 week after a COVID-19 case

Variables Mean Std. Dev. Min Max

Count Vehicles* 168194.6 82775.35 33,194 348,303
Count Collisions 88.75228 30.24864 19 183
Count Injured 23.95947 11.43227 2 77
Count Fatalities 0.0901826 0.30767 0 3
Total Fatal/Injured 24.04966 11.48352 2 77
Simple Mean Speed** 36.33974 6.221759 18.91236 49.33846
New Cases 0.2111872 3.549588 0 123
Count Traffic Summons 13.53499 23.65592 0 171

N:1752, i = 4 boroughs, t = 438 days, *Missing 16 observations, **Missing 184 observations.

b. Characteristics of days 1 week after no COVID-19 cases

Variables Mean Std. Dev. Min Max

Count Vehicles 121933.3 69626.33 10,891 303,348
Count Collisions 41.11735 19.03718 3 125
Count Injured 16.0809 9.792077 0 54
Count Fatalities 0.0867347 0.3225972 0 41
Total Fatal/Injured 16.16764 9.855463 0 55
Simple Mean Speed* 40.91199 6.389576 26.74412 55.46777
New Cases 472.8761 490.0707 2 2722
Count Traffic Summons 13.73174 23.6801 0 190

N:260, i = 4 boroughs, t = 65 days, *Missing 12 observations.

2 We use log(SummonsCount + 1) since there are several days with no summons in
the data window.

3 As a robustness check in Table 3 we consider both additional lags up to t-4 and a
polynomial lag structure and the results remain similar.
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individual and time fixed effects, individual borough time trends,
and systemic breaks in time trends at the day of the first case.
The first stage is extremely strong, with an F-statistic of over 75
in all specifications, suggesting that our instrument, the number

of cases, is an effective predictor of the number of cars passing
through tolls the following day (Stock & Yogo, 2005). It suggests,
as one might expect, that people have a strong reaction to protect
their health and safety from COVID-19 and, as a result, fewer peo-

Fig. 1. Traffic volume and speed following the first COVID-19 cases (solid line) and the stay-at-home order (dotted line) in New York City. The trend lines are second-degree
polynomial fits of the variable with respect to time. The periods before and after the first COVID-19 case, and for each borough are fit independently.
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ple drive on days after many people have tested positive. Since our
specification is log–log, the coefficients represent estimations of
the elasticity of the number of collisions relative to the volume
of traffic (i.e., they are the percentage change in collisions over
the percentage change in traffic volume).

In Table 2, column 1 reports on the values of the elasticity
between collisions and vehicle traffic when only fixed effects for
borough and time periods are included, for which we observe a
value of 1.5, roughly. These time fixed effects take into account
day of week and city-wide weather effects, which accounts for
the highly cyclical nature of traffic: day of week traffic patterns,
and seasonal commuting patterns. The estimated elasticity
remains similar at 1.4 when adding individual time trends, (see
column 2). These individual time trends take into account to the
fact that each borough may be trending upward or downward in
traffic safety independently, due to factors such as gentrification.
In column 3, we add a systemic break for the first COVID-19 case,
since the borough-specific traffic trends may have altered at that
time, perhaps as individuals work from home at different rates in
different regions. The estimated elasticity between vehicle count
and collisions increases to 1.7, though the standard error increases.
This is robust to the addition of ln(SummonsCount) in column 4.
Critically, this inclusion does not substantively alter the coefficient
of interest. Our final estimation measures that an increase in the
number of vehicles by 1% is associated with a significant 1.7%
increase in the number of collisions, and the final R2 is around
30%. Using a short calculation, the nearly 28% reduction in vehicle

traffic in the Covid-19 period we see in Fig. 1, is associated with
nearly a 37% reduction in collisions.4

5.2. Robustness checks

In this section we run a number of tests to highlight that the
estimation in Table 2, column 4, is robust to a variety of specifica-
tion changes. Results of the robustness checks are reported in
Table 3. The changes that we take into account are: we modify
the data window’s size; we add a second systemic break in trends
on the day of the stay-at-home-order; and, we explored several
variations of lags for the COVID-19 case instrument. The general
pattern of the result remains consistently positive and significant,
and the estimated elasticity between traffic volume and collisions
falls typically between 1.2 and 1.7, and none are more than 3 stan-
dard deviations away from our preferred specification of 1.661.

In Table 3 column 1, we reduce the size of the data window by
about 6 months, such that it begins on June 1st 2019 instead of Jan-
uary 1st 2019. We note that the estimated elasticity only modestly
increases in size and it is still significant at about 1.4. In column 2
we consider that perhaps the breaks in time trends were insuffi-
cient, and includes another systemic break in trends at the time
of the governments stay-at-home order. We further allow each
borough to have an additional break in the value of their associated
fixed effect within the stay-at-home period, in case the rule trig-

Table 2
Estimated elasticity between collisions and vehicle counts.

Variables (1) (2) (3) (4)

ln(Vehicle Count) 1.480* 1.415*** 1.695** 1.661**

(0.531) (0.165) (0.362) (0.354)
Daily Fixed Effects YES YES YES YES
Borough Fixed Effects YES YES YES YES
Borough Trends YES YES YES
Break After First Case YES YES
Enforcement Control YES
Observations 3,108 3,108 3,108 3,108
R-squared (Centered) 0.226 0.337 0.323 0.332
Log Likelihood 1272 1513 1479 1501
Number of Boroughs 4 4 4 4

Standard errors are clustered by borough.
* p < 0.1.
** p < 0.05.
*** p < 0.01.

Table 3
Robustness checks.

(1) (2) (3) (4)
Variables Smaller Stay At Polynomial COVID-19

Data Home Instrument Lags
Window Systemic

Break

ln(Vehicle Count) 1.379*** 1.228*** 1.339** 1.619**

(0.194) (0.207) (0.329) (0.390)
Daily Fixed Effects YES YES YES YES
Borough Fixed Effects YES YES YES YES
Borough Trends YES YES YES YES
Break After First Case YES YES YES YES
Enforcement Control YES YES YES YES
Observations 2,500 3,108 3,108 2,940
R-squared (Centered) 0.362 0.310 0.390 0.347
Number of Boroughs 4 4 4 4

Standard errors are clustered by borough.
* p < 0.1.
** p < 0.05.
*** p < 0.01.

4 1 � (1–0.01660956)28 � 0.37.
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gered particular changes in the constitution of travelers from each
borough. While the stay-at-home order appears to have been pre-
ceded to large extent by New Yorkers already staying home (see
Fig. 1), it is possible that there were still transitions to the driving
(beyond simply daily traffic volume) during the post-
announcement period. Jointly, these breaks are significant, rein-
forcing that this is another plausible specification. Still, including
this second systemic break only decreases the estimated coeffi-
cient slightly to 1.2, while the significance remains. In column 3,
we consider alternatives to individuals waiting 7 days to respond
to new COVID-19 cases. Instead, we consider a fourth-degree poly-
nomial of the 7-day instrument. Our point with this specification,
and the next, is that individuals have a generalized pattern of
reducing driving in response to past cases of COVID-19 and that
our results do not appear to be dependent on a particular func-
tional form in the first stage. The instruments remain strongly sig-
nificant, with an F-statistic of 52. The estimated elasticity increases
to a significant 1.3, still in the same general direction and within
one SD of the primary estimates in Table 2. In column 4 we test
another set of instruments, exploring the idea that individuals
respond to 7, 14, and 21 day lags of COVID-19 cases, that is they
have a memory of just under a month before they return to normal
habits. The instruments remain strongly significant, with an F-
statistic of 25. The estimated elasticity remains at a significant
1.62, within 0.05 of the original estimates in Table 2, column 4.

5.3. Discussion and further elaboration

So far, we have focused heavily on the percentage change in the
number of collisions as a consequence of daily traffic volume. How-
ever, not all collisions are equally dangerous. In this section, we con-
sider how the daily traffic volume is associated with the total count
of fatalities and injuries. Previous research highlights that the direc-
tion of the effect appears to be complicated by potentially reducing
the distance between cars, therefore softening the collisions (Shefer
& Rietveld, 1997; Wang et al., 2009). We examine these concerns,
particularly the notion that denser traffic leads to ‘‘cushioning” and
safer collisions. We find significant support for the idea that higher
traffic volumes are associated with safer collisions.

In Table 4, we continue to use the same IV specification as in
column 3 of Table 2, though in each of the 4 columns we change
the independent variable in each of the estimations to the count
of: injuries, fatalities, the sum of both (casualties), and casualties
per collision. In each of the 3 rows, we consider a different subset
of victims: total, pedestrians, or cyclists, which are contained as
subsets of the crash data. This leaves a table of 12 coefficients. Note
that in Table 4 we do not use logarithms on the dependent vari-
ables, since numerous days have zero fatalities, and the number
of injuries is occasionally zero for some subsets. Omitting these
periods would bias the estimates (Wooldridge, 2010).

Each coefficient in Table 2 then represents a semi-elasticity: the
change in injury (fatality, casualty, or casualties per collision) with
respect to the percentage change in traffic volume. In the first row,
column 1, we look first at overall fatalities, and the coefficient sug-
gests that a 1% increase in traffic volume is associated with a large
but insignificant decrease of 0.003 deaths per day per borough.
This suggests that there is a substantive cushioning effect, since
additional automobiles are associated with more collisions but
fewer fatalities. A quick calculation suggests that the elasticity of
fatalities with respect to traffic volume is approximately �3.4.5

This is roughly the same as the decline in fatalities for low density
neighborhoods (�3.75% fatalities when density is <1500/km2) in

Noland and Quddus (2004), which used congestion implied from
population and employment. It is also entirely the opposite direction
suggested by the congestion tax studied in Green et al. (2016), high-
lighting the importance of the magnitude of the change in traffic.
This reiterates that the relationship between traffic volume and col-
lisions is nonlinear – when the changes in traffic volume are partic-
ularly large, the change in collisions may be noticeably different
from smaller changes.

Our point estimates also show a significant decrease in overall
injuries in row 1, column 2, Table 4. Each 1% additional vehicle traf-
fic is associated with a significant decrease of about 0.44 injuries
per day, an approximate 2.2% decrease.6 In Table 4, row 1, column
4, we look at the casualties, the sum of fatalities and injuries: we find
essentially the same coefficient and significance as in the injuries
(column 2). This seems reasonable since injuries are the vast major-
ity of casualties. Finally, in row 1, column 4, we look at the rate of
casualties/collision. We find a negative association between the rate
of casualties/collision and traffic volume, though the coefficient is
not significant. This suggests that denser traffic may have fewer
injury occurrences. The pattern in the first row persists for pedes-
trian casualties (row 2), but the coefficients are insignificant with
large standard errors. For cyclists the standard errors are even larger,
however, the rate of casualties/collision is found to be negative for
all categories. This suggests that collisions may be generally safer
in high-volume roadways. We conclude, therefore, that higher vol-
umes of vehicle traffic are more likely to have collisions, but those
collisions tend to have fewer injuries and potentially fewer deaths
than their low-volume collision counterparts.

We find that collisions have declined during this COVID-19 per-
iod, but the safety of those collisions also declined, matching the
mixed effects of Shefer and Rietveld (1997). As a result, we would
like to investigate if the other elements of the ‘‘cushioning”
hypotheses hold true in the relevant range, in particular that vehi-
cles will slow down under higher densities of traffic, which leads to
safer accidents.

We note it is visually apparent that the simple mean speed of
traffic has drastically increased in all boroughs post-COVID-19,
see Fig. 1, which according to Shefer and Rietveld (1997) is a con-
sequence of the reduced density. To corroborate on this observa-
tion, we run a simple regression of log vehicle volume against
log speed (controlling only for time and borough fixed effects).
We find a significant estimated elasticity between volume and
speed of about �13%. This component of the evidence seems to
reinforce the plausibility of traffic volume as a double-edged
sword: while the higher traffic volumes lead to more collisions,
sudden decreases in traffic volumes are associated with higher
speeds. This suggests a rich, complex relationship, despite this fac-
tor being outweighed in the relevant range by the safety benefits
we measure in Table 4.

In total, we calculate that there were nearly 356 collisions each
day prior to COVID-19, combined across all four boroughs. Prior to
COVID-19, the value of these collisions, injuries, and deaths each
day are approximately $4.2 million per day.7 In the post-COVID-
19 period, we calculate that the 28% reduced traffic volume leads
to about a 37% reduction in collisions, resulting in approximately
$453,000 in social property costs avoided daily, excluding any inju-
ries or fatalities prevented.8

5 �0.003 change in fatalities for each 1% change in traffic volume / 0.089 average
fatalities over data window ⁄ 100% � �3.4% in fatalities for each 1% change in traffic
volume.

6 –0.4367 change in injuries for each 1% change in traffic volume / 20.45 average
injuries over data window ⁄ 100% � �2.1 injuries per day for each 1% change in traffic
volume.

7 88.75 collisions/borough*4*$3, 447 + 23.95 injuries/borough*4 *$28, 299 + 0.0901
fatalities/borough*4*$3,186,408 [approximately equal symbol goes here] $4.2
million/day.

8 We use the value of $3,447 for property damage-only collisions from (Parry,
2004), so 37% reduction in collisions 88.75 collisions per day 4 boroughs $3, 447 $452,
763.
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However, the increased injury rate of those remaining collisions
more than offsets the benefits of the reduced collisions. We further
calculate that the increase in fatalities and injuries are worth
approximately $2.6 million in social cost a day, though this will
vary substantially depending on the statistical value of a human
life (Parry, 2004), and any variation in the fatalities estimate.9 This
suggests that policymakers may want to be careful in considering
policies like congestion taxes that may adjust the traffic volume,
since there may be unintended consequences for safety in terms of
speed. These consequences may not appear when adjustments to
traffic volume are modest, but are visible when there are sudden
and substantive traffic volume changes, such as in the case of
COVID-19.

6. Conclusion

In this paper, we utilize a unique instrumental variable: the
number of COVID-19 cases, to instrument for the traffic volume
on the following day. The use of the instrumental variable helps
address the concerns of Wang et al. (2009), Shefer and Rietveld
(1997), and Noland and Quddus (2004), about the challenges of
identifying a relationship between congestion and traffic safety
(Cullinane, 2004). We find that the exogenous shocks to traffic vol-
ume substantively reduce the number of collisions at a rate of
roughly 1.7% fewer collisions for every 1% reduction in traffic vol-
ume. This finding is robust to various specifications, including dif-
ferent time windows, borough-specific time trends, alternative
specifications of the instrument itself, and a structural break in
time trends at the time of the stay-at-home order. On the other
hand, our estimates suggest lower volumes of traffic are associated
with net increase in injuries and fatalities over the relevant range,
specifically an increase of 0.003 fatalities for each 1% decrease in
traffic volume, and an increase of 0.44 for injuries for each 1%
decrease in traffic volume.

Both of these findings suggest that the remaining collisions are
of a more dangerous type when traffic volume is reduced, a con-
cern highlighted by Shefer and Rietveld (1997) and Zhou and
Sisiopiku (1997). We find other corroborating evidence in our data:
we find an increase in casualties per collision as traffic volume
decreases. Though this association is not significant, the pattern
remains persistently negative for pedestrians. Accordingly, we esti-
mate a simple elasticity of speed/volume approximately equal to
�0.13.

We also provide an estimates of the value of this transition.
Using a back-of-the-envelope calculation, we estimate that the
approximate 28% decline in traffic volume during the post-

COVID-19 period is associated with about $453,000 per day in sav-
ings from the property damage of collisions (Parry, 2004). How-
ever, the increased bodily harm from collisions is estimated to be
worth nearly $2.6 million a day across the boroughs, though this
estimate may vary dramatically depending on the difficult valua-
tion of human life and the effects on external participants (Parry,
2004). Despite variations in valuation, the estimated value of the
injuries and fatalities are an order of magnitude larger than the
measured reduction in property damage. This highlights a complex
relationship between traffic volumes, speeds, and safety that is
worth further study.
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a b s t r a c t

Background: In June 2013, an alcohol-related traffic law took effect in Turkey. The law 6487 introduced
administrative fines for not respecting blood alcohol concentration limits, health warning messages on
alcohol containers (bottles, cans), and prohibited the sale of alcohol beverages in retail facilities between
10 p.m. and 6 a.m.. This article examines how this law is associated with traffic fatality variation.
Methods: Data from the Turkish Statistical Institute for the 2008–2019 period were analyzed.
Outcomes were traffic fatality rates per 100,000 population and 10,000 motor vehicles. Exposure variable
was the presence of law 6487. Alcohol, tobacco, and related beverages’ household expenditure, unem-
ployment rate, number of health professionals, number of crashes, and lags of the outcomes represented
control variables. A time-series cross-regional fixed effect model was applied. Results: Empirical estimates
suggest that the law 6487 was associated with a reduction of 15% (Incidence Rate Ratio (IRR) 0.85, 95%
Confidence Interval (CI): 082, 0.94) in the traffic fatality per population rate and with a reduction of 14%
(IRR: 0.86 (95% CI: 0.78, 0.92) in the traffic fatality per motor-vehicle rate. After 6 years of its implemen-
tation, this intervention was associated with an absolute reduction of 1519 (95% reduction interval: 1177,
1810) traffic fatalities. Conclusions: Our research emphasizes that legislation with direct and indirect
measures targeting driving under the influence of alcohol (DUIA) may be related to traffic fatalities reduc-
tion. Practical applications: This finding has important implications for policy and future research in con-
texts in which alcohol consumption is low such is in Turkey. Future research should seek to identify
mechanisms that explain how laws are ultimately associated with DUIA variation.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Driving under the influence of alcohol (DUIA) is a major public
health challenge. It has been estimated that globally more than
270,000 people die yearly in alcohol-related crashes (Vissers and
Houwing, 2017). Countries have introduced direct and indirect
policies to reduce this burden. Direct policies include, for instance,
legislation that targets the reduction of DUIA through setting per se
blood alcohol concentration (BAC) limits for the general population
(Castillo-Manzano et al., 2017), and/or specific subgroups, such as
younger drivers (Lovenheim and Slemrod, 2010) or professional
drivers (Smailović et al., 2020). They also comprise deterrence
measures like increases in the penalties associated with DUIA

(Miller et al., 2018). Indirect policies may reduce DUIA by decreas-
ing the opportunities to drink alcohol (Babor et al., 2010). Exam-
ples of these measures are: limiting the hours and places of
when and where alcohol could be sold or consumed (Wagenaar
et al., 2015; Sanchez-Ramirez and Voaklander, 2018), increasing
alcohol-related taxes (Lavoie et al., 2017), and regulating alcohol
advertising through the provision of health warnings (Rehm
et al., 2020).

After the publication of the first world road safety report in
2004 (World Health Organization, 2004), countries have converged
to adopt multiple road safety policies (Nazif-Muñoz, 2015), includ-
ing lowering legal BAC limits (Fell and Scherer, 2017). Furthermore,
in the last decade both the World Health Organization (WHO) (Fell
and Voas, 2014) and the European Transport Safety Council (1)
have explicitly suggested that to reduce DUIA and its consequences
countries should lower the legal BAC limit to 0.05 g/dL. A lowering
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of the per se BAC limit from 0.10 g/dL to 0.05 g/dL has been associ-
ated with a decrease of 48% in road traffic fatalities in Australia
(Homel et al., 1995), a decrease of 25% in alcohol-related fatal
crashes in Japan (Deshapriya and Iwase, 1970), and a decrease in
alcohol-related crashes of 9% in Austria (Bartl and Esberger,
2000) and 36% in France (Mercier-Guyon, 1998). A more compre-
hensive study, across 27 European countries that restricted BACs
from 0.10 g/dL or 0.08 g/dL to 0.05 g/dL, reported an 11% decrease
in all road traffic fatalities (Castillo-Manzano et al., 2014). A recent
study in Scotland suggested, however, that road traffic crashes did
not vary after a reduction from 0.08 g/dL to 0.05 g/dL was enacted
(Haghpanahan et al., 2019). In sum, multiple studies have sug-
gested that laws with 0.05 g/dL restrictions may be an effective
strategy in reducing both traffic fatalities and traffic alcohol-
related fatalities.

While these studies have provided us with important conclu-
sions regarding DUIA, policies, and the decreasing of road traffic
fatalities, two important challenges should be acknowledged. First,
most of this research, with the exception of Castillo-Manzano et al.
(2014) has not considered explicitly how both direct measures
(e.g., introducing administrative fines for not respecting the BAC
legal limit of 0.05 g/dL, refusing to provide a breath sample to mea-
sure BAC (Voas et al., 2009) and indirect measures (e.g., regulating
the hours and premises of alcohol sales, promotion of health warn-
ings associated with alcohol consumption) may have jointly con-
tributed to reductions in DUIA, when BAC legal limits have been
set in place. Indeed, research has indicated that a USD$100 increase
in the minimum fine for not respecting a BAC legal limit of 0.08 g/
dL was associated with decreases between 2% and 8% in all alcohol-
related traffic fatalities in the United States (Wright and Lee, 2021).
Introduction of administrative fines for not respecting a BAC legal
limit of 0.05 g/dL was associated with a decrease of 3% in drivers’
alcohol-related fatalities in Canada (Blais et al., 2015), while an
increase of administrative fines was associated with a decrease of
9% in drivers’ alcohol-related fatalities in Slovenia (Kralj et al.,
2009). Research conducted in Texas compared counties that imple-
mented ‘‘no refusal” search warrant programs with counties that
did not implement programs; the implementation of the program
was associated with a 2% decrease in alcohol-related traffic crashes
(Ames et al., 2016). On the other hand, research on indirect mea-
sures have suggested that increasing alcohol sales hours was asso-
ciated with an increase in traffic collisions in both Australia and
Canada, and paradoxically with a decrease in the United Kingdom
(Sanchez-Ramirez and Voaklander, 2018; Popova et al., 2009).
Reviews regarding health warning labels suggest that this policy
could be associated with mild reductions in DUIA in Canada and

the United States (Greenfield et al., 1999; Martin-Moreno et al.,
2013).

Second, an important common element of all of the precited
studies is that they have been carried out in high-income countries,
where alcohol consumption is culturally accepted and where traf-
fic fatalities rates are relatively low (World Health Organization,
2018). As such, results from these studies may not be generalizable
to settings where alcohol consumption is low and traffic fatality
rates are relatively high. For instance, in 2015 alcohol consumption
per capita was 1.4 l in Turkey and 10.8 l in Australia (World Bank,
2021). In the same year, there were 9.9 road fatalities per 100,000
population in Turkey (World Health Organization, 2018), but 5.4 in
Australia (World Health Organization, 2018). Studies conducted in
lower- and middle-income countries are warranted.

2. Study context

On May 24, 2013, Turkey enacted law 6487, which took effect
on June 11, 2013. In Table 1, we classify the direct and indirect
policies associated with DUIA in relation to norms before and after
the introduction of law 6487. This law reinforced the BAC legal
limit of 0.05 g/dL by including new administrative fines for not
respecting the existing BAC legal limit, driving under the influence
of drugs, or refusing to provide a breath sample to measure BAC.
Administrative sanctions in Turkey can be imposed only by admin-
istrative bodies and not by courts or judicial institutions, and
administrative bodies are not entitled to impose sanctions that
result in imprisonment (Administrative and Turkey, 2005). The
law also introduced mandatory health warning labels on alcohol
containers (cans, bottles) and prohibited the sale alcohol beverages
in retail facilities between 10 p.m. and 6 a.m.

In Turkey, the implementation of the law 6487 could be associ-
ated with a decrease in traffic fatalities by directly changing trans-
port preferences (using public transport instead of private vehicles
once individuals have consumed alcohol) and/or indirectly by
reducing alcohol consumption. However, this law may be con-
founded with other factors or simply not stringent enough to influ-
ence variation in traffic outcomes. Thus, attention needs to be
given to at least three alternative explanations. First, health sys-
tems may be more effective in responding to the occurrence of
traffic crashes and therefore one could observe reduction in traffic
fatalities (Castillo-Manzano et al., 2014). In cross-national studies a
proxy to measure health system performance in timely responses
to road crashes injuries has been number of health professionals
(Ali et al., 2019). Second, unemployment could also be associated
with traffic fatality reductions (Wegman et al., 2017). Studies have

Table 1
Direct and indirect policies before and after the Law 6487.

Policy Sub-policy Before law 6487 With law 6487

Direct Administrative sanctions involving fines for
driving over the BAC legal limit of 0.05 g/dL

No administrative sanctions (Law 2918) Administrative sanction for drivers not respecting the
BAC limit:– 1st time: 700 Turkish liras (USD$ 83)
– 2nd time: 877 Turkish liras (USD$ 102)
– 3rd time: 1407 Turkish liras (USD$ 159)

Administrative sanctions involving fines for
driving under the influence of drugs

No administrative sanctions (Law 2918) Administrative sanction of:
- 3600 Turkish liras (USD$ 423) for individuals driving
under the influence of drugs

Administrative sanctions related to refusal of
provision of biological samples to assess BAC
and drug consumption

No administrative sanctions (Law 2918) Administrative sanction of:
- 2000 Turkish liras (USD$ 230) for refusing to provide
biological samples to measure BAC levels or drug
consumption

Indirect Health warnings associated with alcohol
consumption

Alcohol producers were not mandated to
introduce health warning labels on alcohol
containers (Law 4250)

Alcohol producers must include warning messages
associated with the risks of alcohol consumption on
alcohol containers (bottles, cans)

Restricted hours for selling alcohol Alcohol beverages in retail facilities could be
sold without restrictions of hours (Law 4250)

Alcohol beverages in retail facilities cannot be sold
between 10:00 pm and 6:00 am
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suggested that when individuals face economic restrictions such as
being unemployed, they are less likely to either go to bars or
restaurants, which reduces the opportunity to drink alcohol and
then drive, and therefore one can expect declines in traffic fatali-
ties. Third, the number of vehicles has also been associated with
traffic fatalities’ variation. Studies suggest that when jurisdictions
increase their motor-vehicle fleet, this can be associated with
increases in traffic congestion, which in turn is linked with
decreases in speed, and then with reductions in traffic fatalities
(Cabrera-Arnau et al., 2020). Each of these factors could be influ-
encing traffic fatality variation in Turkey. Furthermore, studies in
Turkey have indicated that important differences across regions
are found in terms of road safety behavior and alcohol consump-
tion. For instance, while in 2010 in Ankara and Afyon the percent-
age of seat belt use by drivers was 21% and 4%, respectively, in
2014 these numbers were 37% and 28% (Gupta et al., 2017). Studies
monitoring geographical differences in alcohol consumption via
wastewater-based epidemiology suggest that alcohol consumption
in Aegean (32 l/1000 population/day), is much higher than Akdeniz
(25 l/1000 population/day) or Bati Karadeniz (18 l/1000 popula-
tion/day) (Kuloglu Genc et al., 2021). (Similar studies in western
countries have reported for Copenhagen more than 40 l/1000 pop-
ulation/day and in Barcelona more than 12 l/1000 population/day
(Cabrera-Arnau et al., 2020). More information regarding Turkey’s
regional differences can be found in the supplementary material in
Table S1.

In this study, we contribute to the body of research interested in
assessing how a policy, which includes both direct and indirect
measures to reduce DUIA, may be associated with traffic fatalities’
reduction. For this we specifically conducted a time-series cross-
regional fixed-effect analysis in Turkey between 2008 and 2019
to empirically assess, at the national level, the association of a
law that targets DUIA through direct and indirect interventions
with traffic crash fatality rates (Republic of Turkey, 2013).

3. Methods

3.1. Study design

Given the important differences across and within regions in
Turkey over time, we applied a time-series cross-regional study
design to evaluate the impact the of law 6487 from 2008 to 2019
on two outcomes: total number of traffic fatalities per 100,000
population and total number of traffic fatalities per 10,000 motor
vehicles (Wegman and Oppe, 2010). By using two denominators
(population and motor vehicles), we facilitate international com-
parisons of the results and test the robustness of results across
models (Elvik et al., 2009).

3.2. Data

3.2.1. Outcome variables
Data on traffic fatalities were obtained from Turkish Statistical

Institute (TSI) (Turkish Statistical Institute, 2019). This organiza-
tion has compiled, from police reports and hospitals, an extensive
dataset of traffic fatalities in Turkey from 1998 to the present. Data
are available per year and per region. We restrict our analysis to
2008 and 2019 since Turkey changed its entire mortality classifica-
tion system, improving its collection practices substantially from
2008 (Özdemir et al., 2015). Complete annual data for all 12
regions are available for this period. This provides us with a bal-
anced sample with N = 144 region-year observations. Data on road
traffic fatalities are compiled from Record of Traffic Crashes forms
filled out for every crash and prepared for both judicial and statis-
tical purposes in accordance with the Highway Traffic Law No.

2918. The TSI reports two type of road fatalities: (1) number of per-
sons killed in a road crash as deaths occurred at the crash scene
(2008–2019), and (2) number of persons who were victims of a
road crash and died within 30 days after this event (2015–2019).
The main analysis is conducted with deaths occurring at crash sce-
nes as data are available for the full study period. The number of
fatalities having occurred within 30 days of a crash is also used
to test the robustness of our results, but it is only available since
2015. For the 2008–2014 period, we multiplied the number of
deaths occurring at crash scene by a correction factor of 2.06 to
obtain estimates of deaths occurring within 30 days. We obtained
this factor from averaging differences between both reported fatal-
ities for the 2015–2019 period (see supplementary material For-
mula S1 and results in Table S2). The selected correction factor in
the current study is slightly larger than the factor proposed by
Cetin et al. (2018) for Turkey (i.e., 1.60) as their work only consid-
ered urban zones. Data on vehicle fleet and population were both
obtained from the TSI. Compiled annual fatality data do not include
information on drivers’ alcohol consumption nor the time when
crashes occurred.

3.2.2. Exposure
We defined the pre-intervention period from 2008 to 2013, and

the post intervention period from 2014 to 2019. Since monthly
data were not available, we were not able to define pre- and
post-intervention periods using the month in which the law was
implemented, June 2013. (In a complementary analysis, we also
defined the pre-intervention and post-intervention periods with-
out the year 2013, pre-intervention period 2008–2012 and post-
intervention period 2014–2019. This analytical strategy facilitates
comparison with models in which the year 2013 was assumed to
be absent, even though the law had taken effect in June 2013.)
Since the effect of the intervention may vary with time since expo-
sure, we also considered adding a linear term following the inter-
vention. This allows us to detect whether the intervention’s effect
may have varied over time, rather than assuming the law had an
immediate and permanent change.

3.2.3. Control variables
In consideration of previous literature (Castillo-Manzano et al.,

2017; Wegman et al., 2017; Cabrera-Arnau et al., 2020), several
control variables were introduced: (1) Alcohol, tobacco, and related
beverages households’ expenditure. This is the average of house-
holds’ income share of alcohol, tobacco, and related beverages
per region. Data come from the Household Budget Survey, which
is administrated by the TSI. (2) Unemployment rate. Following the
TSI definition, this variable includes the non-institutional working
age population who are not employed, have utilized at least one of
the channels for seeking job, and are available to start a job within
two weeks. This considers the total number of individuals present
under this characterization divided by the total of working age
population in each region. (3) Number of health professionals per
capita. It measures the total number of physicians, health officers,
and nurses in each region. A physician is a person who has com-
pleted six years of higher training in medicine; a health officer is
a person with a four-year bachelor’s degree trained in health;
and a nurse is a person with a four-year bachelor’s degree from
high school trained in health and with a two-year nursing educa-
tion; (4) Number of crashes is defined as an event in which a colli-
sion between one or more moving vehicles in a road or a highway
results in the death or injury of one or more individuals, and/or
material loss. This variable is considered since traffic fatalities are
highly dependent on the number of crashes. All data are taken from
TSI.
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3.2.4. Lags, year effects, and region time trends
Since traffic mortality rates can be autocorrelated, we consid-

ered a one-year lag for both outcomes to correct for autocorrela-
tion (Freivalds and Johnson, 1990). We also explored whether
controlling for year effects, assuming unobserved systematic
changes happen in each region for a given year (Wooldridge,
2002), could also improve our estimations. We also estimated
region-specific linear time trends, since time trends of traffic fatal-
ities could differ between regions.

3.3. Model selection and statistical approach

Due to the non-negative integer nature of road traffic fatality
count data, we used generalized linear models, particularly Nega-
tive binomial regression. These models assume that the conditional
distribution of the count of traffic fatalities in region r in year y is
negative binomial (NB):

yry � NBðlryÞ ð1Þ
Secondly, since autocorrelated data may bias estimates, we

applied the Born and Breitung test to detect the presence of auto-
correlation in these regional time-series data, p values lower than
0.05 suggest the time-series is autocorrelated (Wursten, 2018).
Then to systematically detect if autocorrelation was corrected,
we built models in which lags (Eq. (2)), year fixed effects (Eq.
(3)) and linear trends per region were introduced (Eq. (4))
sequentially.

yry ¼ exp½fLag � yry þ ery�; ð2Þ

yry ¼ exp ½kYearr þ ery�; ð3Þ

yry ¼ exp ½jTrendr þ ery�; ð4Þ
where

‘‘Lag*y” represents the dependent variables lagged by one year.
‘‘Year” represents the yearly fixed effect variable.
‘‘Trend” represents the linear trend per region. The linear trend
is a continuous variable from 1 to 12, associated to each year of
the analysis, that is multiplied by each region.
‘‘ery” is a gamma error term with mean 1.0 and variance a2.

We use two offsets: population size and total number of
vehicles.

Based on our model comparisons, we selected the best fitting
model in which the errors were not autocorrelated. For traffic fatal-
ity population rates the best model was:

yry = exp [fLAG*yry + cLawry + hControlsry + ery],(5)

For traffic fatality motor-vehicle rates the best model was:

yry = exp [fLAG*yry + cLawry + cLaw-trendry + hControlsry + ery],(6)

where

‘‘Law” is the presence and absence of the law in the period of
analysis (0 = pre-intervention; 1 = post-intervention).
‘‘Law-trend” is an increment over time one year after the law
took effect.
‘‘Controls” represent ‘alcohol, tobacco, and related beverages
expenditure,’ ‘unemployment rate,’ ‘number of health profes-
sionals per capita,’ and ‘number of crashes.’.

We report results from negative binomial models (results from
Poisson models are available in supplementary material Tables S3–
S6), with estimates presented on the incidence rate ratio (IRR)

scale with robust standard errors. To suggest best fit models we
include Akaike information criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) factors. The lowest values with a distance of
10 points suggest the best specified model (Raftery, 1995). All anal-
yses are performed using Stata 16 (StataCorp, 2017).

3.4. Formulas to calculate number of fatalities prevented by the law
6487

Based on previous work (Wagner et al., 2002), we present three
formulas derived from equation 5 to compute the rate of traffic
fatalities per population or motor vehicles with the law 6487 ver-
sus the counterfactual—the law had not ever been enacted. Com-
puting differences for each period between the rates with and
without the law 6487 provides estimated absolute numbers of pre-
vented traffic fatalities in Turkey.

Formula 1 “With law: Yry = exp [fLAG*Yry + cLawry*6
+ hControlsry *12 + ery].

Formula 2 “Without law: Yry = exp [fLAG*Yry

+ hControlsry*12 + ery].

Formula3Change in relative percentage: (Formula 2—Formula 1)
/Formula 2 * 100.

In Formula 1, number 6 corresponds to 6 years after the law,
and number 12 for the total number of years of the period of anal-
ysis. In Formula 2, number 12 indicates the total number of years
for the period of analysis.

4. Results

4.1. Descriptives

Fig. 1 shows a steady decline in Turkey’s traffic fatalities (per
100,000 population or 10,000 motor vehicles) from 2008 to 2019.
Specifically, the rate of traffic fatalities per population dropped
by 34% ((13.6–8.93)/13.6), and the rate of traffic fatalities per
motor vehicles by 59% ((9.1–3.7))/9.1). Fig. 2 depicts cross regional
variation in these two outcomes for the same period in all 12
administrative regions of Turkey. These numbers suggest consider-
able cross-regional variation in 2008. Whereas in Bati Karadeniz,
Bati Marmara and Orta Anadolu had an average 20.0 traffic fatali-
ties per 100,000 population, Ortadogu Anadolu, Güneydogu Ana-
dolu and Istanbul had lower than 10.0. A very similar pattern
was observed in traffic fatalities per 10,000 vehicles. In 2008 Bati
Karadeniz, Orta Anadolu, Dogu Karadeniz and Ortadogu Anadolu
had more than 10.0 traffic fatalities in this outcome, whereas in
Istanbul and Aegean this rate was lower than 9.0. When attention
is focused on the year 2019, we observe that variation between and
within regions decreased overall.

4.2. Autocorrelation results

In Tables S7–S8 (supplementary material), we report results for
Born and Breitung tests using both denominators and traffic fatal-
ities that occurred at the crash scene, with the correction factor for
traffic fatalities as if they had occurred 30 days after the crash for
the 2008–2014 period. We observe that the only model that suc-
cessfully corrects for autocorrelation is when a lag for one year
in traffic fatality is introduced (Lag model (Eq. (2))). Every other
model has Born and Breitung values with p < 0.001, suggesting that
autocorrelation is present, and therefore results from these models
may be biased.
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4.3. Fixed effects results with and without year 2013

In Tables 2 and 3 we report the results of traffic fatalities per
100,000 population and per 10,000 motor vehicles, respectively.
Models in which we exclude year 2013 are the ones that better
specify our multivariable results in both rates (all AIC and BIC
results are the lowest and larger than 10 points). In terms of the
law, we observe concomitant variations in every model and the
estimator is stable. Model 1 suggests a 12% (IRR 0.88, 95% CI:

0.82, 0.94) decrease in traffic fatalities per 100,000 population. A
similar decrease is observed in Model 2 when the number of
crashes variable is considered (IRR 0.86, 95% CI: 0.78, 0.92). Model
5 suggests a 15% (IRR 0.85, 95% CI: 0.79, 0.91) decrease in traffic
fatalities per 10,000 motor vehicles. Further, a linear association
is also observed with the law trend variable. Every additional year
of the law is associated with a 7% (IRR 0.94, 95% CI: 0.91, 0.96)
decrease in the same outcome. In terms of the control variables,
no concomitant associations regarding traffic fatality per popula-

Fig. 1. Traffic fatalities per 100 000 population (in red) and 10 000 vehicles (in blue), 2008–2019. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. Traffic fatalities per 100 000 population and 10 000 vehicles, 2008–2019, per each administrative Turkish region.
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tion rate variation are observed. In traffic fatality per motor-
vehicles models, we observe that ‘number of health professionals
per capita’ is associated with this rate only in Model 7. One unit
increase in the rate of health professionals per population is asso-
ciated with 1% decrease of traffic fatalities per year. Lastly, we
observe that ‘unemployment’ captures concomitant variation in
traffic fatalities per 10,000 motor vehicles. A one-unit increase in
the unemployment rate is associated with a 2% increase in the traf-
fic fatality per 10,000 motor-vehicle rate per year.

4.4. Traffic fatalities prevented by the law 6487

Results from Tables 2 and 3 can be used to derive the number of
traffic fatalities prevented as of 2019. We use Formulas 1, 2 and 3
to compute the change in relative percentage in year rates of traffic
fatalities ‘‘with” the law. These results are reported in Table 4.
Based on Model 2, which has the lowest AIC, a total of 1,519 fatal-
ities were avoided in Turkey in the post law period (2014–2019),
which represents a reduction of 6.56%. Our estimates from Model
5, with the lowest AIC value, suggests that 1,655 fatalities were
prevented, representing a relative reduction of 7.14%.

5. Discussion

Our study suggests that an alcohol-related traffic law (i.e., law
6487) is associated with concomitant changes in the rates of traffic
fatalities per population and motor vehicles in Turkey. Between
January 2008 and December 2019 our estimates of the law point
to reductions of 15% and 14% in the population and motor-

Table 2
Fixed effects negative binomial models with traffic fatalities at the crash site per 100 000 population in Turkey 2008–2019.

Traffic fatalities per 100 000 population

Model 1
Without year 2013
and without number
of crashes

Model 2
Without year 2013
and with number of
crashes

Model 3
With year 2013 and
without number of
crashes

Model 4
With year 2013 and with
number of crashes

Variable IRR 95% CI IRR95% CI IRR 95% CI IRR 95% CI
Law 0.88 0.82 0.94 0.85 0.78 0.92 0.90 0.84 0.94 0.88 0.82 0.94
Unemployment rate 1.00 0.99 1.01 1.00 0.99 1.02 1.00 0.99 1.01 1.00 0.99 1.02
Number of health professionals per capita 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00
Alcohol, tobacco, and related beverages expenditure 0.97 0.87 1.07 0.96 0.87 1.07 0.95 0.86 1.04 0.95 0.86 1.05
Number of crashes 1.10 0.97 1.24 1.07 0.94 1.19
Lag of traffic fatalities 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Born and Breitung test 1.40p = 0.161 0.62p = 0.534 0.89p = 0.372 0.72p = 0.471
AIC 1074.093 1073.797 1190.889 1191.776
BIC 1090.818 1093.309 1208.186 1211.956
Number of year-region 120 120 132 132

Note. AIC: Akaike information criterion; BIC: Bayesian Information Criterion. CI: Confidence interval; IRR: Incidence rate ratio. Bold indicates p < 0.05. To obtain 95% CI
standard errors were clustered at the regional level.

Table 3
Fixed effects negative binomial models with traffic fatalities at the crash site per 10 000 motor vehicles in Turkey 2008–2019.

Traffic fatalities per 10 000 motor vehicles

Model 5
Without year 2013
and without number
of crashes

Model 6
Without year 2013
and with number of
crashes

Model 7
With year 2013 and
without number of
crashes

Model 8
With year 2013 and with
number of crashes

Variable IRR 95% CI IRR95% CI IRR 95% CI IRR 95% CI
Law 0.86 0.79 0.91 0.85 0.78 0.92 0.88 0.83 0.94 0.89 0.83 0.96
Law trend 0.93 0.91 0.95 0.93 0.91 0.95 0.93 0.91 0.96 0.94 0.91 0.96
Unemployment rate 1.02 1.01 1.04 1.03 1.01 1.04 1.02 1.01 1.04 1.02 1.00 1.04
Number of health professionals per capita 0.99 099 1.00 0.99 0.99 1.00 0.99 0.99 1.00 0.99 1.00 1.00
Alcohol, tobacco, and related beverages expenditure 0.97 0.87 1.08 0.97 0.87 1.08 0.96 0.86 1.06 0.96 0.86 1.07
Number of crashes 1.02 0.90 1.15 0.96 0.85 1.08
Lag of traffic fatalities 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Born and Breitung test 1.32p = 0.187 1.37p = 0.171 0.89p = 0.372 0.72p = 0.471
AIC 1093.183 1095.062 1216.694 1218.23
BIC 1112.696 1117.362 1236.873 1241.293
Number of year-region 120 120 132 132

Note. AIC: Akaike information criterion; BIC: Bayesian Information Criterion; CI: Confidence interval; IRR: Incidence rate ratio. Bold indicates p < 0.05. To obtain 95% CI
standard errors were clustered at the regional level.

Table 4
Traffic fatalities prevented by the law 6487.

Intervention Total traffic
fatalities
prevented
(95 CI%)

Change in relative
percentage (95 CI
%)

Chosen
model

Traffic fatalities at the
crash site per
population*

1519 (1177,
1810)

6.56% (5.08, 7.81) 2

Traffic fatalities at the
crash site per motor
vehicles*

1655 (1521,
1767)

7.15% (6.57, 7.63) 5

Note. Results in brackets represent the lower and the upper bound of the estimates
(95% Confidence Interval (CI)).

* Subtraction symbols mean that there were fewer fatalities with than without
the law.
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vehicle rates, respectively. We observe that 1,519 and 1,655 fatal-
ities were prevented if we consider models for traffic fatality per
population rates and motor-vehicles rates, respectively.

We suggest three interrelated hypotheses to understand why
the law 6487 could be associated with reductions in traffic fatality
outcomes. As we mentioned, this law considered both direct and
indirect interventions to target DUIA. Thus a combination of factors
may have been set in place to deter individuals from first drinking
alcohol, and then if they drank alcohol to avoid DUIA. First, while
our variable to measure alcohol consumption at the regional level
was not associated with traffic fatalities in our study, other studies
have empirically confirmed that in Turkey tax increases and hours
of alcohol sales restrictions of this law have been associated with
reductions at the national level in alcohol consumption (Alkan
et al., 2021; Koç and Koç, 2020). Second, in terms of its direct inter-
vention characteristics, we also propose that individuals who may
have consumed alcohol were increasingly able to avoid DUIA
because alternative means of transportation were available as
other studies have suggested in other jurisdictions (Fell and
Scherer, 2017). Another complementary possibility is that effective
sanctions associated with this law, particularly the introduction of
administrative sanctions, may have been successful in moving
away risky drivers from the roads (Fell et al., 2015).

Our results indicate decreases of 15% and 14% in traffic fatalities
per population and motor vehicle, respectively. These reductions
observed in our study deserve the discussion of an alternative
hypothesis. While the direction and magnitude of the law is similar
in these two outcomes, the model for motor-vehicle rates consid-
ered the inclusion of a post-trend (i.e., a linear estimation that
fatalities were decreasing over time after the introduction of the
law). Further, when analyses to obtain the number of lives saved
considered the post-trend estimator, considerable differences
between traffic fatalities per population and per motor-vehicle
fleet were found (see Table S9). Previous studies of low- and
middle-income countries have indicated that important increases
in motor vehicles are associated with traffic fatality reductions.
Two explanations have been advanced to understand this paradox.
On the one hand, road vehicle saturation is associated with slower
speeds, or with the other presence of a ‘‘substitute effect,” whereby
road users shift from walking or using the public transportation
system to driving private vehicles (Bhalla et al., 2007). In our case,
even if we controlled for several factors, the magnitude of the asso-
ciation of the law with traffic fatalities per motor vehicle could be
confounded with the speed of the number of vehicles introduced in
Turkey in the period in which the law was enacted as the post-
trend suggests. In fact, the annual average growth in motor vehicle
was 4.8% between 2008 and 2019, whereas the annual average
growth for the population has been 1.3% (Turkish Statistical
Institute (TURKSTAT), 2021). In short it may not be the law captur-
ing a post period reduction change, but rather people opting for
private transportation use in which the number of pedestrians
exposed to crashes is by default reduced. Overall, these results
may be taken with extreme caution because a previous study
(Castillo-Manzano et al., 2014), applying a similar methodology
as ours to 27 European countries and using traffic fatalities per
population, found an 11% decrease in this rate, whereas results in
Canada (Blais et al., 2015) or Slovenia (Kralj et al., 2009), which
focused on the effect of administrative changes for not respecting
the BAC limit of 0.05 g/dL on alcohol-related driver fatality rates,
more conservative changes of 22 and 9%, respectively.

Our evaluation of the general effect of law 6487 in Turkey has
the following limitations. First, our main outcome did not consider
whether alcohol consumption was associated with the recorded
traffic fatalities analyzed. Efforts in Turkey should be moved for-
ward to report this type of information as currently the TSI may

not have access to it. Forensic studies of Turkey from 2005 to
2018 suggest, however, that between 10% and 17% of individuals
attended in emergency services due to a crash event had BAC levels
over 0.05 g/dL (Aygencel et al., 2008; Demirel et al., 2018). Analy-
ses of alcohol tests of individuals who died in a motor-vehicle
crash should be carried out to confirm or reject results presented
in this study. Second, our proxy to capture alcohol consumption
considered regional averages of how households allocated budgets
to buy alcohol and tobacco simultaneously. While there is an
important overlap between tobacco and alcohol purchase in Tur-
key since single males are more likely to purchase alcohol and
tobacco (Aksoy et al., 2019), other characteristics such as level of
education, have opposite directions. In Turkey higher educated
people are more likely to buy alcohol and less educated people
more likely to spend their budget on tobacco. The heterogeneity
of our proxy may explain its null effect on this study, further sig-
naling the need of finding adequate information regarding alcohol
consumption when studying DUIA in Turkey. Third, as is common
in road safety studies, the inspection of variables representing how
traffic police reinforce these policies remains an important task.
The effects of the law could indeed be mediated by different police
monitoring strategies. Importantly, not having access to informa-
tion regarding DUIA arrests limits our understanding of an impor-
tant mechanism that could explain the observed variation. Last,
our law estimates may be confounded by other unmeasured
time-varying variables, such as increases in seat belt use or road
infrastructure improvements, which may have occurred in Turkey
(Miller et al., 2018). Studies have reported that in Turkey in 2010,
20% of drivers wore seat belts (Bilgic et al., 2011) whereas in 2018
this rate increased to 50% (Global status report on road safety,
2018).

Practical applications

Our research emphasizes that legislation targeting DUIA may be
related to traffic fatalities, but reductions may be a function of poli-
cies considering direct and indirect interventions. This finding has
important implications for policy and future research in contexts in
which alcohol consumption is relatively low, as the case of Turkey
suggest. Authorities should thus consider direct and indirect inter-
ventions before moving forward measures that only target DUIA
with increases of penalties. It is also noteworthy that DUIA proven
countermeasures, such as administration license suspension, pub-
licized sobriety checkpoints, and alcohol ignition interlocks for
convicted DUIA offenders, which were not part of Turkey’s reform,
should also explicitly guide these efforts. Last, future research
should seek to identify how public transportation can support
the decision of avoiding DUIA when individuals have consumed
alcohol. Rigorous scientific study will inform policies that maxi-
mize the potential road safety and public health benefits in places
where alcohol consumption has unique patterns.
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a b s t r a c t

Background: Suicides in the railway system is a serious health, societal, and transportation concern.
Restriction of the access to suicide methods in the form of different physical barriers is a promising
approach for suicide prevention. Method: Mid-track fencing, which is fencing placed in-between the
high-speed and commuter train tracks, was installed at one out of seven stations along a train line outside
of Stockholm in the years 2013/2014. The number of suicides at the intervention station was compared to
six other stations used as controls, over a total period of 20 years (2002–2021). Results: Suicides at high-
speed tracks occurring at stations was the major cause of death on the investigated railway line. Prior to
the year 2014, the intervention and control stations displayed similar time trends in the number of sui-
cides. After installation of the mid-track fencing in 2014, there was a 62.5% reduction in the rate of sui-
cides occurring at the intervention station. Compared to the six other control stations, the intervention
station displayed a significant reduction in the number of suicides during the years 2014–2021
(OR = 0.14, 95%CI 0.013–0.95). Suicides at the railway lines in-between stations were not increased
post-intervention. However, nearby control stations showed a 162% increase in suicides after the inter-
vention, suggesting the induction of transfer effects. Conclusion: Mid-track fences restricting access to
high-speed train tracks may have a large effect on reducing the number of railway suicides at interven-
tion stations, but may also induce an increase in suicides at nearby stations without mid-track fences.
Practical applications: Partial physical barriers such as mid-track fencing is deemed to be relatively easy
and cheap to install (as compared to full barriers; e.g., full height platform screen doors) and should be
considered at all stations on railway lines that have high-speed trains passing by.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Each year there are approximately 1,500 suicide deaths in Swe-
den (National Centre for Suicide Research and Prevention of Mental
ill health (NASP)’, 2020). Of these, approximately 130 suicides
occur in the transport system overall and �80 occur in the railway
system specifically (Fredin-Knutzén et al., 2020). Aside from the
tragic deaths, this phenomena has a negative impact on personnel
working at the railway (Giupponi et al., 2019; Tranah & Farmer,
1994) and on passengers witnessing these tragic events. These sui-
cides also affect the efficiency of public and cargo transportation.

In general, there is good evidence for reducing suicides by
restrictions of suicide methods (Pirkis et al., 2015) and method
substitution rarely counteracts this reduction in full (Zalsman
et al., 2016). For this reason, means restriction is an important
and recommended strategy for suicide prevention (Mann et al.,
2021; Zalsman et al., 2016). In the railway system, means restric-
tion by using full or half height platform doors have been shown
to be effective, even though the effect for the latter appears to be
smaller (Chung et al., 2016; Law et al., 2009; Ueda et al., 2015;
Xing et al., 2019). Some studies also showed an effect regarding
trenches located in-between the tracks, or so called ‘‘suicide pits”
(Barker et al., 2017; Coats & Walter, 1999; O’Donnell & Farmer,
1994). However, there is currently limited evidence concerning
other types of prevention measures through means restriction in
the railway system (Ryan et al., 2018) and there is a need to
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develop better evidence for suicide prevention strategies and
methods (Fredin-Knutzén et al., 2020; Mishara & Bardon, 2016).

In a previous study, Rådbo and Andersson (2012) investigated
suicides and other trespass fatalities in the railway system of
greater Stockholm and its urban areas. Their main findings showed
that most fatalities in Stockholm occurred at station areas and that
most victims entered the tracks from platforms. Passing express
trains were overrepresented compared to commuter trains. Simi-
larly, a recent Japanese study also found that suicides are more fre-
quent at stations with passing trains (Sueki, 2021). Another study
from Stockholm area showed that suicide rates tend to increase
near high-speed trains and decrease where fences and noise-
barrier walls are installed along tracks (Ceccato & Uittenbogaard,
2016).

Rådbo and Andersson (2012) suggested that preventive mea-
sures installed on station areas should be prioritized, at least in
the Stockholm region. Indeed, the Swedish Transport Administra-
tion (STA) installed fences in 2014 between the tracks used by
commuter trains and the tracks used by high-speed trains at one
of the stations in northern Stockholm (Fig. 1; refer also to Fig. S1
and S2 in the supplement). This installation, here on referred to
as ‘‘mid-track fencing,” limited easy access to the high-speed trains
but not to the lower speed commuter trains. These fences obstruct
access to the more lethal high-speed track, even though access to
the less lethal commuter tracks remains the same. This type of
measure is similar to those mentioned in the Restrail toolbox as
‘‘Intermediate fencing between tracks” (Restrail-project, 2015a)
or ‘‘mid-platform fencing” (Restrail-project, 2015b), thus referring
to where the fence is installed. In a questionnaire study (Restrail-
project, 2015b), these ‘‘mid-platform fences” were rated by traffic
safety experts to have a high likelihood of preventing suicide.

However, to the best of our knowledge, mid-track fences have
never been evaluated with actual suicides as an outcome. It is rea-
sonable to hypothesize that the mid-track fence installed at one of
the stations in Stockholm had a preventive effect. Therefore, the
present study investigated the hypothesis that fewer suicides
would be observed after installation of mid-track fencing at the
intervention station.

2. Data and methods

2.1. Data

Data about suicide and non-suicidal accidents involving persons
struck by a train were taken from the register of the STA. This data-
base contains a summary of information regarding suicide and
accidents and is based on case reports written by STA-
investigators, who carry out extensive investigations for each fatal
accident. The case-reports often contain the exact location of the
accident, attached photos, tracking of the individuals’ movement
preceding the accident, and information from the police. The clas-
sifications of suicides used since 2015 were also improved, by use
of extended psychosocial investigations to resolve more unclear
cases (Andersson & Sokolowski, 2021; Fredin-Knutzén et al., 2020).

The data used in this study were extracted from the STA, but
were also validated against the information in the case reports
for each incident. All events were extracted involving persons that
were hit by a train between the years 2002–2021 (n = 65 events in
total), from eight consecutive stations at the same line in northern
Stockholm area (see also Fig. S1 in the supplement). For example,
the data included date of event, station name, location, whether
the event was classified as suicide or accident, and outcome of
the accident (death, injury, or no injury). We classified events as
being at or in the immediate vicinity of the platforms if they
occurred up to approximately 25 meters away from the platform

area, as this corresponded to the coverage of the mid-track fence
at the intervention station.

2.1.1. Intervention station
The inclusion criteria was that the station had 1 m high mid-

track fences (Fig. 1) partially restricting access to all high speed
train tracks at the station and a known date for the installation.
The mid-track fences at the included intervention station were
installed for both north- and southbound tracks, began to be
installed during/at the end of 2013 and was finished at the begin-
ning of 2014 (confirmed by using time-stamped photos). Another
station was excluded from the analysis due to uncertainties
regarding the installation date of a wider 80 cm high concrete bar-
rier in the mid-track (see Fig. S3 in the supplement). The excluded
station had 4 suicides observed during the years 2002–2021, which
was relatively less compared to the 10 suicides observed at the
included intervention station.

2.1.2. Control stations
The control consisted of six other stations on the same line as

the intervention station (see Fig. S1 in the supplement), but having
no mid-track-fence or other obstacle separating the commuter
train tracks from the high-speed tracks. The inclusion criteria were
that they should be as similar as the intervention station as possi-
ble. Therefore, all stations had tracks dedicated to the same high-
speed trains, the same train frequency, and trains passing at
approximately the same speeds. The accessibility to the high-
speed tracks at these six stations was the same as for the interven-
tion station prior to 2014, when there were no mid-track fences
installed at any of the stations. Suicidal persons were thus able
to step out in the same high speed tracks that are passing by the
stations, with the same degree of accessibility for all included sta-
tions prior to year 2014 (Rådbo & Andersson, 2012).

2.2. Analyses

We hypothesized that the mid-track fence resulted in fewer sui-
cides during the years 2014–2021 at the intervention station, com-
pared to the prior years 2002–2013 and compared to the other six
control stations without any mid-track fence (i.e., a one-tailed
hypothesis). To assess the relative change in average number of
suicides per year between intervention and control stations, a stan-

Fig. 1. Photo of the installed mid-track fence and a high-speed train passing by the
intervened station. The lower speed commuter train track which has trains
stopping at the station, is to the right of the high-speed train track in the picture.
Also refer to the Supplement for a brief discussion about the fence design.
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dard difference-in-differences (DD) regression analysis with the
following model and dummy variables [coded 1/0] was used: #
suicides = b0 + b1 * [time2014-2021] + b2 * [intervention station]
+ b3 * [time2014-2021 � intervention station]. The DD effect is the
interaction-term and regression was conducted by using the reg
command in Stata v.9.2 (Columbia University Mailman School of
Public Health, 2019; StataCorp., 2005). To test the effect with sta-
tistical inferences about the count data (number of suicides), we
calculated odds ratios and one-tailed Fisher’s exact tests for the
number of suicides occurring at the intervention station during
years 2014–2021 versus 2002–2013, compared to the control sta-
tions during the same years, respectively. In addition, we plotted
the simple moving averages of the number of suicides per year
occurring at the intervention and control stations during 2002–
2021 (Fig. 2). Finally, we also conducted a series of secondary anal-
yses to investigate impacts on the results of putative uncertainties.

3. Results

3.1. Majority of rail traffic deaths were suicides at the high-speed train
track at stations

There was a total of n = 65 events during the years 2002–2021
at the investigated rail line, wherein both suicides and accidents
occurred more frequently at the stations (n = 40 and n = 10; see
Table 1), in comparison to the line sections in-between stations
(n = 11 and n = 4; data not shown). Furthermore, station suicides
occurred mainly on the high-speed tracks rather than on the
slower on commuter train tracks (Table 1). For example, among
the six control stations there was a total of n = 30 suicides, of which
n = 24 (80%) occurred in the high-speed track; this was more than
n = 3 fatal high-speed rail accidents observed in total (Table 1).
Together, these observations emphasized the importance of pre-
venting station suicides specifically and to consider the high-
speed train track in particular.

3.2. Mid-track fencing prevented suicides at the intervention station

In the years prior to the installation of the mid-track fences
(2002–2013), the number of suicides occurring at the intervention
station and surrounding control stations displayed similar levels
(Table 1 and Fig. 2). However, after the installation of mid-track
fences in 2014, the levels of suicides displayed a notable difference
between the intervention and control stations (Table 1 and Fig. 2).
The number of yearly suicides decreased by 62.5% at the interven-

tion station (down from an average of 0.66 to 0.25 suicides/year),
while increasing by 162% at the control stations (up from an aver-
age of 0.91 to 2.38 suicides/year), which corresponds to a relative
reduction at the intervention station of �1.875 suicides/year
(Table 1 and Fig. 2). The odds ratio (OR) for the number of suicides
occurring at the intervention station during years 2014–2019 ver-
sus 2002–2013, compared to the control stations during the same
years (2 and 8 vs 19 and 11; Table 1), showed a significant reduc-
tion in suicides occurring at the intervention station (OR = 0.14,
95%CI 0.013–0.95; Fisher’s p = 0.021). Finally, restricting analysis
to the subset of suicides occurring only on the high-speed track
at stations (Table 1), also showed a relative reduction of �1.125
suicides/year and a similar OR effect size (OR = 0.18, 95%CI
0.003–2.94; Fisher’s p = 0.14). However, it should also be noted,
that half of the suicides on the intervened station occurred in the
lower speed commuter train track, which were reduced to a similar
extent as the suicides on the high-speed track (Table 1). However,
analyzing only suicides at the lower-speed commuter track was
not feasible, due to the low counts in the control group (Table 1).
Together, results suggested that the mid-track fencing had a sui-
cide preventive effect at the intervened station overall, including
an effect on suicides at the high-speed track. However, there was
also an increase of suicides at the control stations, which suggest
that the mid-track fencing intervention may have induced a trans-
fer of suicides away from the intervention station to the nearby
control stations.

3.3. Secondary analyses supported a suicide preventive effect of the
mid-track fencing at the intervention station

First, one of the high-speed track suicides at the intervention
station occurred near a wide breach in the mid-track fence (Table 1
and Fig. S4 in the supplement), indicating the absence of a mid-
track physical barrier in this case. Repeating OR analysis without
this case showed a significant effect also for the high-speed track
suicides per se (OR = 0, 95%CI 0–0.80; Fisher’s p = 0.049). Thus, we
observed a significant effect above despite this flaw in the mid-
track fence design. Secondly, during the pandemic years 2020–
2021, high-speed trains were periodically cancelled. Nevertheless,
repeating analysis without inclusion of these years also showed a
relative reduction of �1.92 suicides/year and a maintained OR
effect size (OR = 0.18, 95%CI 0.002–1.23; Fisher’s p = 0.047).
Thirdly, the installation period of the mid-track fences was ongoing
from the last half of 2013 until the first half of 2014. No suicides
occurred at the intervention station during this period, but three
suicides occurred at the control stations during the autumn of
2013. Nevertheless, repeating analysis without inclusion of this
period also showed a relative reduction of �2.13 suicides/year
and an improved OR effect size (OR = 0.11, 95%CI 0.01–0.73; Fish-
er’s p = 0.009). Fourth and finally, there was no increase in the
number of suicides occurring along the lines in-between stations
in the years 2014–2021 (4 suicides, 0.5 suicides/year), compared
to the prior years 2002–2013 (7 suicides, 0.58 suicides/year), sug-
gesting that suicides were not transferred to non-station locations.
Together, none of these secondary analyses convincingly negated,
but rather supported the observed suicide preventive effect of
the mid-track fences at the intervention station.

4. Discussion

The mid-track fences at the intervention station had the effect
of reducing suicides, as there was a 62.5% decrease in suicides at
the intervention station (from 0.66 to 0.25 suicides/year) which
sharply interrupted the slightly increasing pre-2014 trend
(Fig. 2). This was not the case for suicides at the control stations

Fig. 2. Suicides at the intervention station (black dots) were apparently reduced
after installation of a mid-track fence in year 2014 (vertical grey line), whereas
among the six control stations (open triangles) suicides remained high. Solid and
dashed lines depict the respective 3-year simple moving averages.
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(Fig. 2) or for accidents at any stations (Table 1). Nevertheless, two
suicides still occurred during the post-period (years 2014–2021) at
the intervention station. One of these occurred in front of a com-
muter train as the train started to accelerate from the station,
which is an unusual behavior (Ceccato et al., 2021) and did not
invoke the mid-track fence acting as a physical barrier. The other
suicide occurred at the high-speed train track near a wide breach
in the mid-track fence (Fig. S4), which likely prevented the func-
tioning of the mid-track fence as a physical barrier for this case.
The overall results of this pilot study suggested that mid-track
fencing has a preventive effect on deaths by suicide (which
occurred most frequently at the high-speed train track).

The decrease in suicides was not followed by an increase in sui-
cides at the train tracks in-between stations, suggesting that sui-
cides were not simply transferred to those locations. However,
there was noteworthy 162% increase in suicides among the control
stations between the pre- and post-period years, raising the possi-
bility that some suicides had been transferred to the control sta-
tions. Results here suggested that mid-track fencing resulted in
3–4 fewer suicides than expected at the intervention station dur-
ing 2014–2021, which could have contributed, via a transfer effect,
to some of the additional 11–12 suicides occurring at control sta-
tions during the same period. This indicates the importance of
installing mid-track fencing at all stations along the same com-
muter rail line, rather than only at one station having the most sui-
cides. Future studies of mid-track fencing at further stations and
locations will help to resolve the overall and long-term effect on
suicide reduction in the wider railway system.

That mid-track fencing may cause a 62.5% (i.e., 2.7-fold) reduc-
tion in suicide occurrence may be regarded as surprising, since
access to the commuter trains remains the same and the height
of the fence is only one meter (a partial physical barrier). We spec-
ulate that the mid-track fence may interfere with the cognitive
process during the suicidal act per se. Indeed, suicidal subjects have

been shown to have a number of different cognitive deficits in, for
example, decision making and impulsivity (Deisenhammer et al.,
2009; Giner et al., 2016; Gvion et al., 2015; Hadlaczky et al.,
2018). The results here are in line with a previous study showing
that a minimal structured intervention, which only partly restricts
access to the lethal means, had the possibility to prevent suicide
(Mohl et al., 2012). The time component is of importance in an
acute suicidal crisis, as it has been reported that approximately
50% of suicide attempters make their attempt 10 minutes or less
after the first current thought of suicide (Deisenhammer et al.,
2009). Furthermore, the fence increases the likelihood of being dis-
covered by other individuals, who may in turn intervene by mak-
ing contact or calling emergency services. Indeed, precautions
against discovery was shown to be a predictor of future suicide risk
(Beck & Steer, 1989). These putative psychological effects may be
shared with mid-platform barriers, which were ranked as having
high likelihood to prevent suicide (Restrail-project, 2015b).

There are several limitations with this study. The most severe
limitation is that we only investigated one station and have a small
sample of suicides in the study. This exposes our findings to the
possibility that the effect was caused by other local changes (e.g.,
other suicide preventive interventions outside of the railway sys-
tem). But as far as we know there have not been any such interven-
tions (e.g., changes in access to psychiatric care, or other similar
activities in the surroundings of the intervention station). The
results should thus be interpreted with caution and future studies
involving more stations with mid-track fencing will enable to test
if our findings are generalizable and provide better estimates of the
effect sizes.

Nevertheless, our study suggests a potential new approach to
prevent railway suicides. Mid-track fences are likely to be more
technologically simple and cost-effective compared to full physical
barriers (e.g., full height platform screen doors), although this was
not studied here. It could thus be a suitable alternative for railway

Table 1
Summary of suicides and accidents occurring at the stations.

Year All suicides Only suicides in the high-speed tracks All accidents

Intervention station Control groupa Intervention station Control groupa Intervention station Control groupa

Before mid-track fencing
2002 0 0 0 0 1c 1c,d

2003 1 0 0 0 0 0
2004 0 0 0 0 0 0
2005 1 1 0 1 0 0
2006 1 0 1 0 1 0
2007 1 1 1 1 1c,d 2c,d

2008 0 1 0 1 0 1c,d

2009 0 0 0 0 0 0
2010 1 3 1 2 0 0
2011 0 1 0 1 0 0
2012 2 1 1 1 0 0
2013 1 3 0 3 0 0

Total: 8 11 4 10 3 4

After mid-track fencing
2014 1 1 0 1 0 0
2015 0 4 0 3 1c 0
2016 0 4 0 3 0 0
2017 0 2 0 1 0 1
2018 0 2 0 2 1c,d 0
2019 1 2 1b 2 0 0
2020 0 1 0 1 0 0
2021 0 3 0 1 0 0

Total: 2 19 1 14 2 1

a Sums for the six control stations are displayed.
b Occurred near a wide breach in the mid-track fence (Fig. S4 in the supplement).
c One (1) fatal accident.
d One (1) accident in high-speed tracks.
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stations having passing high-speed trains, for example, at the main
lines near larger cities where there is a mixture of faster and slower
train tracks. In the commuter train network of Stockholm, we esti-
mate that it could be a suitable method for �20 additional stations
(�50% of the stations in the network). However, due to the possi-
bility of transfer effects being induced by the intervention, fencing
should also be installed at nearby stations as well. If future studies
confirm the preliminary results reported here, we believe that mid-
track fencing (preferably having no breaches and if possible, having
a higher height; e.g., 1.5–2 meters) should be considered when
designing railways where high-speed-trains pass by stations at
separate tracks, and likely also at stations where the platforms
are located on either side of the tracks.

5. Conclusion

Mid-track fencing to restrict easy access to high-speed tracks
has not been evaluated previously in the scientific literature using
suicide as main outcome. The results of this pilot study suggest
that mid-track fencing may have a high effect on the prevention
of suicides at stations in the railway-system. Physical barriers such
as mid-track fencing appear to be an effective and low-cost
approach to preventing suicides at train stations, although findings
suggest it may be important to also have them at nearby stations to
prevent transfer effects. We believe that further research on more
alternative uses of various types of fencing should be highly prior-
itized within the railway industry.
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a b s t r a c t

Introduction: The very complex and hazardous environment of underground mines may significantly con-
tribute to occupational fatalities and injuries. Deploying wireless sensor network (WSN) technology has
the potential to improve safety and health monitoring of miners and operators. However, the application
of WSN in the industry is not fully understood and current research themes in this area are fragmented.
Thus, there is a need for a comprehensive review that directly explores the contribution of WSNs to occu-
pational safety and health (OSH) in underground mines. Method: This study aims to conduct a systematic
literature review on the existing applications of WSNs for improving OSH in the underground mining
industry to pinpoint innovative research themes and their main achievements, reveal gaps and shortcom-
ings in the literature, recommend avenues for future scholarly works, and propose potential safety inter-
ventions. The major contribution of this review is to provide researchers and practitioners with a holistic
understanding of the integration of WSN applications into underground mine safety and health manage-
ment. Results: The review results have been categorized and discussed under three predominant cate-
gories including location monitoring and tracking, physiological and body kinematics monitoring, and
environmental monitoring. Finally, seven major directions for future research and practical interventions
have been identified based on the existing research gaps including: (1) further applications of WSNs for
underground mining OSH management; (2) application of WSNs from research to real-world practice; (3)
big data analytics and management; (4) deploying multiple WSNs-based monitoring systems; (5) inte-
gration of WSNs with other communication systems; (6) adapting WSNs to the Internet of Things (IoT)
infrastructure; and (7) autonomous WSNs.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Occupational Safety and Health (OSH) has become a priority in
the workplace in different industries. Due to the dynamic and haz-
ardous working environment of mines, OSH is of great importance
for the industry in order to reduce work-related deaths and injuries
(Outalha, Le, & Tardif, 2000; Stanek, 1988). Statistics demonstrate
the high rate of fatalities and injuries in the mining industry across
the world (Moridi, 2015; Nie, 2016; Winn, Biersner, & Morrissey,
1996; Wu, 2011). For example, the Australian mining industry as
one of the world’s largest producers of minerals had a fatality rate
of 2.9 per 100,000 workers in 2019, the fourth-highest fatality rate
of any industry with an average of seven workers dying every year

(Safe Work Australia, 2020). Additionally, occupational injuries and
casualties can result in project delays, cost overruns, and the bur-
den of health disorders (Moridi, 2014; Umer, 2012).

The high complexity and perilous features of underground mine
activities have made the everyday monitoring and management of
safety and emergent rescue responses very challenging (Akkas�,
2018; Liu, 2010; Qiuping, Shunbing, & Chunquan, 2011). According
to previous studies, some of the main risk factors that contribute
to lethal and non-lethal accidents involved in mine operations are
poor visibility and unsafe behavior of miners as well as jobsite cir-
cumstances and environmental conditions (e.g., poor lighting, poor
ventilation, gas emission, wet conditions, confined space, rock falls,
structural failures and complexity, communication restrictions)
(Amponsah-Tawiah & Dartey-Baah, 2011; Gyekye, 2003;
Mahdevari, Shahriar, & Esfahanipour, 2014; Moridi, 2014; Sun,
2010). To protect the safety and health of the underground work-
force, it is crucial for safety managers to be able to continuously
monitor the physiological status of workers and the environmental

https://doi.org/10.1016/j.jsr.2022.07.016
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parameters of their work zones (Akkas�, 2018; MSHA, 2011;
Sunderman & Waynert, 2012). This necessitates the collection of
large amounts of data in real-time. Due to the dynamic and complex
working environment of underground mines, the traditional mine
safety system is insufficient (Maity et al.; Reyes, 2014; Zeng, Tam,
& Tam, 2008), and utilizing advanced technologies to improve OSH
in underground mines is required (Bo, 2014; Sunderman &
Waynert, 2012). Although some mine safety technologies are cur-
rently commercially available and some are under investigation,
the research in this area is not mature yet (Misra, 2010; Sun, 2010;
Sunderman & Waynert, 2012).

Wireless Sensor Network (WSN) technology has been increas-
ingly adopted in recent years to monitor environmental parameters
of underground mines and trace the location and health conditions
of miners. A WSN involves a group of sensor nodes arrayed com-
pactly that are capable of data sensing, processing, and communica-
tion (Ranjan, Sahu, & Misra, 2016). Compared to wired sensor
networks,WSNs offer benefits such as small size, low cost, improved
coverage, and operational simplicity in the restricted and harsh
environment of undergroundmines (Chehri, 2010). With the devel-
opment of WSNs, an increasing number of researchers and practi-
tioners have agreed on their applications to achieving reliable
solutions to enhance OSH in the mining industry (Akkas�, 2018;
Chehri, 2011; Henriques & Malekian, 2016; Milenković, Otto, &
Jovanov, 2006; Ranjan et al., 2016). This technology is capable of
onlinemonitoring of undergroundmineworking environment/con-
dition and organizing the collected sensed data at a central station
aboveground (Ranjan et al., 2016) to get an insight into the work-
place safety and health conditions and possibility of accidents on a
real-time basis (Soltanmohammadlou, 2019). Wireless under-
ground sensor networks have emerged as a feasible technology for
constant monitoring of underground mines (Akyildiz &
Stuntebeck, 2006), which ultimately contributes to the reduction
of fatal and nonfatal occupational injuries in the industry.

Existing studies have illustrated the significance ofWSN technol-
ogy for OSH in underground mines. However, current research
themes in this area seem to be fragmented and a holistic approach
is required to integrate this emerging technology into wider under-
ground mine safety and health management. Recently, two review
papers have been developed by Muduli, Mishra, and Jana (2018)
and Dohare (2015) on the use of WSNs in underground coal mines.
However, the theme of these articles has not addressed WSN appli-
cations specifically for underground mining safety and health man-
agement. As they primarily focus on environmental monitoring and
do not cover different applications of WSN-based monitoring sys-
tems in underground mining, including location monitoring and
tracking and physiological monitoring. Therefore, a comprehensive
review of the applications of WSNs for improving OSH in under-
groundmines should be conducted. The present reviewwill investi-
gate howWSNs have been or can be applied to successfullymonitor
andmanagedifferent causesof accidents and injuries involved in the
undergroundmining industry. This study aims to conduct a system-
atic literature review on the existing trends and applications of
WSNs technology to enhanceOSH in theundergroundmining indus-
try. The objectives are to share innovative research themes and their
main achievements, reveal gaps and shortcomings in the current lit-
erature, recommend directions for future scholarly works, and offer
potential safety interventions. This review paper provides research-
ers and practitioners with a deep insight into the various aiding
functions of WSNs technology to improve OSH in underground
mines.

2. Research method

Considering the aim and objectives of the present study, a sys-
tematic literature review (SLR) method was employed, which

facilitates the recognition, evaluation, and interpretation of exist-
ing sources of literature in a specific area of study, through scruti-
nizing and systemizing key concepts and current evidence (Rowley
& Slack, 2004). Among various methods for conducting a system-
atic literature review, this paper opts for taking a realist approach
in order to clarify how WSNs have been or can be applied for
improving OSH in underground mines. It is mainly because the
realist reviewmethod is devised to present an explanatory analysis
of what works for what, under what circumstances, in what
respects and how, by indicating processes/interventions that lead
to effects in complex contexts (Golizadeh, 2018; Pawson, 2005).
According to the model designed by Pawson (2005), the realist
review consists of five distinct stages, which are followed in this
research including scoping, searching, screening, data extraction
and synthesis, and reporting. At the primary stage, the research
scope is clarified and the review question(s) are formulated; the
second stage entails searching databases for an initial list of studies
that contain defined search keywords; at the third stage, the most
relevant studies are selected based on a set of defined eligibility
criteria; the fourth stage aims to extract data from full text of
selected studies; at the last stage, the main findings are presented
and discussed. The review process is summarized in Fig. 1.

2.1. Search strategy

In this review, the search string consisted of the following four
categories of keywords:

� ‘wireless sensor network’ OR ‘wireless underground sensor net-
work’ OR ‘WSN’ OR ‘WUSN’ OR ‘wearable’ OR ‘wearable sensor’;
AND

� ‘occupational’ OR ‘safety’ OR ‘health’ OR ‘accident’ OR ‘incident’;
AND

� ‘underground’; AND
� ‘mine’ OR ‘miner’ OR ‘mining’.

Using the keywords, the search was conducted in electronic
data-bases including Elsevier (sciencedirect.com), Springer
(springerlink.com), IEEE Xplore Digital Library (ieeexplore.ieee.
org), Taylor & Francis (T&F) (tandfonline.com), Wiley (onlineli-
brary.wiley.com), Emerald (emeraldinsight.com), and ACM Digital
Library (dl.acm.org). Then, we extracted each peer-reviewed article
published by a reputable journal or international conference,
which contained the aforementioned search terms in its title/ab-
stract/keywords. The eligibility period for the inclusion of articles
was set by the end of July 2020 when the search was conducted.

2.2. Selection of relevant studies

The screening process involved three phases. In the first phase,
duplicates, non-English papers, ineligible article types (e.g., edito-
rials, editor’s notes, book reviews) and review articles were
removed from the initial publication list. In the second phase, con-
tent analysis was carried out on the title and abstract of each arti-
cle to make sure that it was empirical with a substantive focus on
the review questions; so that the article covered at least one appli-
cation of WSN technology for improving OSH in underground min-
ing. Thus, papers that contained some search terms in their titles or
abstracts, but were irrelevant to the scope of this review were
excluded by the authors. For instance, articles referring to the
use of WSNs for OSH in surface mining were removed. In the last
phase, full-text screening was conducted to extract the most rele-
vant publications. This phase was accomplished to make sure that
the full text of the selected articles fully addressed the issues raised
in their abstracts. Moreover, the reference lists of the selected arti-
cles were also considered to ensure the completeness of the
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review. In total, 66 articles were shortlisted at this stage of our sys-
tematic literature review.

3. Findings

The selected articles were coded and the key data were
extracted and tabulated in tables and graphs as shown in the fol-
lowing subsections.

3.1. Publication distribution by year

As illustrated by Fig. 2, the subject area has been of constant
interest to researchers since 2005. The distribution of published
papers fluctuates from 2005 to July 2020. The highest rate of rele-
vant articles published in a year belongs to 2018 with nine papers,
which is followed by 2009 and 2019 with eight and seven papers,
respectively.

Fig. 1. Systematic literature review stages.
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3.2. Publication distribution by database

According to Table 1, the total number of selected articles con-
sists of 34 journal papers and 32 conference papers. Above 35% of
journal papers and 84% of conference papers were published by
Elsevier and IEEE Xplore Digital Library, respectively. In total, IEEE
Xplore Digital Library, Elsevier and Springer belong the largest
number of published articles in this area with 33, 12 and 9 papers,
respectively.

3.3. Publication distribution by journal

Five papers out of 34 journal articles were published by the
International Journal of Distributed Sensor Networks as shown in
Table 2. Safety Science, IEEE Access, IEEE Sensors Journal, and Sen-
sors each published two articles. Only one paper was published by
each of the remaining 21 journals in the list.

3.4. Geographical distribution of publications

The origin of the selected publications was determined based
on the location of the organization the authors are affiliated with.
Only one country is decided for each article. Among these coun-
tries, China played the leading role in this area of study with 32
articles. India and Australia follow China, with 17 and 6 articles,
respectively. These three countries are among the largest mineral
producers in the world (Blondeel & Van de Graaf, 2018; Fong-
Sam, 2008). The number of hits in the other countries listed in
Fig. 3 is three or less, which shows that they may require additional
research boost to fill the current gap between themselves and the
leading countries.

3.5. Publication distribution by key application areas

Taking the systems theory into account, any circumstance
under which an accident might happen at a workplace is a system
composed of three components, including environment, human,
and machine (Li & Guldenmund, 2018). With this said, to investi-
gate WSN potential in addressing OSH hazards in underground
mining, this research considered three main elements of this com-
plex system: working environment, work team, and physical
equipment (Dhillon, 2010). Adopting this theoretical lens, WSN
technology can apply to improve OSH in underground mines

Fig. 2. Publication distribution by year.

Table 1
Publication distribution by electronic database.

Database Journal papers Conference papers Total

IEEE 6 27 33
Elsevier 12 0 12
Springer 5 4 9
Taylor & Francis 5 0 5
Others 5 0 5
ACM 1 1 2

Total 34 32 66

Table 2
Publication distribution by journal.

Item. Journal publication Number of
articles

1. International Journal of Distributed Sensor Networks 5
2. Safety Science 2
3. IEEE Access 2
4. IEEE Sensors Journal 2
5. Sensors 2
6. Procedia Engineering 1
7. American Journal of Operations Management and

Information Systems
1

8. IEEE Communications Magazine 1
9. Ad Hoc Networks 1
10. Journal of The Institution of Engineers (India) 1
11. IEEE Systems Journal 1
12. Eurasip Journal on Wireless Communications and

Networking
1

13. Physics Procedia 1
14. Computer Networks 1
15. Wireless Networks 1
16. Computer Standards & Interfaces 1
17. Middle-East Journal of Scientific Research (MEJSR) 1
18. Wireless Personal Communications 1
19. International Journal of Mining Science and

Technology
1

20. Tunnelling and Underground Space Technology 1
21. International Journal of Future Generation

Communication and Networking
1

22. Process Safety and Environmental Protection 1
23. ACM Transactions on Sensor Networks (TOSN) 1
24. Measurement 1
25. International Journal of Coal Science & Technology 1
26. Journal of Systems and Software 1

Total 34
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through location monitoring and tracking of both equipment and
workforce, physiological and body kinematics monitoring of on-
site personnel, and environmental monitoring. Fig. 4 displays the
publication distribution regarding their stance on the applications
of WSN technology for improving OSH in underground mining.
More than half of the articles addressed environmental safety
and health issues, 39% of articles covered location monitoring
and tracking of mining equipment and workforce, and 8% of papers
dealt with physiological health risks and hazards. These key appli-
cation areas are discussed in the following section.

4. Discussion

The following sections summarize the key findings from the
SLR.

4.1. Location monitoring and tracking

Underground mine safety management systems can be
enriched by fusing real-time location monitoring and tracking data
of mining assets (i.e., workers and equipment). This facilitates
recognition of interference between various tasks in complex job
sites, workers’ unsafe behaviors, and unauthorized activities or
entry of workforces inside a pre-defined risk zone of equipment.
It also provides basic information for detection and visualization
of labors in dangerous situations and promotion of equipment
operators’ visibility on-site (Soltanmohammadlou, 2019).

Location and tracking technologies can be attached to a wireless
network to get extra data from the working environment, enabling
further evaluation on safety, particularly in high-risk workplaces
(Soltanmohammadlou, 2019). WSN is an emerging and self-
organized technology composed of a large number of small sensor

nodes that are capable of collecting, processing, and transmitting
information about recognized objects in the realm of the area
where it is monitored by the network (Baek, 2017; Karl & Willig,
2007; Li & Liu, 2007). The invulnerable nature and other character-
istics of WSN, including self-management, quick set up nature,
multipath routing and dynamic topology, make it a very effective
and efficient technology for collecting and communicating location
monitoring data in complex underground environments (Chehri,
2010; Misra, 2010; Wu, 2019). Thus, a location monitoring and
tracking system withWSN offers more flexible, adaptable, and reli-
able network communication for underground mine environments
compared with wired and fixed monitoring tools (Swain, 2018;
Wang, 2007, 2011). To contribute with safety monitoring on site,
earlier research in this scope used WSN based on a real-time sys-
tem to continuously track the location and position of either
underground workforces or equipment (Chen & Zhao, 2007).

4.1.1. Improving transport safety in underground mines
Underground mine transportation represents one of the highest

categories of all accidents, especially in some fast-developing
countries such as China and South Africa (Jiang, 2009; Rupprecht,
2011). Therefore, constant monitoring of mine transport is very
important in assessing the safety of mine tunnels, and hence safety
of workforces. This requires localization and tracking of vehicles as
well as monitoring the status of exploiting paths. In this regard,
Jiang (2009) targeted establishing transport safety in underground
mines by proposing a wireless video sensor network platform to be
implemented in underground mine tunnels for effective remote
safety monitoring. Due to the possibility of multipath effect and
path loss in WSN, a braided cooperative reliable transport (BCRT)
algorithm was developed that robustly operated in frequent path
break and repair environments. Thus, a reliable video transmission
within mine tunnels was provided by this system.

4.1.2. Estimating position of workforces in blind areas
When establishing a WSN system in an underground mine, sen-

sor nodes are only placed in the key spots within the underground
workings; so, the complex underground network involves many
‘‘blind areas” of monitoring and early warning. This way, the cen-
tral ground station can only get the location information of the
underground personnel located in the positioning areas, while
their global positions within the blind areas need to be numerically
estimated throughout the underground network. By estimating the
position of workforces in blind zones and communicating the data
to supervisors, the risk of accidents can be more adequately appre-
ciated (Chen, 2020; Liu, 2010). To this end, a low-cost positioning
system for estimating coal miners’ location in blind areas was

Fig. 3. Geographical distribution of publications.

Fig. 4. Publication distribution by key application areas.
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proposed by Liu (2010) based on WSN using global positioning
technology. This system gathered real-time location data of miners
through sensors located in the tunnels’ key spots, sent this infor-
mation to the central computer placed on the surface, corrected
errors and faults of the positioning data due to mine environmental
interference and, finally, estimated the global three-dimensional
location of workers of the network in blind zones numerically. Fur-
thermore, a recent novel approach was used byChen (2020) to pro-
vide coal miners working in blind areas with accurate early
warnings. They presented an intelligent safety monitoring and
early warning system based on two improved Distance Vector-
Hop (DV-Hop) localization algorithms that enhance the location
accuracy for randomly distributed WSNs. These algorithms are
capable of precisely positioning and tracking in underground envi-
ronments through picking multiple anchor nodes and calculating
the average per-hop distance between the deployed sensor nodes.

4.1.3. Improving rescue operations in underground mines
In the case of a disaster in an underground mine, it is very chal-

lenging for mine management to detect injured or trapped miners
along with their actual location and exact numbers
(Bandyopadhyay, Chaulya, & Mishra, 2010). This issue delays
emergency rescue operations for the affected miners and will ulti-
mately adversely affect the safety of miners. Thus, location moni-
toring data are important for localizing miners, assessing
damages, and attempting urgent rescue (Wang, Huang, & Yang,
2010; Wu, 2019). In this regard, in a novel approach followed by
Qinghua (2009); an automatic underground personnel position
tracking system was developed that used radio frequency identifi-
cation (RFID)-based WSN enriched by Geographic Information Sys-
tem (GIS). The real-time location of every moving object was
captured by RFID tags and displayed on virtual maps with GIS tech-
nology. Therefore, this system provides an efficient safety manage-
ment information system for underground coal mines that
facilitates precise and timely detection and rescue of endangered
and trapped underground coal miners. However, some scholars
declared that GPS is not a suitable location tracking technology
for underground mines due to the unavailability of its needed sig-
nals in indoor places (Kumar, 2016; Mardonova & Choi, 2018). So,
another approach followed by Bandyopadhyay et al. (2010), devel-
oped a novel wireless information and safety system for under-
ground coal mines. The core system is comprised of ZigBee
compliant active RFID devices. The RFID tags were programmed
to act as end devices, while the routers were applied as coordinator
devices to create an IEEE 802.15.4-based mesh network. Using the
RFID ZigBee sensor nodes involved in the wireless mesh network,
this system created the possibility to track the location and motion
of mine workers and equipment, monitor environmental condi-
tions, fatal incidents, and struck-by accidents in coal mines. In
addition, the system could preserve a database consisting of the
computerized records of miners’ working hours to provide the
ground control center with a warning message in emergency situ-
ations, which determined the location and numbers of trapped
mine personnel.

In the work of Wang et al. (2010), the authors proposed a pro-
totype system for real-time localization and tracking of under-
ground coal miners based on wireless self-organized sensor
networks. Self-organization is the ability of sensor nodes to build
a network topology without the need for human intervention
and prior topology knowledge. Using this technique, WSNs can
be established in the harsh and extreme environment of under-
ground mines where on-site technical service is infeasible (Diaz,
Mendez, & Kraemer, 2019). In order to improve the environmental
adaptability, robustness, and suitability of this system, the authors
developed three leading localization technologies. Firstly, a
received signal strength indication- (RSSI-) based localization

algorithm was proposed to decrease the impact of the severe and
complex environment in coal mines. RSSI-based localization algo-
rithm is one of the representatives of range-based localization
algorithms that utilizes the received signal power measurements
to estimate the distance between two nodes, independent of the
environment (Huang, 2015). Secondly, a fault-tolerant localization
mechanism was proposed to improve the inherent defect of insta-
bility of RSSI localization. Finally, an accurate localization algo-
rithm based on Monte Carlo Localization (MCL) was proposed to
adapt to the underground tunnel structure. Localization algorithms
based on MCL are frequently used in mobile target positioning
(Thrun, 2001) and are suitable for node positioning in underground
mobile networks (Baggio & Langendoen, 2008). Their proposed sys-
tem can undertake four main functions, including the dynamic dis-
play of each miner’s position, the moving path and working status
in real-time, recording the attendance information of every miner,
sending an alarm to warn the corresponding manager about a
miner entering a designated forbidden area, and giving the location
data of any event or disaster and every trapped miner to help
emergent rescuing. Moreover, Minhas (2017) proposed a compre-
hensive WSN-based control and monitoring mechanism, which is
also capable of detecting and identifying events and localization
of endangered miners. This system covered three design consider-
ations of WSN in underground mines, including radiofrequency
propagation modeling, energy-efficient communication protocol,
and autonomous event detection and reporting. Another WSN-
based safety monitoring system to detect and warn of different
events in underground coal mines was presented by Bo (2012).
They developed a complex event detection algorithm based on
the state automata/machine model to detect the alarming events
and generate a corresponding disposal process in real-time. Their
proposed algorithm can predict the event occurrences, called
states, from the raw data sequence pattern acquired from the
underground WSN, through matching the event pattern with the
predefined rules from the continuous events streaming. In the
paper presented by Wu (2019); WSN was adapted to the Internet
of Things (IoT) infrastructure to provide a novel technique for
safety to mine activities through establishing a dynamic informa-
tion platform. This platform contains six practical layers, including
the supporting layer, perception layer, WSN-based transmission
layer, service layer, data extraction layer, and application layer.
The platform is able to monitor and register the information
related to working conditions in coal mine production systems as
well as position data of underground equipment and personnel.
Then, the big data are quickly and precisely analyzed in order to
present a three-dimensional computer-generated mine system,
safety identification system, safety inspection system, and urgent
rescue system for coal mines. Moreover, IoT technology can be
applied to the personnel clothing and helmets carrying wireless
environment, location, and motion sensors for having effective
communication with other employees and equipment in different
parts of a mining site in order to make real-time decisions for a
high level of safety (Dehran, Agrawal, & Midha, 2018).

4.1.4. Enhancing the localization accuracy and performance of off-the-
shelf tracking sensors

Localization accuracy refers to the success rate of a positioning
system in identifying the precise areas at which the target is
located. The performance of WSN-based safety management sys-
tems is highly influenced by the accuracy of the positioning data
because these systems use the output information for further
applications (Li, Cheng, & Chen, 2020). Enhancing the localization
accuracy and performance of a set of commercially available elec-
tronic miner tracking sensors (i.e., RFID, UWB and Zigbee), which
can communicate wirelessly in a network (Sunderman &
Waynert, 2012), was discussed in some previous studies. Kloos
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(2006) proposed the application of a range-based localization sys-
tem using radio frequency (RF) signals for detection of under-
ground mine personnel working in close proximity to heavy
equipment such as haul trucks. While such range-based solutions
could provide more accurate localization, their implementation
imposes higher costs and energy usage. Therefore, a novel range-
free localization scheme was presented by Guo, Jiang, and Zhang
(2012) in which underground miners were monitored using
duty-cycled sensor nodes distributed in a wireless linear network.
The system obtains a low-cost, low-energy, and reliable localiza-
tion system for safety monitoring of underground coal mines.
Moreover, Zigbee-based wireless networks were offered by Maity
et al. and other similar studies (Xu, 2012; Yin, 2011) for a cost-
effective, flexible, constant monitoring of underground miners’
safety and security. The system developed by Maity et al. was cap-
able of automatically capturing the chain of site information
through a digital wireless communication system to promote
meticulousness, soft control, and reliability of the position moni-
toring process. The mine labors were then informed by various
alarming as well as voice systems produced after transmission of
data to the central control computer system on the ground.

The studies presented by Aktas� (2019) and Chehri, Fortier, and
Tardif (2009) proposed wireless infrastructures using Ultra-
wideband (UWB) sensors to collect positioning data of miners
and Wi-Fi based communication modules to help send all the col-
lected data to the main server. They tried to hinder the probability
of work-related incidents through safety monitoring of workers
on-site and delivering immediate feedback from managers.
Besides, in these investigations, the accuracy and pace of localiza-
tion were improved by designing location control algorithms. In
the proposed algorithms, it was assumed that the precise position
of sensor nodes was already known, which is not necessarily appli-
cable to real-life situations in which sensor nodes are randomly
positioned and/or may be dropped. Therefore, a novel WSN-
based algorithm was presented by Savic, Wymeersch, and
Larsson (2013) for simultaneous improvement of sensor localiza-
tion and target tracking in the underground tunnels. The algorithm
applied the discrete variants of real-time belief propagation to esti-
mate the position of sensor nodes and mobile targets as well as
handling all the non-Gaussian uncertainty distributions within
mine tunnels. Also, increasing the reliability and robustness of a
newly deployed WSN system for coal mine monitoring and posi-
tioning of miners was the main parameter that Yan, Ya-ru, and
Yong (2008) took into account in their work. The approach fol-
lowed by them was applying WSN to the mine personnel body to
automatically monitor the real-time position of miners.

4.2. Physiological and body kinematics monitoring

Inexpensive, small, lightweight and smart wearable sensor
nodes have been recently designed to improve workplace health
and safety of mining staff. Generally, there are two different types
of wearable sensors, including kinematic and physiological sen-
sors, which can be used to collect data from miners for safety
and health applications. The first type of sensors (i.e., kinematic
sensors) include wearable inertial measurement units (IMUs) that
collect workers’ dynamic motions. IMUs will enable users to mon-
itor the kinematic movement of objects by providing the velocity,
displacement, and orientation data. On the other hand, wearable
physiological sensors provide data about human health measures
such as heart rate, respiratory rate, blood oxygen, blood pressure,
and body temperature (Awolusi, Marks, & Hallowell, 2018) for fur-
ther health and safety analysis of workers individually. The appli-
cation of wearable sensors for physiological monitoring and body
kinematics monitoring provides an avenue for ease of creating per-
sonalized health care.

Using a WSN platform, the wearable sensor nodes can be inter-
connected to each other and a statically placed station. Health
monitoring systems of this type also allow for preventive diagnosis
of miners’ health issues and timely rescue or medical responses
(Milenković et al., 2006). The applications of wearable wireless
monitoring systems in the mining industry are reviewed below:

4.2.1. Using physiological sensors for timely rescue responses and
monitoring of emergency state

Wearable physiological sensors can be used to improve the
underground mine rescue system and detect hazardous conditions.
In the previous studies, physiological responses of workers such as
heart rate, respiratory rate, and body temperature have been mon-
itored to assess the health status of workers after underground
incidents. In one of these attempts towards an integrated health
sensing platform, Ranjan (2019) explored the feasibility of an inte-
grated wearable sensor unit equipped with different biosensors
(e.g., temperature sensor, blood pressure sensor, heart rate moni-
toring sensor). The sensed physiological parameters of each miner
were then relayed to the central base station via radio frequency-
based WSN for data visualization and analytics. The information of
this type improves emergent rescue efficiency. Also, Cicioğlu and Ç
alhan (2019) proposed a wireless network in which each miner
was equipped with a variety of heterogeneous sensor nodes and
one coordinator. The coordinator nodes were able to send the mon-
itored data of vital signs of underground workers (e.g., heart rate,
respiration rate, EEG, ECG, blood pressure, temperature, and glu-
cose level) to the other coordinators wirelessly as long as they
were in range. In this way, miners communicated with each other
in the network based on a peer-to-peer framework. When a haz-
ardous condition was detected by one of the sensor nodes, the
node, with the help of its coordinator node, used the Ad hoc On-
Demand Distance Vector (AODV) routing algorithm to determine
the most appropriate route to the destination and to transmit the
required data through this route. This novel algorithm is intended
for use by mobile nodes in a wireless ad hoc network -a decentral-
ized type of wireless network- and enables routing with continu-
ously changing topologies (Perkins & Royer, 1999). Thus, the
system can quickly and accurately deliver the relevant information
about the mineworkers to the monitoring center to start rescue
responses.

Moreover, wearable health monitoring devices have the poten-
tial to be equipped with additional sensors such as position- and
location-tracking sensors and environmental sensors. This promis-
ing design approach would reduce the implementation and preser-
vation cost of independent monitoring infrastructures without any
interference with the routine work tasks of the miners (Ranjan,
2019; Schalk Wilhelm & Reza, 2019). The physiological sensors
combined with the location monitoring system and environmental
monitoring system will also enable better-informed rescue deci-
sions in emergency situations. Deploying a wearable sensor net-
work that is combined with a locating system has been targeted
by Yan et al. (2008) and Yong (2009). The prototypes developed
by these studies were able to detect not only personnel position
using location monitoring system, but also their health condition
when an accident happened underground through capturing
important physiological data such as heart rate and body temper-
ature. Being provided with enhanced positioning information,
supervisors were able to make the most rational rescue decisions.
Besides, a similar approach was also taken by Nie (2011) for smart
health monitoring. In this study, positioning of coal miners and
monitoring of emergency state were accomplished through IoT-
based wireless communications, sensing, and computation. The
network used Zigbee protocol and portable wireless sensors
embedded in the miners’ cap lamp to realize underground
personnel location and physiological status (e.g., heart rate, blood
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pressure and body temperature) to provide timely rescue
responses. Such a system can be further augmented through test-
ing the feasibility of other technologies to be embedded in the
IoT network (i.e., accompanying sensors, electronic devices, actua-
tors, software, communication sensor modules, network connec-
tivity solutions, etc.). For instance, Revindran, Vijayaraghavan,
and Huang (2018) proposed a WSN-based Distance-vector routing
(DVR) protocol for finding the shortest route between miner’s hel-
met sending a distress message to the health and safety team to
decrease delays. Each mobile node operates as a specialized router
(Perkins & Royer, 1999) containing the distance between itself and
all possible destination nodes. By using the DVR protocols, each
router over internetwork sends the neighboring routers, the infor-
mation about the destination that it knows how to reach and main-
tains a list of all destinations that only contains the cost of getting
to that destination, and the next node to send the messages to
Barma (2014). In this protocol, each router is also required to
inform its neighboring routers of topology changes periodically
(Mannan & Jayavignesh, 2016). On the other hand, in one of the
recent efforts, both location monitoring and environmental moni-
toring systems were integrated into the physiological monitoring
system. The research team integrated physiological, acceleration,
location tracking, and environmental sensors to design a smart
health monitoring system based on context awareness. Their pro-
posed device was attached to the hard-hat of a miner to sense
and capture their contextual data. The collected information was
then disseminated amongst other miners’ devices and a ground
base station using a low-power wireless mesh network. The main
part of this research was devoted to the evaluation and selection
of feasible and suitable technologies (Schalk Wilhelm & Reza,
2019). Taking this approach, risk assessment and awareness are
offered to underground mining staff at three levels including: (1)
personal or body risk awareness; (2) risk awareness in the working
zone; and (3) risk awareness of neighboring zones; this enables a
greater monitoring and communication network and more effi-
cient rescue responses (Mardonova & Choi, 2018). In another
approach followed by Adjiski (2019), wireless integrated physio-
logical and environmental sensor nodes including heart rate, body
temperature, accelerometer, gyroscope, magnetometer, sound,
smoke, dust and gas sensors were attached to the miner’s personal
protective equipment (PPE) (i.e., helmet, safety glasses or smart-
watch). The system was then connected to the miners’ smartphone
via Bluetooth low-energy. This way, the sensed data were auto-
matically arranged, locally stored, and viewed by a mobile App.
The smartphone could also enable the identification of the location
of each miner. This prototype network was capable of enhancing
the wearer’s situation awareness. Once emergency conditions were
detected, the smartphone app warned miners of danger by sending
them timely audible and visual alerts. The information could then
be exchanged with the monitoring center through Wi-Fi technol-
ogy to notify supervisors of potential risks threatening every single
miner. The smartwatch also offered similar capabilities to the
mobile phone in terms of warnings and supervision. A similar
study suggested for sending the notifications from smartphone to
smart eyewear of mine employees over Bluetooth. A visual notifi-
cation was displayed to the miner wearing smart glasses when
being exposed to an emergency state. This system sends safety
alerts and emergency rescue messages to miners’ smart glasses
to assist those who have difficulty with loud noise and low-
visibility conditions in their working zone (Mardonova & Choi,
2018).

4.2.2. Using physiological sensors for fatigue monitoring and control
Mine labors are exposed to both physical and mental fatigue in

their workplace, which threatens their health and wellness
(Butlewski, 2015). Underground miners have to work in an

extreme environment that is by no means favorable for prolonged
physically demanding workloads. Also, many of them are in charge
of monotonous and repetitive tasks. As a result, severe muscle fati-
gue and stress are very common among this working group
(Bauerle, Dugdale, & Poplin, 2018). Moreover, mental fatigue can
be caused as a result of brain over-activity, especially when there
is a long gap between rest times of mine workers. Shift work is
known as a major contributor to mental fatigue among miners
(Yu, Chen, & Long, 2017). Due to the decline of concentration abil-
ity, this disorder makes work-related unsafe behaviors and wrong
actions more likely (Chen, 2021). Constant measurement of the
individual’s health parameters such as heart rate, respiration rate,
and blood pressure can assist in timely detection of fatigue state,
preventing the associated risks, and optimizing the underground
working environment (Chen, 2020; Meng, 2014). However, to date,
the application of wearable wireless physiological sensor systems
for real-time monitoring and early warning of underground min-
ers’ fatigue is an overlooked area of study.

4.2.3. Using physiological sensors for stress monitoring and control
People working in the mining sector can be exposed to unantic-

ipated disasters and accidents (e.g., being trapped in a confined
space), which can result in severe stress reactions (Nie, 2016).
Job strain exposure is another risk factor contributing to job stress
problems among miners (Hodgskiss & Edwards, 2013). These stres-
sors can bring quick and complex physiological changes to the vic-
tims, which potentially lead to many health problems (Nie, 2016;
Varga, 2016). Physiological and mental responses to stress can
undermine the victims’ power for accurate decision-making and
performance (Keitel, 2011; Kowalski-Trakofler, Vaught, & Scharf,
2003). Therefore, the use of wearable wireless physiological sensor
systems for stress monitoring and control is an open area for fur-
ther research in the mining industry, which helps promote
employees’ wellness and well-being.

4.2.4. Using kinematic sensors for mitigation of musculoskeletal
disorders

Laborers in mining sites are faced with many physically
demanding and manual tasks. They are at high risk of muscu-
loskeletal disorders due to the nature of their physical activities.
Whole-body vibration and awkward posture are among the main
cause of musculoskeletal disorders (Raffler, 2018). An awkward
posture is resulted from an excessive twist or bend of body joints
beyond (Wang, Dai, & Ning, 2015). Correcting a bad posture can
mitigate the risk of musculoskeletal disorders. Tracking IMU sensor
data can provide information about the physical posture and
motions of workers while working through capturing real-time
data. This will enable safety supervisors to check whether or not
the physical pose of a worker on-site is physiologically safe (Liu,
Han, & Lee, 2016; Ray & Teizer, 2012). Moreover, the vibration of
the whole body is also one of the main risk factors of low back pain
for heavy equipment operators in mine activities, contributing to
muscle fatigue, intervertebral discs, early spinal degeneration,
and herniated lumbar disc (Blood, Ploger, & Johnson, 2010;
Boshuizen, Bongers, & Hulshof, 1992; Bovenzi, 2009; Chen, 2003;
Sadeghi, Soltanmohammadlou, & Rahnamayiezekavat, 2021; Xu,
2017; Yassierli, 2017). Despite the importance of the issue, to date,
the applications of wearable wireless kinematic sensor systems for
real-time monitoring and early detection and warning of under-
ground miners’ awkward posture and whole-body vibration are
the overlooked areas of study.

4.3. Environmental monitoring

Continuous, precise, and reliable monitoring of environmental
conditions such as temperature, gas, noise, and dust is an urgent
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need to achieve better OSH in underground mines. Many calami-
tous mine accidents have been rooted in out-of-date monitoring
and warning system for environmental parameters. With this said,
WSNs apply for evaluating, monitoring, and recording various
environmental parameters in real-time (Mardonova & Choi, 2018).

4.3.1. Gas
Emission of toxic gas and concentration of non-toxic but explo-

sive gas in the underground mine environment are two major
causes of fatalities among miners (Niu, 2007; Osunmakinde,
2013). These gases are colorless, odorless, and cannot easily be
detected by human senses (Hazarika, 2016). To perform remote
monitoring of the poisonous gas and safety status of underground
coal miners, Osunmakinde (Osunmakinde, 2013) developed a reac-
tive autonomous WSN. The proposed system used ambient intelli-
gence for real-time decision-making. The framework deployed by
Niu (2007) was a WSN-based distributed heterogeneous hierarchi-
cal safety system for monitoring the methane concentration as
well as tracking the location of underground miners. This proto-
type system applied a novel overhearing-based adaptive data col-
lecting scheme to remove the correlation and redundancy of the
sampling sensor readings in terms of both time and space, which
ultimately optimized the performance of large-scale WSNs. In the
work of Hazarika (2016), the author followed the idea of attaching
methane and carbon monoxide gas sensors to safety helmets of
coal mine workers as a cost-effective, reliable, and sufficient
method for monitoring underground mine gas. The collected gas
information was sent wirelessly to the controller, where the alarm
sounded if the gas concentration went above the life-threatening
level.

4.3.2. Temperature, humidity and gas
Several studies suggested prototypes capable of gathering

richer monitored data by applying temperature and humidity sen-
sors as well as gas sensors. These parameters have a considerable
impact on the environmental conditions of the underground mine
and consequently influence the comfort, safety and well-being of
mine workforces (Li, 2019). In this regard, Zhu and You (2019) pro-
jected a real-time environmental monitoring system for coal mine
safety based on ZigBee WSN, which could monitor the gas density,
temperature and humidity parameters, send the data to the upper
computer and, give early warning when the parameters go beyond
a specific level. According to the trials, their proposed system was
consistent in performance, precise in evaluation, and efficient in
refining mine safety and declining accidents. Also, Wei and Li-Li
(2009) presented a multi-parameter WSN monitoring system
based on Zigbee protocol for real-time monitoring of the coal mine
underground environmental factors (e.g., gas, temperature, humid-
ity) and production parameters. The system intelligently sent early
warning signals to a control room on the surface. This way, the
staff on the ground become aware of the real-time condition of
the underground environment and potential hazards (Qing-liang,
Zhi-xian, & Zhen-chuan, 2008). Chehri (2011) assessed the perfor-
mance and reliability of a Zigbee-based WSN for mine’s safety
monitoring in terms of its lagging time, throughput and package
error rate through quantifying underground mine parameters such
as temperature, humidity, level of carbon monoxides, fire expo-
sure, and so forth. The initial results confirmed the possibility of
monitoring mine from distant places using the WSN without
rational delay. Li-min (2008) deployed a similar monitoring system
collecting temperature, humidity, and methane values of under-
ground coal mines in order to cover the real-time monitoring of
working surface. The system transferred the captured data to the
information processing terminal, which guided the data to the
ground through Ethernet. The surface monitoring center then
propagated the data by dint of a Local Area Network (LAN) to notify

remote users through sending messages. Henriques and Malekian
(2016) proposed another WSN-based system that monitored the
ambient characteristics inside the mine environment, such as tem-
perature, humidity, and gas. The system communicated the sensor
data measured by the measurement node to the data collection
node via the ZigBee wireless protocol. The data collection node
then transferred the sensor information to the laptop computer/-
graphical user interface (GUI). The GUI was used as the visual out-
put of the measurement parameters, which displayed the
particular zones of the mine where the parameters exceeded their
standard level. This helps the mining engineer to make more accu-
rate safety decisions. These papers proposed the design of a WSN
monitoring system based on ZigBee technology mainly because
this technology promises flexible, small scale, low cost, low data
rate, and low power consumption wireless networking (Chehri,
2011).

Some research in this area examined the integration of WSNs
with other data communication/transmission systems to offer
the benefits of both technologies supplement each other. An auto-
matic underground mine monitoring and communication system
based on the integration of Zigbee-based WSN aided Geographic
Information System (GIS) was designed in the work of Moridi
(2015). The system allowed near real-time monitoring and ventila-
tion system control of underground mining activities from surface
agency to provide emergency communication. Environmental fea-
tures such as temperature, humidity, and gas concentration were
sensed, ON and OFF ventilation fans were switched, and emer-
gency messages were texted if monitored features exceeded nor-
mal values. Besides, this system achieved the possibility of multi-
user surface operation and three-dimensional visualization to gain
a realistic insight into the conditions of the underground environ-
ment and workers (Moridi, 2019). In the work of Feng, ShengYu,
and Qi (2010), RFID was fused to Zigbee-based WSN in order to
access the network for more effective data transmission and deal
with the problem of poor anti-interference resulting in a better
understanding of the existing coal mine safety risks. In this system,
the former is applied to recognize target objects and, the latter is
applied to monitor the target environment conditions. Taking
advantage of WSN merged with the controller area network
(CAN) bus technique and Web of Things (WoT) technology, com-
prehensive and well-timed remote monitoring and smart early-
warning in the underground environment was made possible by
Bo (2014). The CAN bus technology was applied for real-time mon-
itoring of the operating state of ventilation and air conditioning
equipment (e.g., blowers, ventilators, and air doors), while the
underground environmental parameters were collected by WSN
technology. Based on the WoT technology, all collected informa-
tion was transmitted to the remote monitoring center for analysis
to provide decision-making information for clients. If there was a
parameter anomaly, the sound and light alarm was displayed on
site and simultaneously in the remote monitoring center window.
Another novel early-warning system was developed in the work of
Pudke, Bhagat, and Nalbalwar (2017) for monitoring unsafe condi-
tions based on applying wireless technologies, including ZigBee
and GSM (Global System for Mobile Communications). Various
types of sensors were used for measuring environmental condi-
tions of mine such as temperature, gas, humidity, fire, and so forth.
In this system, the constantly collected data from the underground
station was transmitted to the ground station through a ZigBee
wireless communication system. Then, the signal processor com-
pared the sensed value with the predefined critical safety values
and in a dangerous situation gave a warning alert to the GSM sys-
tem through the micro-controller for calling and sending the mes-
sage to the safety department. As evidenced above, establishing a
reliable two-way communication system between employees
working in the harsh environment of underground mines to a fixed
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ground station and vice versa is of great importance for safety pur-
poses (Maity, Das, & Mukherjee, 2012; Moridi, 2018).

To establish more effective communications between the
underground labors and the ground staff, some scholars deployed
their monitoring systems by attaching temperature, humidity
and gas sensors to the miners’ PPE clothing, such as their helmets
(Dohare, 2014; Geetha, 2013; Maity et al., 2012; Mishra, Malhotra,
& Singh, 2018; Qiang, 2009; Sharma & Maity, 2018). The controller
data were then transmitted to a ground control center through the
low-power, low-cost Zigbee network. This process enables serving
quicker and smarter rescue actions. Moreover, the mobility of
WSNs offered by such systems is useful for addressing under-
ground mine dynamic disasters. Designing wearable environmen-
tal monitoring systems has been suggested as a very affordable
and appropriate technique for safety and health monitoring in
the underground mine working environment (Adjiski, 2019;
Cicioğlu & Çalhan, 2019; Schalk Wilhelm & Reza, 2019; Ziętek,
2020).

4.3.3. Noise
Noise exposure is one of the most important and highly preva-

lent occupational hazards in the mining industry (Lutz, 2015). It
has been reported that noise levels at mine sites range from 85
to 140 dBA depending on the type of activities that can negatively
impact the workers’ health (McBride, 2004). The most negative
effects caused by noise exposure are related to the hearing system
and may produce professional deafness or even permanent deaf-
ness (Lu & Davis, 2016). High levels of noise may also result in
physical and mental health issues such as elevated blood pressure
and heart rate, anxiety, and distraction. Noise can also mask speech
and warning signals that make communication difficult and
increases the risk of accidents in a noisy environment (Jabłoński,
Szer, & Szer, 2018).

To protect mine workers from excessive noise levels, the first
step is to measure the noise level to understand its magnitude
and take proper managerial actions (Kwon, 2018; Umar, 2018).
WSN-based systems will enable mining companies to measure
noise levels continuously using wearable devices. In a study con-
ducted in mining, Henriques and Malekian (2016) developed a
WSN-based system that was able to measure noise. In the pro-
posed system, the sensed data were communicated to the data col-
lection node via the ZigBee wireless protocol. This hardware then
transferred the sensor data to the laptop computer/GUI. Based on
the extracted information, a noise protection strategy was ulti-
mately devised. This strategy provides mine engineers with a
visual output of the noise levels in particular zones of the mine
and helps them make more accurate decisions on whether or not
a particular working zone is safe for mine employees. While in this
paper, noise measurement devices are located at a specific distance
from the source to measure the noise level, wearable devices can
also be attached to the body of workers to measure noise exposure
(Ali, 2011; Rempel, 2019).

4.3.4. Dust
Mine employees are at high risk for respiratory and lung dis-

eases caused by mine dust (Laney & Weissman, 2014). Exposure
to dust from mining may result in many pathological effects
depending on composition, dimension, form, and levels of particles
and duration of exposure (Utembe, 2015). To address this issue, a
prototype wireless system was implemented in the work of
Mahdavipour (2015) for continuous monitoring and automatic
measurement of the total incombustible content (TIC) of the
deposited dust in underground coal mines. The network was com-
prised of numerous low-cost/low-power optical and microfabri-
cated sensors distributed throughout the mine. The distributed
sensors employed continuous optical, dielectrometry and

gravimetric methods to calculate the TIC of the deposited stack
of float dust/rock dust as well as the moisture content and the
mass of the deposited stack, respectively.

4.3.5. Airflow pressure
The volume of air flowing through the underground mine is a

significant parameter influencing mine safety. The change in the
volume of air and the pressure generated by airflow can contribute
to the creation of hazardous situations (Trutwin, 1988; Wu &
Gillies, 2005). For example, regarding some of the disasters of
mine, reducing the airflow pressure results in increasing the con-
centration of toxic or explosive gas (Hongqing, 2011). Therefore,
airflow monitoring and control within underground mines are of
great importance for maintaining the health and safety of miners.
Wu and Gillies (2005) approached a computerized method for
real-time monitoring and control of airflow over the mine ventila-
tion network. Their system was able to connect sensors into the
ventilation network simulation software to report real-time infor-
mation on variations in airflow and pressure throughout the
underground mine. Another research conducted by Henriques
and Malekian (2016) proposed a WSN-based system that was able
to measure the ambient airflow inside the mine. The system com-
municated the sensed data to the data collection node via the Zig-
Bee wireless protocol. This hardware then transferred the sensor
data to the laptop computer/GUI. Based on the conditions mea-
sured by the airflow and gas sensors, a ventilation switching strat-
egy was ultimately devised.

4.3.6. Fire
WSNs can also be applied for early detection and warning of

underground mine fire since it is one of the foremost concerns of
safety in such environments (Tan, 2007). Edwards (2000) con-
ducted a laboratory experiment to measure the reaction time of
fire sensors (e.g., semiconductor metal oxide, carbon monoxide,
and smoke fire sensors) to different in-mine flammable materials.
They aimed to compare and discriminate the detection and warn-
ing capability of fire sensors based on a neural network program.
While this study generalized mine fire safety and ignored the vari-
ety of structures across different types of mine, Bhattacharjee
(2012) calculated the response time of fire sensors specifically in
a bord-and-pillar coal mine. The authors used WSN to design a fire
detection, alarming, monitoring and prevention system for bord-
and-pillar coal mines. Temperature and gas sensor nodes were dis-
tributed over the mine galleries for analyzing, storing, and sharing
the gathered data in real-time. Thus, this system was able to accu-
rately detect where the fire had occurred and in what direction it
was spreading. The performance of the suggested system was
assessed through rough simulations. The results revealed that the
average network delay differed nearly linearly with the growing
number of hops. The objective was to increase coverage of sensor
nodes to the optimum level and reducing their fire detection delay
to the lowest level. In order to monitor fire hazards in underground
mines using WSN-based systems, a variety of environmental data
collected by the sensor nodes are forwarded to a sink node for pro-
cessing. The sink node is directly linked to a central monitoring sta-
tion aboveground that makes decisions based on processed data
(Muduli, Jana, & Mishra, 2018). To enhance the reliability and accu-
racy of the decision-making process, Muduli et al. (2018) and Basu
(2019) developed novel WSN-based fire monitoring systems using
the fuzzy logic approach. Their proposed systems would assist in
making real-time decisions on intrinsically uncertain and impre-
cise monitoring data. Through simulation experiments, it was
proved that the application of the fuzzy logic-based monitoring
system increases the validity and effectiveness of fire safety risk
assessment in comparison with the wired and offline monitoring
systems already applied in underground coal mines. Another tech-
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nique offered by Muduli, Mishra, and Jana (2019) to address the
problem of imprecise and vague information was based on learn-
ing from the former experiences, named data mining. In this sys-
tem, machine learning was incorporated with the wireless
underground sensor network for monitoring the environmental
factors and prediction of coal mine fire risk. A supervised learning
algorithm was proposed and implemented at the sink nodes
instead of a monitoring center for taking prompt real-time deci-
sions on sensed information in case of any fire risk. The application
of machine learning methods was also targeted in the work of
Zhao, Liu, and Hai (2013) for the classification of fire safety status
in underground mines based on sensed data byWSN and the use of
an unsupervised neural network model called Self-Organizing Map
(SOM). Remotely sensed environmental data (e.g., temperature, gas
density, dust density, wind speed) were sent to the sink node to be
processed with information fusion technology. Using the SOM, the
authors developed an information fusion model, which was effec-
tively able to make high-dimensional environmental data to a low-
dimensional one. This model allowed for classifying coal mine
safety status into four clusters, including safe, generally safe,
abnormal, and dangerous. Therefore, the application of data fusion
techniques was introduced as a useful strategy for improving the
efficiency of WSN-based environment monitoring and the accuracy
of safety predictions and decisions.

4.3.7. Roof fall
The structure variations arising from the unstable nature of

underground mining geology are another threat endangering the
lives of miners. Li and Liu (2009) deployed a Structure-Aware
Self-Adaptive WSN system, SASA, which was able to quickly detect
roof fall risk in underground coal mines. A wireless mesh sensor
network was deployed on the roof and wall of the mine galleries
that assisted in early detection of collapse cavity zones and pre-
cisely location monitoring of personnel. When a roof collapse
occurs in the underground mine, vulnerable monitoring systems
may expose many damages that are infrequent in other WSN sys-
tems. So, SASA was designed based on a sound and strong mecha-
nism for controlling inquiries under unstable conditions and was
capable of detection and reconfiguration of displaced sensor nodes.
The scalability of the SASA prototype was then evaluated by pro-
ceeding with a large-scale trace-based simulation using the actual
data collected from field testing. Hu, Shu, and Song (2013) pro-
posed a hierarchy WSN topology for identification and localization
of coal mine collapse hole underground, where a group of sensor
nodes damaged by collapse creates a hole in the wireless network.
They followed the connectivity-based localizationmethod for mea-
suring the connectivity of sensor nodes in WSN, which was then
calculated for accuracy of detecting collapse hole using Fisher
information. The Fisher information measures the amount of infor-
mation that an observable random variable carries about an
unknown parameter. This system was able to enhance safety by
delivering accurate location information of a collapse hole to the
coal miners.

4.4. Performance evaluation of the communication system in WSNs

As identified by this review paper, WSNs have aided the safety
and health management process in underground mines through
three major research streams, including location monitoring and
tracking, physiological and body kinematics monitoring, and envi-
ronmental monitoring. However, another research stream has also
been followed by some existing studies in this area focusing on
performance evaluation of the communication system in WSNs,
which is discussed in the following paragraphs.

When designing a wireless communication system, predicting
the propagation behavior of radio waves in the hostile and

unstable environment of underground mines will be a major chal-
lenge. The radio propagation in mines may be affected by either
system parameters (e.g., radio signal frequency, antenna radiation
pattern, position of transceivers) or distinctive features of different
mines (mine geometry, miming methods, obstacles and their posi-
tions, humidity, temperature, noise, wall roughness, electromag-
netic properties of walls, etc.) (Hrovat, Kandus, & Javornik, 2013;
Luomala & Hakala, 2015; Ranjan et al., 2018, 2019, 2020; Zhou,
2015). This prevents the adoption of standard communication sys-
tems designed for a normal milieu (Ranjan et al., 2016). In this
regard, different propagation models developed by previous stud-
ies aim to measure the accurate number and location of base sta-
tions and predict high quality and reliable radio coverage for
such complex environments. On the basis of its proposed model,
each paper then critically analyzes the signal propagation charac-
teristics (e.g., strength, attenuation) across underground mines
considering the impacts of the above-mentioned variables. To val-
idate these propagation models for real-life scenarios, experimen-
tal measurements are needed to be compared to the theoretically
predicted values (Bandyopadhyay, 2007; Bedford, Kennedy, &
Foster, 2017; Ranjan, Sahu, & Misra, 2020; Ranjan, 2017;
Ranjany, 2016; Sun & Akyildiz, 2010). In addition, performance
evaluation of both currently available and novel wireless commu-
nication standards for various underground mines is required. For
example, Kennedy and Bedford (Kennedy & Bedford, 2014) carried
out an experimental analysis to characterize the subterranean per-
formance of IEEE 802.15.1 Bluetooth and IEEE 802.11x Wi-Fi com-
munication standards functioning in the 2.4 GHz and 5 GHz
frequency bands. Test results were shown as plots of throughput
versus distance across a mostly line-of-sight path. Since the loss
of line-of-sight is highly probable in WSN (Nerguizian, 2005); fur-
ther tests calculated the impact of multipath propagation. The out-
comes can assist in network planning by providing insights into
the operation of wireless communication networks in under-
ground mines.

On the other hand, taking into account the extreme conditions
threatening underground mine safety, the wireless communication
systems need to be very reliable and durable. For instance, Fiscor
(2008), Yang et al. (2010) discussed the idea of using the Mesh net-
work configuration for mining installations. This delivers a self-
organizing and self-healing wireless network in emergencies,
which means the network is able to make a connection with the
alternative routes for data transmission if the predefined route is
damaged. To design an effective communication link, identifying
the optimal location to place the wireless mesh access point in
the mining gallery is of importance. As an example, Moutairou,
Aniss, and Delisle (2006) chose the optimization algorithm that
allowed detecting the best neighboring access point and the short-
est route in the wireless mesh network.

5. Research gaps and future studies

In this review paper, various applications of WSNs to improve
OSH in the mining industry were investigated. However, a set of
challenges and issues still exist that should be addressed for the
proposed WSN-based systems to improve their effectiveness, reli-
ability, and security. Seven main research gaps that deserve the
attention of future studies are highlighted in this section.

5.1. Further applications of WSNs for underground mining OSH
management

After reviewing the current applications of WSN for improving
OSH in underground mines, this study reveals the gray areas that
received limited or no attention from scholars. These are potential
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areas for future research towards the wide and efficient application
of WSN technology into the various scopes of underground mining
OSH management systems.

In the scope of location monitoring and tracking, WSN has been
widely used for improving rescue operations in underground
mines through detection and trajectory of mine employees on a
real-time basis. Moreover, enhancing the localization accuracy
and performance of off-the-shelf tracking sensors has been also
targeted by a number of studies. However, improving transport
safety in underground mines and estimating the position of work-
forces in blind zones are two areas that have not been sufficiently
investigated. Besides, future studies should also focus on the uti-
lization of WSN technique for monitoring and reporting some of
the important hazardous situations, such as unauthorized action
or entry of workforces inside a pre-defined hazardous zone, colli-
sion accidents between workers and/or heavy equipment, proxim-
ity events resulting from movements of dynamic objects in close
proximity to each other, backover accidents, interference between
tasks of different working groups, and workers’ unsafe behaviors
and risky activities.

In the scope of physiological monitoring, although wearable
wireless physiological sensor systems have been used for timely
rescue responses and monitoring of emergency states, they have
not been adopted for real-time monitoring and early warning of
some of the most important and highly prevalent occupational
hazards for underground miners’ including fatigue and stress.
Moreover, in the scope of body kinematics monitoring, the applica-
tions of wearable wireless kinematics sensor systems for monitor-
ing the awkward posture and whole-body vibration of miners are
the overlooked areas of study.

In the scope of environmental monitoring, although WSN has
been applied for continuous monitoring and recording of various
environmental parameters in underground mines, it’s application
for addressing different calamitous conditions, such as gas concen-
tration, dust concentration, high temperature and humidity, noise
exposure, airflow pressure, fire, and roof fall is not mature enough.

5.2. Application of WSNs from research to real-world practice

The majority of selected articles evaluated WSNs proposed
solution through simulation or laboratory experiments. Thus, the
performance of these systems has not been validated in real under-
ground mine environments.

Taking into account the extreme and dynamic environment of
underground mines, wireless communication and networking
through them face unique challenges (e.g., the possibility of roof/
wall collapse, spatial disorientations, irregular distributions of
minerals, gas concentration, humidity, temperature, and dust)
(Akyildiz & Stuntebeck, 2006; Ranjan et al., 2016). These challenges
substantially affect the real-time propagation characteristics and
strength of wireless signals (Ranjan, 2019). In addition, constant
changes of mine infrastructure create the demands for reconfigura-
tion of wireless access points to preserve the network integrity.
Sensor blind spots are also produced frequently, which influence
the network performance seriously (Dohare, 2015).

To fill the gap between research and practice, the existing sys-
tems should be thoroughly experimented by future researchers
considering real underground mine propagation structures and
environments. Sensor deployment techniques, data transmission
approaches and, propagation channel characterization and model-
ing for WSNs within various underground mines of different types
are few areas that deserve more attention of future studies
(Forooshani, 2013; Ranjan et al., 2016).

To date, deploying the generic, singular models of WSNs–based
communication systems in underground mines has been criticized
(Ranjan et al., 2018, 2019). In this regard, enhancing the scalability

of WSNs is needed to fulfill the specific requirements of under-
ground mine communications in large-scale real-life scenarios
(Ranjan et al., 2016). Moreover, these networks are expected to
adopt continuous variations by covering the newly developed
working areas (Ranjan, 2019).

Since undergroundmines are usually in transition between nor-
mal and disaster environments (Qaraqe, 2013), future research
should have visions of designing intelligent emergency response
systems to be able to detect any sudden change or catastrophic
event on a real-time basis and recover from it by generating a reli-
able wireless communication between inside and outside of the
underground mine (Kumar, 2016; Ranjan et al., 2016; Yang,
Zhang, & Liu, 2010).

Performance evaluation of wireless underground sensor net-
works is another open area for further investigations. Identification
of operating frequencies, the available radio bandwidth, energy
consumption, topology division, path loss and fading for under-
ground wireless communications are among the research priorities
(Akyildiz & Stuntebeck, 2006; Ranjan et al., 2016). Additionally,
this could help design novel communication protocols for under-
ground WSNs as well (Akyildiz & Stuntebeck, 2006; Ranjan,
2019). Understanding the long-term behavior of the evaluated sys-
tems is also necessary (Ruiz-Garcia, 2009). Energy constraint has
been considered as the major performance bottleneck in the cur-
rent applications of WSNs (Pantelopoulos & Bourbakis, 2009).
Implementation of WSNs in underground mines for a long period
necessitates the recognition and availability of the most appropri-
ate methods for powering wireless sensor nodes, such as energy-
harvesting techniques and battery technologies (Kiziroglou,
2016). Also, scheduling mechanisms for energy-efficient communi-
cation in underground WSNs are other possible directions for
future research (Ranjan, 2019).

5.3. Big data analytics and management

The application of WSNs for monitoring underground mine
safety creates large volumes of data on a daily basis. One concern
with the huge data is difficulties in information management and
processing. This challenge disrupts the applications of WSNs to
make real-time decisions. With this said, more scholarly works
are required on developing novel data mining techniques, which
address knowledge extraction from constantly receiving big data
from WSNs (Mahmood, 2013). On the other hand, there is also a
necessity to further explore the methods to use the collected data
for predicting future health and safety risks. In this regard, the
research community should focus more on deploying intelligent
machine learning techniques to perform big data analytics for
the extreme work environment of underground mines (Muduli
et al., 2019; Ranjan, 2019).

Another challenge faced by mine management is the privacy
and security of big data collected by WSNs.

This is a novel area of research that should gainmomentumin the
research community, especially with regard to the emergence of
technologies such as Cloud Computing, analytics engines, and social
networks. Developing privacy and security of big datamodels, tech-
niques and algorithms are some open areas for further investiga-
tions (Cuzzocrea, 2014). For example, Kumari and Om (2016)
developed a user authentication protocol for wireless underground
sensor networks to minimize the security concerns in coal mines.
The protocol mainly aimed to prevent unauthorized access to the
information in WSNs and to resist the system attackers.

5.4. Deploying multiple WSNs-based monitoring systems

To date, some studies have been presented with the aim to inte-
grate personal health monitoring devices into multiple monitoring
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wireless underground sensor networks (Kiziroglou, 2016). Accord-
ing to their results, there is a need to deploy an integrated WSN for
underground mines that is capable of localization and tracking,
environmental monitoring, structural health monitoring and per-
sonnel health condition monitoring simultaneously and continu-
ously (Dohare, 2015). Despite the existing theoretical approaches,
a lot of work remains to be done in this area to reach an efficient
customized design approach (Ranjan, 2019). In further detail,
future researchers should evaluate the strengths and weaknesses
of various sensing technologies applied in OSH of the mining
industry in order to integrate some of them for the purposes of
multi-sensor platforms and multi-parameter monitoring (Antwi-
Afari, 2019; Awolusi et al., 2018). This way, researchers and prac-
titioners take maximum advantage of the complementary capabil-
ities of these sensing technologies and increase the precision of
health and safety risk assessments via using multisensory data
fusion techniques (Ahn, 2019).

5.5. Integration of WSNs with other communication systems

The integration of WSNs and other communication systems
offers the benefits of both technologies supplementing each other.
For this purpose, the integration of WSNs with other systems such
as RFID, GIS, CAN and WoT within underground mines have been
proposed by few past studies (Bo, 2014; Feng et al., 2010;
Moridi, 2015). In addition, the integration of WSN technology into
a fiber-optic platform is also another open area for further investi-
gations (Niu, 2007; Wang, 2009; Yang & Huang, 2007; Zhang,
2014). More effective data transmission, comprehensive and
well-timed remote monitoring and smart early warning, a better
understanding of the existing mine safety risks, and emergency
communication are some benefits that have been pointed out by
previous studies. However, there is still a great potential for future
research in this area.

5.6. Adapting WSNs to the IoT infrastructure

It is envisioned that the IoT paradigm will be incorporated into
undergroundmines (Muduli et al., 2018); as an enabling technology
for protectingundergroundmine safety such as earlywarning of dif-
ferent OSH risk factors andmajor disasters, and safety improvement
systems (Qiuping et al., 2011; Singh, Kumar, & Hötzel, 2018). With
this said, since WSN is considered as a foundation technology for
IoT, adapting WSNs to the IoT infrastructure is of great importance
in the scope of mining safety and health research (Singh et al.,
2018). This way, through connecting the actual work environments
(the sensed data inWSNs) to the digital world (Internet, databases),
the underground mines move towards being smarter and digital
(Muduli et al., 2018; Singh et al., 2018). The notion of smart mine
using IoT can enhance the effectiveness of WSN-based monitoring
systems inundergroundmines. It is because IoTprovides eachobject
of the underground mine with a unique identity and connects it to
the other objects and the internet. Also, IoT enables the research
community, practitioners, mining organizations, and so forth, to
reach large volumes of monitoring data, as well as being connected
with one another (Muduli et al., 2018).

5.7. Autonomous WSNs

The collaboration between WSNs and robotics is another
emerging research area in OSH of underground mines, which
obtains benefits from the integrated utilization of both technolo-
gies (Alam, Eyers, & Huang, 2015; Kumar, 2016).

One potential application of this contribution can be seen in the
movement towards autonomous mining equipment. Robotic WSNs
with the ability to sense and map the mine structure can provide

the operators with the vision to accomplish mine operations with
fewer risks and automated algorithms can keep the mining process
online even in harsh working conditions (Kiziroglou, 2016; Kumar,
2016).

Another promising application of robots in WSNs is the entry of
mobile robots to the underground mines. While carrying sensors,
these robots can explore, characterize, and report the real-time
physical and environmental conditions as well as performing
search and rescue operations (Alzaq & Kabadayi, 2013; Kumar,
2016).

6. Conclusion

Due to the highly complex and hazardous underground mine
working environments, on-site management of OSH in this indus-
try is very challenging. WSN technology is a reliable and promising
approach for regular monitoring of mining operations as well as
safety and health conditions of underground miners. In the present
study, a systematic scoping review of the existing sources of liter-
ature has been undertaken to examine the current applications of
WSN technology to the safety and health of mining sites. The
review has covered 66 relevant peer-reviewed publications,
including 34 journal and 32 conference articles. The results have
been categorized and discussed under three predominant cate-
gories including: (1) location monitoring and tracking; (2) physio-
logical and body kinematics monitoring; and (3) environmental
monitoring. Also, seven major directions for future research and
practical interventions have been identified based on the existing
research gaps including: (1) further applications of WSNs for
underground mining OSH management; (2) application of WSNs
from research to real-world practice; (3) big data analytics and
management; (4) deploying multiple WSNs-based monitoring sys-
tems; (5) integration of WSNs with other communication systems;
(6) adapting WSNs to the Internet of Things (IoT) infrastructure;
and (7) autonomous WSNs. Investigation of these future areas of
research could help improve the performance and applicability of
WSN technology for OSH in the mining industry to reach a holistic
OSH management system for underground miners using WSNs. In
conclusion, this research emphasizes the need for taking concrete
actions to place the development of WSN technology and the use
of information provided via this technology as a top priority of
OSH management systems to create healthier and safer mining
workplaces in the near future.
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a b s t r a c t

Introduction: Light vehicles (<4.5 tons) driven for work purposes represent a significant proportion of the
registered motor vehicles on our roads. Drivers of these vehicles have significant exposure to the dangers
of the road transport environment. To optimize safety for these workers, it is critical to understand the
factors contributing to risk of being involved in an incident. This information can then be used to inform
the review and revision of existing risk controls and the development of targeted prevention activities.
Method: The aim of the study was to undertake a systematic review of the literature to identify the factors
associated with work-related driving incidents. The factors identified in the review were represented
within an adapted version of Rasmussen’s risk management framework (Rasmussen, 1997). Fifty studies
were analyzed following data screening and review of full text. The highest proportion of risk factors
were categorized at the lower levels of the system, including the ‘Drivers and Other Road Users’ level
(n = 20, 44.4%) and the ‘Equipment, Environment, and Meteorological Surroundings’ level (n = 19,
42.2%). There were no risk factors identified at the ‘Regulatory and Government Bodies’ levels of the
framework, confirming the narrow investigative scope of past research and the need to acknowledge a
broader range of factors within and across higher levels of the system. Conclusions: The findings of this
study inform the direction of future research and design of targeted prevention activities capable of cre-
ating system change for the safety of work-related drivers.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Road freight is a safety critical industry and has the highest
death rate of its employees compared to that of other industries
(Safe Work Australia, 2018). While much research has focused on
vehicles over 4.5 tons, smaller vehicles (e.g., passenger vehicles,
utility vans) also represent a significant public health issue. How-
ever, limited attention has focused in this area given the challenges
associated with collecting data on the ‘purpose of the journey’ of a
road traffic incident (i.e., work or personal purposes; Newnam
et al., 2014). Regulators do not routinely collect data specifying
whether a crash occurred when driving for work or personal
purposes.

Despite this, prevention activities are emerging to manage the
risks associated with those who drive a light vehicle for work-
related purposes. In Australia, vehicles driven for work purposes
represent 30% of the registered motor vehicles in Australia, with
some drivers reporting travelling over 1,100 kilometers per week
(Zurich Insurance, 2015). The risk associated with exposure to

the road transport environment is evidenced, globally. To illustrate,
a total of 1,270 U.S. workers driving or riding in a motor vehicle for
work-related purposes on a public road died in 2019 (representing
24% of all work-related deaths; NIOSH, 2022). Moreover, 56% of
these workers who died were not employed in a motor-vehicle
operator job; rather, driving was considered a secondary task to
their primary job role (e.g., in-home nursing care, sales representa-
tives; Newnam, Lewis, & Watson, 2012). This issue creates some
challenges in managing the safety and balancing tensions with
competing priorities (i.e., efficiency and productivity).

Managing the safety of these workers is further challenged
because, unlike the road freight transport industry, a ‘Chain of
Responsibility’ does not exist for managing the safety of workers
who operate a light vehicle. Thus, there is limited guidance in
the roles and responsibilities of those responsible for managing
the safety of workers that operate a light vehicle, beyond what is
specified in Occupational Health and Safety legislation. The com-
plexity of this issue is compounded when there is no single govern-
ment body or department responsible for managing the allocation
of resources for road safety outcomes or are tasked with managing
data and monitoring road safety issues (Newnam & Muir, 2021).
This is even the case in countries where the national road safety
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strategy and associated legislation has adopted the Safe System
concept, such as Australia (Muir, Johnston, & Howard, 2018). Given
the sheer number of stakeholders capable of influencing change
within this dynamic environment, and no central point of respon-
sibility, it is not surprising that limited lessons and evidence-based
best practice approaches specific to driving light vehicles for work-
related purposes have been established for preventing associated
road safety incidents.

Indeed, the lack of ability to learn from crashes or near crashes
is a critical barrier to improving the safety of this workforce.
Warmerdam et al. (2017) interviewed employees across 79 work-
places that employ individuals to drive a light vehicle for work-
related purposes across two states in Australia and identified that
few have practices in place for investigating incidents involving a
work vehicle. Rather, incidents (e.g., crashes or near crashes)
involving a light vehicle are investigated by the companies that
insure the vehicle, not the employer. The limitation with this
approach is that motor-vehicle insurers use a narrow investigative
scope, as a driver interview is used as the primary source of infor-
mation. This means that investigations are focused mainly on the
role of the driver and their actions at the time of the crash. Drivers
are often given little reason or opportunity to reflect upon any
organizational or external factors that may contribute to crashes,
such as vehicle maintenance, scheduling, and regulatory restric-
tions. Furthermore, there is often limited consultation with other
key stakeholders in the system (e.g., fleet managers, supervisors;
Newnam, Griffin, & Mason, 2008) that could provide insight into
the broader system of factors that contributed to risk in any
work-related driving incident.

Historically, crash investigation for heavy vehicle crashes has
been described as insufficient for learning and developing appro-
priate control measures (Newnam & Goode, 2015; Newnam,
Warmerdam, Sheppard, Griffin, & Stevenson, 2017), and as such,
there is also little substantive learning for light vehicles that can
be transferred from investigation processes undertaken in the road
freight transport industry. Again, these investigations primarily
focus on driver-level factors such as driver characteristics (e.g.,
age, gender) and behavior (e.g., inappropriate speed, fatigue, and
drug use). These types of toolkits imply drivers are to ‘‘blame”
for crashes, ignoring the broader system of factors influencing
crash involvement.

The lack of systematic and rigorous investigation of system and
organizational-level circumstances of individual crash incidents
involving light or heavy vehicles is an impediment to progressing
the safety improvements needed to ensure worker and public
safety on roads. Reductionist-focused incident investigation mod-
els and methods have also been identified as inadequate across
other safety critical industries, including healthcare (Newnam,
Goode, Read, & Salmon, 2020; Newnam, Goode, Read, Salmon, &
Gembarovski, 2021). More consistent with current thinking, a
systems-thinking approach (Rasmussen’s risk management frame-
work and the associated Accimap technique; Rasmussen, 1997) is
required as a first step to better understand these incidents, fol-
lowed by a review and revision of existing risk controls to develop
feasible, effective, and practicable control measures.

In other high-risk industries (e.g., healthcare), systems-thinking
models and analysis methods now represent an accepted approach
for optimizing safety activities (Cassano-Piche, Vicente, &
Jamieson, 2009; Goode, Salmon, Lenne, & Finch, 2018; Hulme,
Stanton, Walker, Waterson, & Salmon, 2019; Newnam et al.,
2020; Newnam et al., 2021). These models and methods are under-
pinned by the idea that incidents occur due the interaction
between multiple factors across a system (Leveson, 2011;
Rasmussen, 1997). The behavior of the individual-worker, the
equipment used to complete the work task, and the safety prac-
tices of employers are only some of the factors that need to be con-

sidered in an incident investigation. To illustrate this type of
investigation tool, Newnam et al. (2020) developed the Patient
Handling Injuries Review of Systems (PHIRES) tool to help guide
practitioners in the healthcare sector in a system-thinking investi-
gation following the report of a musculoskeletal injury to staff
associated with patient handling. The tool is underpinned by the
systems-thinking approach, Rasmussen’s Risk Management frame-
work, and the associated Accimap technique (Rasmussen, 1997;
Svedung & Rasmussen, 2002). The multiple work systems, repre-
sented as hierarchical levels, were adapted in the PHIRES tool to
represent the healthcare system. A classification scheme was
developed to describe the work-related and societal factors, in
addition to the physical factors, typically associated with increased
risk relating to the work task of patient handling, and subsequently
represented at each level of the healthcare system. These factors
were identified through a systematic review of the literature and
in consultation with key stakeholders in the industry.

Thus, there is much that can be learned from previous research
to move toward improved prevention of work-related driving inci-
dents. Systems thinking models (i.e., Rasmussen’s risk manage-
ment framework (1997) are needed to best understand the
factors associated with the risk of work-related driving incidents.
The first step in creating systemic change in prevention activities
is to identify the range of factors contributing to work-related driv-
ing incidents. Such an approach is critical to move beyond the cur-
rent reductionist thinking and towards a more comprehensive
understanding of the system of factors contributing to crashes.
Improving the capture of data related to risk in work-related driv-
ing will inform the development of targeted prevention activities,
including creating a culture where responsibility for safety is
shared across the system.

The aim of the current study is to undertake a systematic
review of the literature to identify the system of factors associated
with work-related (light or heavy) vehicle driving incidents. The
factors identified in the review will be represented on Rasmussen’s
risk management framework (Rasmussen, 1997). This framework
has been adapted to align with the typical system that employs
individuals that operate a vehicle for work-related purposes and
has also drawn upon learnings from the road freight transportation
system (Newnam, Goode, Salmon, & Stevenson, 2017). The five
levels of the system are described in Table 1.

2. Method

A systematic review of the literature was undertaken, guided by
PRISMA guidelines, to identify factors contributing to work-related
driving incidents, which were defined as crashes and near crashes
(i.e., near misses). A comprehensive list of search terms was devel-
oped to guide the search using the categories: (i) primary context,
including workplace (i.e. workplace, work-related, occupation*,
vocation*, professional) AND driving (driv*, transport, fleet, vehi-
cle*, commercial), AND injury/incident (injur* (NOT chemical),
safety, risk); (ii) outcome focused terms (e.g. crash*, accident*,
ticket*, fine*, penalty, infringement*, near miss*, loss of control);
and (iii) Other terms to help to limit/refine the scope of the litera-
ture to papers with a focus on factors contributing to such inci-
dents (e.g. caus*, contrib*, predict*, risk factor*, determin*,
predict*).

The search was restricted to journal articles published from
2010 through 2021. Six databases were used to conduct the search
(Medline, PubMed, AMED, Scopus, PsycINFO and Web of Science).
Studies that identified the relationship between work-related driv-
ing crashes for both light and heavy vehicles were included to
expand the scope of knowledge.
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The search strategy is outlined in Fig. 1. The initial search
resulted in 346 articles that were imported into EndNote. Dupli-
cates were then identified and deleted (n = 183), leaving 163 arti-
cles that were examined in the title and abstract screening stage.
Two authors (AS, RS) independently screened approximately 60%

of the titles and abstracts (n = 98) for potentially relevant articles,
and reached 97% agreement. A third author (SN) made the final
decision for the remaining three titles and abstracts. One author
(RS) completed the title and abstract screening for the remaining
65 articles. The title and abstract screening stage resulted in the
exclusion of 100 articles for reasons including that the study was
not focused on work-related driving, no risk factors were identi-
fied, or the outcome variable was not relevant to crashes or crash
risk. Sixty-three articles were retained for the full text stage. These
articles were independently reviewed by two authors (AS, RS),
resulting in 95% agreement. A third author (SN) made the final
decision for the remaining three articles. Thirteen articles were
excluded during this stage (see reasons for exclusion in Fig. 1),
resulting in 50 articles being retained for the data extraction stage.

Data extracted from each of the 50 articles in the final sample
included: industry; country/region in which the study was con-
ducted; employee cohort; outcome variables; and risk factors
(mapped onto systems thinking classification scheme). Consistent
with the aim of this study, all risk factors identified in the articles
were categorized at a level of the system irrespective of the quality
of the study or statistical significance with the outcome variable.

3. Results

Of the 50 articles included in this review, the most common
industries represented were road freight transportation (n = 18,
36.0%) and farming/agriculture (n = 10, 20.0%). The taxi and bus
industries each accounted for 14.0% of the articles included (n = 7
each), followed by emergency services (n = 4, 8.0%), delivery riders
(n = 2, 4.0%), and mining (n = 1, 2.0%). There were four articles
(8.0%) that did not specify a particular industry. Note that the total
sum by industry is greater than 50 due to some articles including
more than one industry type. The employee cohort in each study
consisted of a combination of light and heavy vehicle employees
driving for work-related purposes within the aforementioned

Table 1
Hierarchical levels of the system of factors contributing to work-related vehicle
incidents (adapted from Rasmussen’s Risk Framework, 1997).

Government, Regulators &
External Influences

Factors external to the organization relating to
laws governing safe working practices. This
level also considers factors associated with
external influencers (media reporting, social
media, community attitudes).

Governance &
Administration

Factors associated with personnel working for
companies, as well as policies and guidelines
that regulate work practices.

Operations Management Factors associated with the employer and
different levels of management personnel (e.g.,
supervisor, fleet manager). Factors at this level
typically occur prior to the incident but can
also include decisions and actions made during,
or in response to, the incident. Contributory
factors related to policy, planning and
budgeting typically occur well before the crash
itself, and may even exist years before the
crash occurred.

Drivers & Other Road Users Factors contributing to the incident prior to,
and during, the crash. This level includes
factors related to actors directly involved in the
operation of the vehicle (including passengers)
as well as other actors at the scene of the crash
(e.g. other drivers).

Equipment, Vehicle &
Surrounding
Environment

Factors associated with the vehicle and
equipment (e.g., in-vehicle telemetry), the
physical road environment (e.g., road surface
conditions), and the ambient and
meteorological conditions prior to or during
the crash.

Iden�fica�on

Included

Title and abstract 
screening

Full text eligibility 
check

Records iden�fied through 
database searching 

n=346

Records screened a�er 
duplicates removed 

n=163

Records excluded
n=100

Full-text ar�cles assessed for 
eligibility 

n=63

Full-text ar�cles excluded
n=13 

Not work-related (n=4) 
No risk factor iden�fied (n=4) 

Outcome not focused on 
crashes/crash risk (n=5)

Studies included in data analysis
n=50 

Fig. 1. Flow chart of the systematic search.
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industries (e.g., road freight drivers, farmers, bus drivers), and
emergency services (i.e., police officers, firefighters, and ambulance
drivers).

The largest proportion of studies were from the United States
(n = 19, 38.0%). The remaining articles represented diverse coun-
tries/regions around the world including Asia (n = 15, 15.0%), Aus-
tralia/New Zealand (n = 6, 12.0%), Europe (n = 3, 6.0%), Iran (n = 3,
6.0%), Africa (n = 2, 4.0%), and South America (n = 2, 4.0%).

A work-related driving incident was the outcome of interest
when conducting the search. As such, dependent variables
included crashes (n = 29, 58.0%), injury severity (n = 8, 16.0%),
crash risk (n = 6, 12.0%), near crashes (n = 5, 10.0%), loss of control
events (n = 3, 6.0%), unsafe driver actions (n = 1, 2.0%) and aberrant
driving behavior (n = 1, 2.0%).

A total of 45 risk factors were identified by the systematic
review. Each risk factor was mapped onto the relevant level of an
adapted version of Rasmussen’s risk management framework
(Rasmussen, 1997). Table 2 shows that the highest proportion of
risk factors were categorized at the Drivers and Other Road Users
level (n = 20, 44.4%), followed closely by risk factors at the Equip-
ment, Environment, and Meteorological Surroundings level
(n = 19, 42.2%). There were no risk factors identified at the Govern-
ment, Regulatory and External Influencers level of the framework.

A description of the risk factors identified at the three lower
levels of the system follows (with associated reference). The risk
factors are sub-categorized and the corresponding articles in which

the risk factors were identified are referenced. The number of risk
factors identified within each article ranged from one to eight.
Across all levels of the system, the most commonly cited risk fac-
tors were road design (n = 13), fatigue/sleepiness (n = 11), and traf-
fic violations (previous history) (n = 10).

Table 3 shows the risk factors (n = 19) identified at the Equip-
ment, Environment and Meteorological Surroundings level. This
level encompasses a range of factors related to features and design
of the vehicle (n = 8 risk factors), the road environment the time of
year (n = 8 risk factors) and meteorological conditions (n = 3 risk
factors). Risk factors categorized as ‘Environment’ were identified
in the greatest number of articles overall at this level. Road design
(n = 13), time of day/week (n = 8), and road surface conditions
(n = 6) were the most commonly identified risk factors across the
articles at this level.

Table 4 describes the risk factors identified at the Drivers and
Other Road Users level. This level encompasses a broad range of
factors related to the safe operation of the vehicle by the driver,
(n = 17 risk factors) including several factors related to the physical
and mental state of the driver (n = 1 risk factors), as well as design
of the work environment (n = 2 risk factors). Seventeen risk factors
were categorized within the category of Driver and represented the
greatest number of articles overall at this level. Fatigue (n = 11),
traffic violations (n = 10), and driving behavior (n = 9) were identi-
fied as risk factors in the greatest number of articles within this
level of the system. Physical/medical condition (n = 8) and driver
experience/competence (n = 6) were also frequently cited risk fac-
tors contributing to work-related driving incidents.

Table 5 describes the risk factors identified at the Companies
and Employers level and encompassed a range of factors related
to leadership (n = 2 risk factors) and work scheduling (n = 4 risk
factors). Rostering (i.e., assignment of employees to a duty sched-
ule; work scheduling, n = 7) was the most frequently identified risk
factor across all articles at this level; however, several articles that
identified rostering as a risk factor also identified another risk fac-
tor at this level. This manifests as an overlap of articles for these
risk factors and demonstrates that these factors are likely closely
related to each other. Leadership includes two risk factors that
are related to the culture of the workplace, including organiza-

Table 2
Risk factors categorized at the three levels of the framework.

Level Number of Risk
Factors

%

Equipment, Environment and Meteorological
Surroundings

19 42.2

Drivers and Other Road Users 20 44.4
Operations Management 6 13.4
Governance and Administration 0 0
Government, Regulators & External Influences 0 0

Table 3
Risk factors identified at the Equipment, Environment, and Meteorological Surroundings level.

Level of system Risk factors

Equipment Lack of warning signals (Missikpode, Peek-Asa, Young, & Hamann, 2018; Wang, Zhang, Li, & Liang, 2019)
In-vehicle technology (Stevenson et al., 2014)
Vehicle specifications (Chen & Zhang, 2016; Lemp, Kockelman, & Unnikrishnan, 2011)
Design of vehicle (Haq, Zlatkovic, & Ksaibati, 2020; Milosavljevic et al., 2011)
Lack of maintenance (Wang & Prato, 2019)
Road signage (Chu, 2012, 2016; Mehlhorn, Wilkin, Darroch, & D’Antoni, 2015; Ramirez et al., 2016)
Load/storage (Lemp et al., 2011; Shipp, Vasudeo, Trueblood, & Garcia, 2019; Stevenson et al., 2014)
Lack of or inappropriate personal protective equipment (Mitchell, Bambach, & Friswell, 2014)

Meteorological
surroundings

Lighting (Haq et al., 2020; Lemp et al., 2011; Ramirez et al., 2016; Useche, Cendales, Alonso, & Montoro, 2020)
Weather conditions (Chen & Zhang, 2016; Chu, 2016; Das, Islam, Dutta, & Shimu, 2020; Haq et al., 2020; Lemp et al., 2011; Mehlhorn et al.,
2015; Missikpode et al., 2018; Stevenson et al., 2014; Wang & Prato, 2019; Wang, Zhang, et al., 2019)
Visibility (Chen & Zhang, 2016)

Environment Road surface conditions (Besharati & Kashani, 2018; Chen & Zhang, 2016; Milosavljevic et al., 2011; Missikpode et al., 2018; Mitchell et al.,
2014; Useche, Cendales, Alonso, & Montoro, 2020)
Urban/rural (Chu, 2012; Das et al., 2020; Harland, Bedford, Wu, & Ramirez, 2018; Missikpode et al., 2018; Mitchell et al., 2014)
Road furniture (Chu, 2012; Mehlhorn et al., 2015)
Time of day/week (Chen & Zhang, 2016; Das et al., 2020; Harland et al., 2018; Mehlhorn et al., 2015; Useche, Cendales, Alonso, & Montoro,
2020; Wang & Prato, 2019; Zhang et al., 2017; Zuzewicz, Konarska, & Luczak, 2010)
Traffic congestion (Das et al., 2020; Lemp et al., 2011)
Season of the year (Chen & Zhang, 2016; Zhang et al., 2017)
Road design (Carman et al., 2010; Chen & Zhang, 2016; Chu, 2012; Das et al., 2020; Gorucu, Murphy, & Kassab, 2017; Haq et al., 2020; Lemp
et al., 2011; Mehlhorn et al., 2015; Missikpode et al., 2018; Mitchell et al., 2014; Ranapurwala, Mello, & Ramirez, 2016; Stuckey, Glass,
LaMontagne, Wolfe, & Sim, 2010; Wang & Prato, 2019)
Speed limit (Chu, 2012, 2016; Das et al., 2020)

S. Newnam, R. St Louis, A. Stephens et al. Journal of Safety Research 83 (2022) 410–417

413



tional policies regarding health, safety, and wellbeing of employees
within the company.

4. Discussion

This goal of this study was to establish a systems-perspective
evidence-base to better understand the range of factors contribut-
ing to work-related vehicle driving incidents. This goal was
achieved through undertaking a systematic review of the literature
to identify the factors contributing to incidents using a systems
perspective. To do this, the factors identified in the systematic
review were mapped onto Rasmussen’s Risk Management frame-
work (1997). The findings of this study address a gap in current
knowledge of the system of factors contributing to work-related
driving incidents. This information is important to inform the
direction of future research and design of targeted prevention
activities.

This study found that most factors were identified at the ‘Dri-
vers and Other Road Users’ and ‘Equipment, Environment and
Meteorological Surroundings’ levels. This finding is not surprising
considering that existing data collection methods use a narrow
investigative scope, focusing primarily on the actions of the driver,
the vehicle, and the immediate environment surrounding the inci-
dent. While it is critical to capture this information, it is equally as

important to acknowledge a broader range of factors within and
across other levels of the system that have contributed to the like-
lihood of the crash, potentially in the weeks or months leading up
to the work-related driving incident.

To illustrate, there is research to support the argument that a
work-related drivers’ engagement in inappropriate speed is influ-
enced by higher-level factors such as work pressure (Newnam,
Greenslade, Newton, & Watson, 2011), organizational systems
and practices (Newnam, Warmerdam, et al., 2017), and the priority
and value given to safety in the workplace (or lack thereof;
Newnam et al., 2008). Many of these middle-level factors were
identified in the results of this study. However, there were no risk
factors identified at the Regulatory and Government Bodies levels
of the framework. We know that in some countries (i.e., Australia,
South Africa, Canada, New Zealand) that responsibility for safety
has been allocated to actors at these higher levels for some forms
of transportation; for example, Chain of Responsibility legislation
in Australia is used to define the roles and responsibilities of actors
involved in the heavy vehicle road transport system. Addressing
this gap in scientific knowledge presents an opportunity for future
research to better understand the influence of regulatory and gov-
ernment bodies in light vehicle work-related driving incidents and
areas where they can mitigate risk and improve consultation
across levels of the system.

Table 4
Risk factors identified at the Drivers and Other Road Users level.

Level of
system

Risk factors

Work design Job demands (Mamo, Newnam, & Tulu, 2014; Useche, Cendales, Alonso, & Orozco-Fontalvo, 2020; Zheng, Ma, Guo, Cheng, & Zhang, 2019)
Safety culture (Mamo et al., 2014)

Drivers Aggression (Harland et al., 2018; Lemp et al., 2011; Wang, Zhang, et al., 2019)
Inattention/distractions (Chu, 2016; Harland, Carney, & McGehee, 2016)
Alcohol/drugs (Haq et al., 2020; Harland et al., 2018; Lemp et al., 2011; Mitchell et al., 2014; Newnam, Blower, Molnar, Eby, & Koppel, 2018)
Personality traits (Clay, Treharne, Hay-Smith, & Milosavljevic, 2014; Mallia, Lazuras, Violani, & Lucidi, 2015)
Safety attitudes (Nickenig Vissoci et al., 2020; Sun & Tian, 2018)
Physical/medical condition (Anderson et al., 2012; Barger et al., 2015; Besharati & Kashani, 2018; Das et al., 2020; Haq et al., 2020; Milosavljevic et al.,
2011; Thiese et al., 2017; Zhang et al., 2017)
Driving behaviour (Ba, Zhou, & Wang, 2018; Chen & Zhang, 2016; Chu, 2012; Nickenig Vissoci et al., 2020; Shams, Mehdizadeh, & Khani Sanij, 2020;
Shin, Park, & Jeong, 2018; Useche, Cendales, Alonso, & Orozco-Fontalvo, 2020; Wang, Li, & Prato, 2019; Zuzewicz et al., 2010)
Experience/competence (Carman et al., 2010; Chen & Zhang, 2016; Stevenson et al., 2014; Wang & Prato, 2019; Zheng et al., 2019; Zuzewicz et al.,
2010)
Hazard perception skill (Besharati & Kashani, 2018; Sun & Tian, 2018)
Seat belt (Haq et al., 2020; Newnam et al., 2018; Shipp et al., 2019; Stuckey et al., 2010)
Drugs/medication (Ogeil et al., 2018; Reguly, Dubois, & Bedard, 2014)
Risk perceptions (Clay et al., 2014; Shams et al., 2020; Zheng et al., 2019)
Mobile phone use (Ba et al., 2018)
Fatigue/Sleepiness (Ba et al., 2018; Besharati & Kashani, 2018; Chen & Zhang, 2016; Haq et al., 2020; Kim, Jang, Kim, & Lee, 2018; Mitchell et al., 2014;
Shin et al., 2018; Stuckey et al., 2010; Wang, Li, et al., 2019; Wang, Zhang, et al., 2019; Zhang et al., 2017)
Traffic violations (Chu, 2012, 2016; Mallia et al., 2015; Mehdizadeh, Shariat-Mohaymany, & Nordfjaern, 2019; Nik Mahdi, Bachok, Mohamed, & Shafei,
2014; Reguly et al., 2014; Shams et al., 2020; Shipp et al., 2019; Wang, Zhang, et al., 2019; Zhang et al., 2017)
Speed (Chu, 2016; Milosavljevic et al., 2011; Mitchell et al., 2014; Newnam et al., 2018; Stuckey et al., 2010)
Sleep quality (Nik Mahdi et al., 2014; Shams et al., 2020)

Other road
users

Behavior: general (Gorucu et al., 2017; Shipp et al., 2019)

Table 5
Risk factors identified at the Operations Management level.

Level of
system

Risk factors

Leadership Mental health/wellbeing/OHS (Baba, Miyama, Sugiyama, & Hitosugi, 2019; Sun & Tian, 2018)
Safety culture (Sun & Tian, 2018)

Work
scheduling

Rostering (Besharati & Kashani, 2018; Kim et al., 2018; Mehdizadeh et al., 2019; Nik Mahdi et al., 2014; Torregroza-Vargas, Bocarejo, & Ramos-Bonilla,
2014; Wang & Wu, 2019; Zheng et al., 2019)
Shift work (Besharati & Kashani, 2018; Ogeil et al., 2018; Stevenson et al., 2014; Wang & Wu, 2019)
Breaks (Baba et al., 2019; Chen & Xie, 2014; Stevenson et al., 2014; Torregroza-Vargas et al., 2014)
Workload (Ba et al., 2018; Wang, Li, et al., 2019; Zheng et al., 2019)
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This learning could be achieved through development of a sys-
tem thinking incident investigation tool designed to guide practi-
tioners in identifying risk factors associated with work-related
driving crashes. As established in previous research (Newnam
et al., 2020; Newnam et al., 2021), such a tool would provide a
comprehensive and standardized approach to identifying targeted
prevention activities and creating a shared responsibility for safety
across the system; that is, prevention activities focused beyond the
lower levels of the system and focused on creating systemic change
as opposed to isolated change to individual elements of the system
(e.g., speed enforcement). It is also possible that the findings from
this tool could be used to develop Chain of Responsibility legisla-
tion for the use of light work-related vehicles.

5. Limitations

A potential limitation of the current study is that the systematic
review did not include a review of the grey literature. We have
learned through the development of system thinking investigation
tools (Newnam et al., 2020, 2021) that there are factors at other
levels of the system not yet identified in the academic literature
due to the historically narrow focus. Thus, future research should
ensure that the findings of this study are supplemented with infor-
mation gained through a scan of the grey literature, as well as
knowledge from subject matter experts, to provide a comprehen-
sive understanding of risk factors associated with work-related
driving incidents. This information would provide a strong founda-
tion for informing the review and revision of current risk controls
and the development of targeted prevention activities focused on
creating systemic change.

6. Conclusions

The findings of this study address a gap in current knowledge
that has inhibited prevention activities to improve the safety of
work-related drivers. Although this study identified that the scope
of knowledge on risk factors associated with work-related driving
incidents is reductionist, the findings present an avenue for future
research to address these gaps. Designing targeted prevention
activities focused on sharing the responsibility of safety across
the system could be achieved through improving the capture of
data. The findings of this study present the first step in develop-
ment of a system thinking tool that comprehensively captures
the range of factors that should be considered in the investigation
of light vehicle work-related driving crashes.
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a b s t r a c t

Introduction: Apprenticeships combine mentored on-the-job training with related instruction to develop
a workforce with the skills sought by employers. Workplace safety is an important component of appren-
ticeship training. Whether that training results in fewer work injuries, however, is largely unknown.
Method: We linked Washington’s registered apprenticeship data, plumber certification (licensing) data,
employment data, and workers’ compensation claims to compare claim rates among journey level plum-
bers (JLP) by apprenticeship participation. We used negative binomial regression models to estimate
rates of total claims, wage replacement/disability claims, acute injuries, and musculoskeletal disorders
(MSD), adjusted for worker characteristics. Results: Among JLP certified between 2000 and 2018, rates
among JLP with no apprenticeship training were 46% higher for total workers’ compensation claims (ad-
justed Rate Ratio (aRR) = 1.46, 95% CI: 1.26–1.69) and 60% higher for wage replacement/disability claims
(aRR = 1.60, 95% CI: 1.22–2.11), compared to rates among JLP who completed a plumbing apprenticeship.
Apprentice graduates experienced a greater decline in the rate of total claims between the 5 years pre-
ceding JLP certification and the years after certification (55.3% vs. 41.4% among JLP with no apprentice-
ship training). Greater rate reductions among JLP apprentice graduates were also observed for acute
injuries and MSD, although the decline in MSD was not significantly different from the decline among
JLP with no apprenticeship training. Conclusions: Successful completion of a plumbing apprenticeship
program is associated with fewer work injuries throughout the career of a JLP. Apprenticeships appear
to play a key role in reducing work injuries among JLP, especially acute injuries. Practical Applications:
Apprenticeships are an effective model for reducing workplace injuries. The mechanisms by which
apprenticeship training improves workplace safety should be identified to better inform injury preven-
tion efforts among apprentices as well as among workers outside of a formal apprenticeship
arrangement.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Apprenticeships are a longstanding model of workforce devel-
opment. Available for an increasing array of trades and professions,
formal apprenticeship programs registered with the federal gov-
ernment train participants through on-the-job training (OJT)
supervised by experienced mentors and related/supplemental
instruction (RSI), which may include training seminars, online
courses, or classroom instruction at community colleges or techni-
cal schools. Employers, labor unions, or business associations
develop and sponsor apprentice programs, often supported, in part,

through federal and state funding. Most apprenticeship programs
take multiple years to complete. Participants earn wages during
their apprenticeship, receive a nationally recognized credential
upon graduation from the program, and most find employment
in their trade immediately upon completion of the program.
Acceptance into apprentice programs is often competitive, with
applicants outnumbering spaces. Apprenticeships are currently
experiencing renewed interest as a means to ensure that workers’
skills meet the needs of contemporary employers (US Department
of Labor, 2021).

State and federal oversight of apprenticeship programs extends
back more than 80 years (National Aprenticeship Act, 1937).
Occupation-specific program standards define required hours of
OJT for specific work processes, ratio of apprentices to journey-
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level employees, hours of RSI, and wages. Federal regulations
require that apprenticeship programs include workplace safety
training in both the OJT and RSI (Standards of Apprenticeship,
2022).

The many documented benefits to apprenticeships include
higher lifetime earnings and stable employment for apprentice
graduates, and higher productivity and lower turnover among
employers (Lerman, Eyster, & Chambers, 2009; Reed, Liu,
Kleinman, Mastri, Reed, Sattar, & Ziegler, 2012). Increased work-
place safety is an assumed benefit of apprenticeship training, in
part because of the required safety training, as well as the struc-
tured learning environment of apprenticeship programs that can
be leveraged to promote workplace safety and health competen-
cies (Guerin et al., 2020). However, there is little evidence to either
support or refute the assumption that apprentice training reduces
work injuries. Generally, research into health outcomes among
apprentices has focused on work-related injuries and illnesses
among apprentices compared to more experienced workers, and
have highlighted the increased risk of injuries among apprentices
(Lipscomb, Dement, Nolan, Patterson, & Li, 2003; Sahl, Kelsh,
Haines, Sands, & Kraus, 1997). Less is known about the work-
related injury experience of workers who participated in appren-
tice programs compared to peers with no apprenticeship
participation.

We linked state databases of licensed certified plumbers,
apprenticeship participants, employment history, and workers’
compensation claims to compare rates of work-related injuries
and illnesses of journey level plumbers (JLP) who completed a
plumbing apprenticeship to those who did not complete an
apprenticeship. Participation in apprenticeships is not the result
of random selection. Factors that lead an individual to choose to
enroll in—and complete—an apprentice program may also influ-
ence aspects of occupational safety. We used worker and employer
characteristics captured in the administrative databases in an
attempt to control for some of the underlying differences between
apprentices and non-apprentices.

2. Materials and methods

2.1. Journey level plumber data

To work in the plumbing trade in Washington, all workers must
be licensed and certified by the Washington State Plumber Certifi-
cation Program (18.106 RCW). Plumbers achieve journey level cer-
tification by fulfilling the state’s requirements as a plumber
trainee, working 8,000 hours (approximately 4 years) under the
supervision of a journey level plumber, completing 8 hours of con-
tinuing education annually, and passing the state’s plumber exam.
Plumber trainees may fulfill the requirements as an apprentice, but
apprenticeship is not required to become a certified JLP.

A database of all individuals licensed to perform plumbing work
in Washington is maintained by the Washington State Department
of Labor & Industries (L&I), and includes the worker’s name, date of
birth, social security number, trade specialty, certification start and
end dates, and active status. It serves as a registry of all workers in
the occupation, with entry and exit dates into and out of the
profession.

We chose to focus on plumbers rather than other occupations
because of the availability of the professional licensing data, and
because plumbing apprenticeships are among the occupations
with the greatest enrollment (US Department of Labor, 2020). Jour-
ney level plumbers were selected over other plumbing specialties
(e.g., residential) because the size of the population, stratified by
apprenticeship participation status, was sufficient for analysis.

The study included JLP certified between January 1, 2000 and
December 31, 2018.

2.2. Plumbing apprentice participation

All individuals who enroll in a registered apprentice program in
Washington are recorded in Washington’s apprentice registry data,
also maintained by L&I, which includes the participant’s name,
social security number, apprenticeship start and end dates, pro-
gram completion status, and a Standard Occupational Classifica-
tion code to describe the type of apprentice program.

We identified apprentice program participation among JLP by
linking social security numbers across the plumbing licensing data
and apprentice registry data. Plumbers were grouped into one of
three categories of apprentice program participation: completion
of a plumbing apprentice program within four quarters of the JLP
certification date; no participation in any apprentice program; or
other apprentice program participation – including incomplete
plumbing apprenticeship, completion of a plumbing apprentice
program more than four quarters from the JLP certification date,
or participation in an apprenticeship program for an occupation
other than plumbing.

2.3. Work-related injury data

We used Washington workers’ compensation claims data to
evaluate work injuries among JLP.

In Washington, with few exceptions, employers are required to
obtain workers’ compensation insurance from the state (referred to
as state funded), unless they are approved by the state to self-
insure. L&I administers the state funded program, oversees the
self-insured program, and maintains records on claims filed
through either program. We included both state funded and self-
insured workers’ compensation claims data, for claims involving
wage replacement and/or disability payments and claims limited
to medical-aid payments. In Washington, a claimant may be eligi-
ble for wage replacement or disability benefits if unable to work
following a three-day waiting period.

Workers compensation claims among JLP were identified using
the plumber’s social security number. We assessed the total num-
ber of accepted claims (medical aid-only claims plus wage replace-
ment/disability claims) and wage replacement/disability claims
experienced during the JLP’s active licensure or through 2019, for
plumbers whose licenses were active beyond 2018. We also
assessed workers’ compensation claims for injuries or illnesses
that occurred in the five years prior to the certification start date.

We used Occupational Injury and Illness Classification System
(OIICS v1) codes, assigned by L&I staff based on narrative injury
descriptions reported on the claim initiation form, to characterize
injuries and illnesses. We followed a definition of musculoskeletal
disorders based on a combination of OIICS nature of injury and
event or exposure codes, developed and validated previously using
Washington workers’ compensation data (Marcum & Adams, 2017;
Silverstein, Viikari-Juntura, & Kalat, 2002; Spector, Adams, &
Silverstein, 2011). We defined acute injuries as claims that did
not meet the definition of a musculoskeletal disorder and which
were assigned an OIICS nature code within the division ‘‘Traumatic
Injuries and Disorders.” Completeness of OIICS codes differs by
insurer; nearly all state funded claims in this study were coded
while almost 70% of self-insured claims were missing OIICS codes,
reflecting the relatively limited injury description data available for
self-insured claims. Using the distribution of codes assigned to
state funded claims, we randomly assigned OIICS codes to replace
the missing values.

To differentiate claimants working as plumbers at the time of
injury or illness from those employed in some other occupation,
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we used the Washington State Risk Classification system (a
method for setting insurance premiums by grouping types of work
according to risk). To compare claims at the same point in their
development, we evaluated claim costs incurred at one-year
post-injury, converted to 2018 US dollars using the Consumer Price
Index to adjust for inflation. Analysis of costs are limited to state
funded claims because of missing or incomplete data among self-
insured claims.

2.4. Employment data

To calculate claim rates, hours worked by JLP were extracted
from the Washington Unemployment Insurance (UI) database,
which includes quarterly records of employer-reported wages
and hours worked for each worker in the state covered for unem-
ployment insurance, by worker name and social security number.
Using the JLP social security numbers, we extracted quarterly
employment data for the five years preceding the license start
through the license end date or 2019Q4, whichever occurred first.
We excluded from the analysis JLP for whom no wage and hour
data was found in UI, as we could not estimate hours-based injury
rates among this group. Individuals not found in the UI data may
be self-employed, employed out of state, or out of the work force.
Self-employed individuals (with no employees) who meet the
state’s definition of an independent contractor are exempt from
both Washington’s workers’ compensation insurance coverage
and unemployment insurance coverage (Revised Code, 2002). JLP
with wage and hour data reported in UI were considered to be
employed for wages, and included in the final analysis.

2.5. Statistical analysis

Differences in characteristics between the three categories of
plumbing apprenticeship status (completed plumbing apprentice-
ship, never enrolled in apprenticeship, participated in some
apprenticeship training) were assessed using chi square tests for
homogeneity of proportions. To test for differences in continuous
variables following either normal or non-normal distributions,
we used analysis of variance and Kruskal-Wallis tests, respectively.

We used negative binomial regression models to estimate rates
of accepted claims, rates of wage replacement/disability claims,
rates of accepted claims for acute injuries, and rates of accepted
claims for musculoskeletal disorders. To account for underlying
differences between the apprenticeship groups, the final regression
models were adjusted for year of initial JLP certification, worker
age at JLP certification, number of employers during JLP license,
size of employer, license for plumbing specialty other than JLP,
hours worked in plumbing industry prior to JLP certification. Level
of significance was chosen as a = 0.05. Analyses were performed
using SAS 9.4.

3. Results

3.1. Apprenticeship participation among journey level plumbers

There were 4,086 plumbers with initial JLP certification
between January 1, 2000 and December 31, 2018. Of those, 18.9%
(773) JLP completed a plumbing apprenticeship program within
four quarters of their JLP certification, 9.1% (373) had some partic-
ipation in an apprenticeship program, and 72.0% (2,940) did not
appear in the apprenticeship registry data. In total, 72.5% of JLP
had wage and hour data identified in UI, although identification
in UI differed by apprenticeship status. Nearly all plumbing
apprentice graduates had wage and hour data reported in UI
(768 out of 773, 99.4%), while a smaller portion of JLP who never

enrolled in an apprentice program were reported in UI (2,202 out
of 2,940, 74.9%) (Table 1). Plumbers with no wage and hour data
reported in UI were excluded from further analysis.

3.2. Worker characteristics by apprenticeship participation

Apprentice graduates differed from those who never enrolled in
an apprentice program across several characteristics (Table 2). On
average, apprenticeship graduates were younger at the start of
their JLP certification, became a JLP later in the study period,
worked more hours each quarter as a JLP, worked for larger
employers, and worked for more employers (p < 0.05 adjusted for
post hoc pairwise comparisons). Conversely, JLP who never
enrolled in an apprentice program tended to be older at their initial
JLP certification, enter the profession earlier in the study period,
work fewer hours each quarter, work for a smaller employer, and
work for fewer employers during their JLP license.

For most measures, JLP with some apprenticeship participation
(the 357 individuals who enrolled in but discontinued a plumbing
apprenticeship [48%], completed a plumbing apprenticeship more
than four quarters from JLP certification [34%], or completed an
apprenticeship other than plumbing [18%]) fell in between appren-
ticeship graduates and never enrollees. For example, at the time of
initial JLP certification, they were older than apprenticeship gradu-
ates and younger than never enrollees. One exception was holding
another type of plumbing license – of the three groups, JLP with
some apprenticeship participation were most likely to have
another type of plumbing license in addition to the JLP license.

Regardless of apprenticeship participation, one in three plum-
bers experienced an injury or illness resulting in a workers’ com-
pensation claim accepted for medical aid payments, disability, or
wage replacement benefits.

3.3. Workers’ compensation claim characteristics by apprenticeship
participation

Table 3 presents select characteristics of workers’ compensation
claims by apprenticeship status, for work-related injuries or ill-
nesses experienced as JLP. Several claim characteristics showed
no significant difference by apprenticeship participation. Eighty-
three percent of claims occurred among JLP performing plumbing
work (based on risk classification) and one quarter of claims were
eligible for wage replacement and or disability benefits. Median
claim costs of state funded claims did not differ significantly across
the three groups.

Claims among JLP with no apprenticeship participation were
more likely to be insured by the state fund (90.4% among JLP with
no apprentice training compared to 83.9% among JLP apprentice
graduates and 84.1% among JLP with some apprentice training,
based on post hoc pairwise comparisons). State fund claims among
JLP with no apprenticeship participation were more likely to result
in days of missed work than JLP with any apprenticeship participa-
tion (p < 0.05 adjusted for post hoc pairwise comparisons).

Acute injuries were the most common injury type. JLP with any
apprenticeship training had a greater percent of claims lacking a
nature of injury classification, attributable to an overrepresenta-
tion of both non-classified claims and apprenticeship participation
among the self-insured. Stratified by insurer, the distribution of the
nature of injury did not differ by apprenticeship participation.
Additionally, injury type did not differ by apprenticeship participa-
tion for state funded and self-insured claims combined, after ran-
dom reassignment of non-classified values to a nature of injury
mirroring the distribution among state funded claims.
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3.4. Rates of workers’ compensation claims by apprenticeship
participation

Rates of workers’ compensation claims were lowest among JLP
apprentice graduates and highest among those with no apprentice-
ship training, for total claims and wage replacement/disability
claims, both unadjusted, and adjusted for underlying differences
in the populations (Table 4). The unadjusted rate of total accepted
claims was 70% higher among JLP with no apprentice training,
compared to apprentice graduates. The adjusted rate of total
accepted claims (controlling for differences in year of initial JLP
certification, worker age at initial JLP certification, number of
employers as JLP, size of employer, license for plumbing specialty
other than JLP, and workers’ compensation claim rate in the five
years prior to JLP certification) was 46% higher among JLP with
no apprentice training, compared to apprentice graduates.

Claim rate ratios were greater for wage replacement/disability
claims, where unadjusted rates among non-apprenticeship partic-
ipants were more than twice as high as rates among apprentice-
ship graduates. After controlling for covariates, rates among
never enrollees still exceeded rates among apprenticeship gradu-
ates by 60%.

Claim rates among the group of JLP with some apprenticeship
training fell in between the rates among non-participants and
apprenticeship graduates, although the rates among JLP apprentice
graduates and JLP with some apprenticeship participation were not
significantly different.

3.5. Workers’ compensation claim rates over time by apprenticeship
participation

3.5.1. Claim rates by benefit type
In the five years preceding JLP certification, rates of wage

replacement/disability claims were lower among apprentice grad-
uates than among JLP with no apprentice training, while rates of
total claims did not differ significantly by apprenticeship participa-
tion (Table 5).

For all three apprentice groups, rates in total accepted claims
declined from the five years preceding the JLP license to the period
of the JLP license. Rates of total accepted claims among JLP appren-
tice graduates declined the most (55.3%, 95% CI: 48.8%–61.0%),
exceeding the 41.4% decline (95% CI: 35.9%–46.4%) among JLP with
no apprenticeship participation. Declines were smaller for wage
replacement/disability claims, estimated at less than 30% among
JLP apprenticeship graduates and among JLP with no apprentice-
ship participation, and did not differ significantly by apprentice-
ship participation.

3.5.2. Claim rates by injury type
Injury-specific rates based on original injury codes were similar

to estimates based on reassignment of missing values; only rates
based on reassigned missing values are presented in Table 5. In
the five years preceding JLP certification, rates of acute injuries
did not differ significantly by apprenticeship participation, while
rates of musculoskeletal disorders were marginally lower among

Table 1
Study inclusion by plumbing apprenticeship status among journey level plumbers.

JLP who completed plumbing apprentice JLP with some apprentice training JLP with no apprentice training Total

JLP identified 773 (100%) 373 (100%) 2940 (100%) 4086 (100%)
Excluded: No wage/hour data in UI 5 (0.6%) 16 (4.3%) 738 (25.1%) 759 (18.6%)
Included: Wage/hour data In UI 768 (99.4%) 357 (95.7%) 2202 (74.9%) 3327 (81.4%)

Table 2
Characteristics of Journey Level Plumbers (JLP) employed for wages by plumbing apprenticeship participation. Data for continuous variables are presented as mean (standard
deviation) or median (Q1, Q3). Data for categorical variables are presented as number (%).

JLP who completed plumbing
apprentice

JLP with some
apprentice training

JLP with no apprentice
training

Stat.
sig.a

Total JLP 768 (100.0) 357 (100.0) 2202 (100.0)
Age at initial JLP certification, mean yrs (std dev) 32.0 (6.6) 34.8 (8.0) 37.6 (9.1) p <.0001
Year of initial JLP certification p <.0001
2000–2004 140 (18.2) 94 (26.3) 741 (33.7)
2005–2009 227 (29.6) 109 (30.5) 615 (27.9)
2010–2014 251 (32.7) 83 (23.2) 401 (18.2)
2015–2018 150 (19.5) 71 (19.9) 445 (20.2)

Hours worked per quarter as JLP,
mean (std dev)

456 (82) 425 (97) 420 (127) p <.0001

Employer size: average FTE of employer, median (Q1, Q3) 170.9 (56.4, 410.2) 149.4 (34.2, 399.6) 60.8 (17.2, 211.2) p <.0001
Number of employers a plumber worked for over the course of their

JLP license, median (Q1, Q3)
3 (2, 6) 3 (2, 7) 2 (1, 4) p <.0001

Other plumbing licenseb p <.0001
No 718 (93.5) 271 (75.9) 1830 (83.1)
Yes 50 (6.5) 86 (24.1) 372 (16.9)

Workers’ compensation claims accepted for injuries experienced as JLP NS
0 claims 516 (67.2) 233 (65.3) 1446 (65.7)
1+ claims 252 (32.8) 124 (34.7) 756 (34.3)

Std dev = Standard deviation.
FTE = Full time equivalent; calculated as 1 FTE = 2000 hrs.
Q1, Q3 = First quartile, third quartile.
NS = No significant difference between groups.

a Stat. sig. = statistical significance of difference among groups of apprenticeship participation (p < 0.05 = statistically significant), based on analysis of variance, Kruskal-
Wallis tests, or chi square tests for homogeneity of proportions, for continuous variables with normal distribution, continuous variables with non-normal distribution, and
categorical variables, respectively.

b Residential, residential service, pump & irrigation and domestic well, backflow.
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JLP apprentice graduates. The change in rates of acute injuries
before and after JLP certification differed by apprenticeship partic-
ipation, with JLP apprenticeship graduates experiencing a greater

decline in acute injuries than JLP with no apprenticeship training
(59.7% vs 43.1%, respectively). Declines in rates of musculoskeletal
disorders were statistically similar, although the rate among JLP

Table 3
Characteristics of workers’ compensation claims among Journey Level Plumbers (JLP) employed for wages by plumbing apprenticeship participation. Data presented as number
(%), unless otherwise noted.

Claims among JLP who completed
plumbing apprentice

Claims among JLP with some
apprentice training

Claims among JLP with no
apprentice training

Stat.
sig.a

Claims 428 (100.0) 220 (100.0) 1530 (100.0)
Insurer p <.0001
State Fund 359 (83.9) 185 (84.1) 1383 (90.4)
Self-insured 69 (16.1) 35 (15.9) 147 (9.6)

Benefits paid NS
Medical aid only 335 (78.3) 169 (76.8) 1119 (73.1)
Wage replacement or disability 93 (21.7) 51 (23.2) 411 (26.9)

Risk classification NS
Plumber 359 (83.9) 174 (79.1) 1276 (83.4)
Other than plumber 69 (16.1) 46 (20.9) 254 (16.6)

Nature of injury p < 0.05
Traumatic Injuries and
Disorders

264 (61.7) 123 (55.9) 924 (60.4)

Musculoskeletal disorders 97 (22.7) 57 (25.9) 418 (27.3)
Diseases and non-traumatic
conditions

15 (3.5) 15 (6.8) 76 (5.0)

Not classified 52 (12.1) 25 (11.4) 112 (7.3)
Nature of injury, ‘‘not classified” re-

assigned
NS

Traumatic Injuries and Disorders 297 (69.4) 142 (64.5) 998 (65.2)
Musculoskeletal disorders 112 (26.2) 61 (27.7) 448 (29.3)
Diseases and non-traumatic
conditions

19 (4.4) 17 (7.7) 81 (5.3)

Not classified 0 (0) 0 (0) 3 (0.2)
Injury event or exposure NS
Contact With Objects And
Equipment

189 (44.2) 88 (40.0) 612 (40.0)

Bodily Reaction And Exertion 129 (30.1) 72 (32.7) 543 (35.5)
Falls 26 (6.1) 17 (7.7) 131 (8.6)
Exposure to Harmful Substances,
Environments

24 (5.6) 11 (5.0) 60 (3.9)

Other events or exposuresb 9 (2.1) 6 (2.7) 45 (2.9)
Not classified 51 (11.9) 26 (11.8) 139 (9.1)

Time loss days paidc p < 0.05
0 days 328 (91.4) 161 (87.0) 1146 (82.9)
1–30 days 9 (2.5) 8 (4.3) 91 (6.6)
31–100 days 6 (1.7) 5 (2.7) 64 (4.6)
>100 days 16 (4.5) 11 (5.9) 82 (5.9)

Claim costs one year post injuryc,d

Total claim costs, median (Q1, Q3) $820 (490, 2510) $770 (490, 2620) $910 (460, 3010) NS
Medical aid costs, median (Q1, Q3) $820 (480, 2320) $730 (490, 2380) $840 (450, 2760) NS

NS = No significant difference between groups.
Q1, Q3 = First quartile, third quartile.

a Stat. sig. = statistical significance of difference among groups of apprenticeship participation (p < 0.05 = statistically significant), based on analysis of variance, or chi
square tests for homogeneity of proportions, or Kruskal-Wallis tests, for categorical variables and continuous variables with non-normal distribution, respectively.

b Includes Transportation Accidents, Fires And Explosions, Assaults And Violent Acts.
c Limited to State Fund claims because of missing values among self-insured claims.
d Workers’ compensation claim costs incurred at 15 months post injury.

Table 4
Workers’ compensation claim rates and rate ratios among Journey Level Plumbers (JLP) employed for wages by plumbing apprenticeship participation.

Unadjusted estimates Adjusteda estimates

Claim rateb (95% CI) Rate ratio (95% CI) Claim rateb (95% CI) Rate ratio (95% CI)

Accepted claims
Completed plumbing apprentice 74.3 (65.5–84.3) referent 73.1 (63.4 –84.3) referent
Some apprentice training 97.9 (82.3–116.5) 1.32 (1.06–1.63) 84.2 (70.5–100.5) 1.15 (0.93–1.43)
No apprentice training 126.4 (117.7–135.9) 1.70 (1.47–1.97) 106.4 (97.8–115.8) 1.46 (1.26–1.69)

Wage replacement/disability claims
Completed plumbing apprentice 16.4 (12.9–20.9) referent 16.6 (12.7–21.7) Referent
Some apprentice training 22.5 (16.1–31.7) 1.37 (0.91–2.08) 18.2 (13.1–25.3) 1.10 (0.73–1.65)
No apprentice training 34.5 (30.8–38.6) 2.10 (1.61–2.73) 26.6 (23.2–30.4) 1.60 (1.22–2.11)

CI = Confidence Interval.
a Claim rate adjusted for: year of initial JLP certification, worker age at initial JLP certification, number of employers as JLP, size of employer, license for plumbing specialty

other than JLP, and workers’ compensation claim rate in the five years prior to JLP certification.
b Claims per 1,000 FTE.
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apprentice graduates was lower than the rate among JLP with no
apprentice training (18.6 vs 29.1 musculoskeletal disorder claims
per 1,000 FTE, respectively).

4. Discussion

This is the first study to our knowledge to compare rates of
occupational injuries and illnesses of workers at a similar point
in their shared career, differentiated by apprenticeship participa-
tion. Our findings suggest that plumbers who complete apprentice-
ships experience fewer work injuries throughout their career
compared with plumbers with no apprenticeship participation.
Moreover, apprenticeships appear to play a key role in reducing
work injuries, especially acute injuries.

With a focus on workplace safety in both the OJT and RSI, the
apprenticeship model provides many opportunities to develop
occupational health and safety competencies among workers early
in their careers. The details of the safety training are not specified
in many program standards (as one plumbing apprentice program
simply noted, ‘‘Safety instruction is included in every quarter’s cur-
riculum of this craft” (Washington State Apprenticeship and
Training Council, 2021a), and likely vary by apprenticeship pro-
gram. But the multi-faceted approach to teaching workplace safety
is exemplary of interactive forms of instruction more likely to pre-
vent work injuries and illnesses (Burke et al., 2006). Looking at
injury rates across the three study groups, with injury rates among
JLP with some apprenticeship participation falling in between the
never enrollees and the apprenticeship graduates, suggests that
workplace safety increases with higher levels of apprenticeship
participation.

Another possible explanation for our findings is that appren-
ticeships are a proxy indicator for worker safety. Apprenticeship
participation is not the result of randomization. Participation in
an apprenticeship occurs when an individual elects to apply to a
program and an apprenticeship grants admission into the program.
We were unable to account for all underlying differences between
apprentice graduates and plumbers who never enrolled in an
apprenticeship, including whether never enrollees would have
met apprenticeship program enrollment criteria (e.g., one Wash-

ington plumbing apprenticeship program requires that applicants
prove proficiency in high school or college algebra and pass a
multi-panel drug test) (Washington State Apprenticeship and
Training Council, 2021b). The admission process may differentially
favor workers with a predisposition for workplace safety compe-
tencies, individuals who experience fewer workplace injuries dur-
ing the training period, and adopt workplace safety principles more
readily.

An alternate explanation for the differences in injury rates,
aside from the safety training received as an apprentice, is that
work tasks differ by apprenticeship participation, with individuals
who never participated in an apprenticeship engaged in work
activities that are inherently more dangerous than the work
assigned to apprenticeship graduates. Two aspects of this study,
however, challenge this hypothesis, suggesting instead that the
study groups faced similar occupational hazards. First, restricting
the study to the specific worker group of journey level plumbers
helps limit the variability of job hazards. Second, characteristics
of the workers’ compensation claims among JLP, which differed lit-
tle by apprenticeship participation, supports the assumption that
JLP face similar workplace risks, regardless of apprenticeship
participation.

Workplace safety is complex, reflecting not only individual
worker knowledge and actions, but also organizational factors
(DeJoy, Gershon, Murphy, & Wilson, 1996). Apprenticeship pro-
grams may be promoting workplace safety as much through the
training of individual workers as through the engagement with
employers. This is most evident in employer development of train-
ing programs, but may also manifest as a talent pipeline by which
employers with a strong commitment to safety preferentially hire
apprentice graduates or sponsor apprenticeship programs. Addi-
tional research is needed to identify the mechanisms by which
apprenticeship programs impact workplace injuries and illnesses.

Although not the focus of the study, the high rates of workplace
injuries and illnesses during the training period preceding profes-
sional certification observed here and noted in other studies of
apprentices demonstrate a need for enhanced injury prevention
efforts during the apprentice training (Kaskutas et al., 2010;
Lipscomb et al., 2003, 2008). The smaller decline in rates of muscu-
loskeletal disorders – often debilitating and expensive injuries, and

Table 5
Workers’ compensation claim rates in the 5 years before initial Journey Level Plumber (JLP) certification and the years during JLP license, among JLP employed for wages by
plumbing apprenticeship participation.

Claim rate before JLPa,b (95%CI) Claim rate during JLPa,b (95%CI) Percent decline (95%CI)

Rates by benefit eligibility
Accepted claims
Completed plumbing apprentice 163.6 (145.9–183.3) 73.1 (63.4–84.3) 55.3% (48.8%–61.0%)
Some apprentice training 174.8 (147.5–207.3) 84.2 (70.5–100.5) 51.8% (41.3%–60.5%)
No apprentice training 181.5 (166.5–197.9) 106.4 (97.8–115.8) 41.4% (35.9%–46.4%)

Wage replacement/disability claims
Completed plumbing apprentice 22.6 (17.3–29.5) 16.6 (12.7–21.7) 26.5% (+2.1%–47.1%)
Some apprentice training 35.1 (25.0–49.4) 18.2 (13.1–25.3) 48.2% (21.5%–65.9%)
No apprentice training 37.5 (31.8–44.2) 26.6 (23.2–30.4) 29.2% (16.0%–40.3%)

Rates by injury typec

Claims for acute injuries
Completed plumbing apprentice 124.3 (109.5–141.2) 50.2 (42.8–58.9) 59.7% (52.5%–65.7%)
Some apprentice training 112.2 (93.6–134.5) 53.8 (44.0–65.7) 52.1% (39.6%–62.0%)
No apprentice training 124.6 (113.2–137.2) 70.9 (64.4–77.9) 43.1% (37.0%–48.7%)

Claims for musculoskeletal disorders
Completed plumbing apprentice 31.3 (24.8–39.3) 18.6 (14.6–23.8) 40.4% (22.0%–54.5%)
Some apprentice training 50.6 (38.3–66.7) 22.7 (17.0–30.3) 55.1% (36.0%–68.5%)
No apprentice training 44.5 (38.0–51.9) 29.1 (25.3–33.6) 34.5% (22.4%–44.7%)

CI = Confidence Interval.
a Claim rate adjusted for: year of initial JLP certificate on, worker age at initial JLP certification, number of employers as JLP, size of employer, license for plumbing specialty

other than JLP, and workers’ compensation claim rate in the five years prior to JLP certification.
b Claims per 1,000 FTE.
c Missing injury classification codes (more common among self-insured claims) were randomly assigned codes to mimic the distribution of codes assigned to state funded

claims.
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documented to occur among apprentices (Anton et al., 2020;
Rosecrance, Cook, Anton, & Merlino, 2002) – highlights a need for
effective prevention efforts throughout a worker’s career.

5. Limitations

To measure work-related injuries, we used workers’ compensa-
tion claims, a data source known to undercount the true occur-
rence of injuries (Biddle, Roberts, Rosenman, & Welch, 1998; Fan,
Bonauto, Foley, & Silverstein, 2006; Shannon & Lowe, 2002). Disin-
centives for filing a workers’ compensation claim, including peer
pressure, employer pressure, and unfamiliarity with the system
(Azaroff, Levenstein, & Wegman, 2002; Lipscomb, Nolan,
Patterson, Sticca, & Myers, 2012; Rosenman et al., 2000) are likely
present in all three study groups. Assuming the magnitude of the
undercount is similar across the three groups of apprenticeship
participation, the claim rate ratios likely would not change if we
were able to account for underreporting.

Incomplete injury classification data may have impacted esti-
mates of injury-specific claim rates, which we calculated after ran-
domly assigning OIICS codes to the 6.7% of claims (for injuries
before or during JLP license) that were not originally classified.
We chose this approach over omitting non-classified claims from
the estimates, which differentially would have excluded self-
insured claims. To examine the impact of this approach, we mod-
eled injury-specific rates using the original OIICS codes, and found
results to be similar to those based on the re-assigned codes. Lack
of cost data among self-insured claims limited our ability to
describe fully the workers’ compensation claim costs. Despite
these limitations, more complete data are unlikely to substantially
change our findings.

Our findings from this program evaluation are not necessarily
generalizable to apprenticeship programs for occupations other
than plumbing or in other jurisdictions. Depending on specific
occupational hazards, training requirements, and employment
opportunities, the magnitude of the association between appren-
ticeship participation and workplace safety may differ by trade.
State-level variation in the administration of apprenticeship or
professional licensing programs may lead to dissimilar results in
other jurisdictions. Finally, these findings may not hold for self-
employed independent contractors (American Community Survey
estimates suggest that 8.8% of Washington plumbers are self-
employed) and others not reported in the UI or workers’ compen-
sation data.

6. Conclusion

Apprenticeships are an effective model for reducing workplace
injuries. Identifying the mechanism by which apprenticeship train-
ing improves workplace safety (e.g., mentorship by experienced
workers, relationships with employers, specific components of
the safety training, or some combination) could have implications
for decreasing occupational injuries and illnesses not only among
apprentices, but also among workers outside of a formal appren-
ticeship arrangement.
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a b s t r a c t

Introduction: The technology in the automotive industry is becoming increasingly safer in the age of auto-
mated driving, but the number of accidents is still high, especially in wildlife-vehicle collisions (WVCs).
To better avoid these accidents, patterns involved in these accidents must be detected. Method: This
paper presents a spatiotemporal risk prediction of WVCs, including various road and environmental char-
acteristics. A process of data preparation using GIS automated by Python scripts was developed to enable
a spatiotemporal link of diverse features for the subsequent predictive data analysis. Different machine
learning (ML) approaches were applied- random forest (RF), feedforward neural networks (FNN), and
support vector machine classifier (SVM) - including automated ML to predict the risk of WVCs.
Therefore, a dataset of approximately 731,000 accidents reported to the police in Bavaria over a period
of 10 years (2010–2019) was used. In addition, non-accidents were randomly generated in Python over
time and space for the supervised ML processes. As the actual risk probability for WVCs and non-
WVCs is not entirely known, the impact of different training ratios between accidents and non-
accidents was tested on the risk prediction quality (RPQ) (25%, 50%, 75%, 90% WVCs) of the double-
weighted sensitivity and single-weighted specificity rate. Results: The test yielded high mean values of
RPQ as an indicator for a suitable WVC prediction. Both RF (86.6%) and FNN (86.7%) were identified as
suitable choices for WVC risk prediction in terms of RPQ. The SVM yielded a lower prediction quality,
even though acceptable results could be achieved within a shorter runtime. Practical Applications:
Spatial transferability was verified since the algorithm was trained on the dataset of Bavaria (excluding
Upper Bavaria) and successfully tested in Upper Bavaria. WVC forecasts were also proven through train-
ing with datasets from 2010-2017 and in prediction for 2018 and 2019.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Injuries and fatalities due to traffic accidents with wildlife have
a great impact on the society and wildlife ecology. Vehicle damages
cause significant financial costs, even when the actual numbers of
wildlife-vehicle collisions (WVCs) are often unknown. German
vehicle insurers registered nearly 300,000 accidents with wildlife
in 2019 - more than ever before (GDV, 2020). In total, WVCs cost
German insurers around 885 million euros. In other countries,
the WVC rates are also estimated to be significantly high, for
instance, four million in Belgium (Morelle, Lehaire, & Lejeune,
2013), 1.5 million collisions with deer in the United States
(Sullivan, 2011), and five million with amphibians and reptiles in
Australia per year (Duellman, 2001). But while the collisions are
mostly counted in small regions, nationwide or international num-

bers are estimated to be several times higher than the reported col-
lision numbers (Gkritza, Baird, & Hans, 2010; Steiner, Leisch, &
Hackländer, 2014).

Predictive analysis seems to be a useful approach to analyze
WVC risk and its influential conditions in a spatiotemporal manner
aiming to transfer the risk prediction model globally, for superre-
gional mitigation possibilities. Subsequently, the transferability of
such a model would decimate the need for WVC data as a prereq-
uisite for adequate measures in specific areas. By studying the
environmental characteristics of the roadway, topography or
weather, patterns can be identified to determine if there is a risk
of an accident. By using these patterns, predictive analyses enlarge
the knowledge about the accident risk, even if little is known about
the accident or non-accident locations.

This study applies three ML algorithms - random forest, feedfor-
ward neural networks, and support vector machine classifier - to
achieve a spatiotemporal WVC risk prediction model and, hence,
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a basis for greater road safety and wildlife conservation. By using
GIS tooling automated with Python, heterogeneously structured
data regarding the time and the environmental conditions can be
brought to one key reference. In this feature engineering process,
different spatiotemporal resolutions were harmonized to obtain a
pre-processed dataset for further analyzing steps. Road, infrastruc-
ture, land use, weather, topographical and further geo-data were
identified as potentially influential. A spatiotemporal resolution
of one hour and approximately 25-metres road sections was cho-
sen for a detailed WVC analysis. The predictive quality of the algo-
rithms, and their spatial and temporal transferability were
examined. For an improved prediction, automated ML (AutoML)
was applied. This study addresses three research questions as fol-
lows: (1) Are ML methods suitable for an appropriate risk predic-
tion WVCs? (2) How must the training data be structured to
enable a high quality of WVC risk classification? (3) Can the
approach be transferred temporally and spatially?

The paper is organized as follows: After the literature review
(Section 2), the input data for the prediction model and the data
pre-processing are described, before the case study region is pre-
sented (Section 3). Section 4 describes the analyzing structure
including the selection of algorithms and parameters, and evalua-
tion metrics. In Section 5, the results are presented, while in Sec-
tion 6, the results and advantages of the findings for ecology and
traffic management are proposed. Finally, an outlook for future
work is given in Section 7.

2. Literature review

Several studies have been employed to address the problem of
low data availability since years, either by monitoring carcasses
along the road networks (Grilo, Ferreira, & Revilla, 2015;
Lutterschmidt, Weidler, & Schalk, 2019), by voluntary citizen
science approaches (Heigl et al., 2016; Keken, Sedoník, Kušta,
Andrášik, & Bíl, 2019), or by obliging the driver to report the acci-
dent to the police or to the local hunter (Snow et al., 2018). Espe-
cially in countries with dense road networks, national parks, or
high wildlife populations, diverse research teams collected data
to study WVCs and their environment (Arevalo, Honda, Arce-
Arias, & Häger, 2017; Cherry et al., 2019; Pagany, 2020).

Over the last few decades, various studies constitute that the
risk for WVCs is influenced by the drivers’ and animals’ behavior
due to diverse environmental conditions. The temporal factor
determines the daily or annual behavior and, thereby, correlates
with land use, weather, or light conditions (Garriga, Franch,
Santos, Montori, & Llorente, 2017; Kämmerle et al., 2017; Steiner
et al., 2014). These dynamical patterns are completed by statistical
patterns which together affect the accidents in a spatiotemporal
manner. For instance, road conditions, such as the street width, a
gentle topography, and the proximity to forest influence the
WVC risk, according to a comprehensive review of WVC studies
worldwide (Pagany, 2020). In contrast, traffic volume, the distance
to urban areas, or road accompanying infrastructure are not clearly
assignable influencing or non-influencing factors.

However, most of the studies were undertaken in small areas or
considering road sections of only a few kilometers (Gunson,
Mountrakis, & Quackenbush, 2011; van der Ree, Jaeger, van der
Grift, & Clevenger, 2011), which means that these studies lack
information required to mitigate WVCs on a higher level. In addi-
tion, the relationship between space and time in WVC is also only
sparsely studied. However, this investigation would be essential
for dynamically adapted measures in the event of a high WVC risk
at a specific time at a specific location, as Pagany (2020) discussed.
The review also shows that most studies only analyze a few influ-
encing parameters.

Until now, only a few studies developed a prediction model for
WVCs. For instance, Santos, Mota-Ferreira, Aguiar, and Ascensão
(2018) developed a Bayesian hierarchical occupancy model that
estimated WVC risk, especially in agricultural, open habitats, and
within four-lane road sections. Another example is the study of
Visintin, van der Ree, and McCarthy (2016), which predicted WVCs
with the main determinants being traffic volume, traffic speed, and
species occurrence. Both studies explicitly named the advantage of
predictive studies, as the analysis decimate the need for a broad
data collection. Besides, classic statistics and geo-statistical analy-
ses are chosen in previous studies. They applied hot spot analyses
such as the kernel density distribution, as presented in Bíl,
Andrášik, Svoboda, and Sedoník (2016), and calculated the density
of accidents along certain road section lengths. As further statisti-
cal methods for WVC distribution, Malo, Suárez, and Díez (2004)
used a Poisson distribution, Valero, Picos, and Álvarez (2015)
applied a nearest-neighbor hierarchical clustering, and Tanner,
Leroux, and Saunders (2017) used a generalized linear mixed
model. Furthermore, Liu, Nieuwenhuis, and McCullagh (2018)
and Seo, Thorne, Choi, Kwon, and Park (2015) applied regression
analysis to determine the influence of environmental factors such
as the roadside land use or seasonal effects.

Studies about other types of traffic accidents used data mining
techniques such as machine learning (ML) for identifying the acci-
dent risk. Datasets with georeferenced accident occurrences com-
bined with environmental characteristics are often included in
the risk analysis. Yang, Chen, and Brown (1999) investigated the
severity of road accident injuries in Alabama, United States. A
backpropagation neural network was trained including variables
such as light conditions and traffic speed to detect safer driving
patterns, which may reduce fatalities and injuries by up to 40%.
Komol et al. (2021) chose ML-based classification approaches for
modeling injury severity of the vulnerable road users: pedestrian,
bicyclist, and motorcyclist using k-nearest neighbor, support vec-
tor machine, and random forest. They found that motorcyclists
have an especially high crash severity. Another study about injury
severity is Chen, Song, and Ma (2019). Using a random parameters
bivariate ordered probit model, they showed correlations between
two drivers’ injuries such as driver age, gender, vehicle, airbag or
seat belt use or traffic flow. Abdelwahab and Abdel-Aty (2001)
applied multilayer perceptron (MLP) and fuzzy adaptive resonance
theory (ART) neural networks and included parameters such as the
vehicle types and the sex of the driver to predict the severity of the
driver’s injury in Florida, United States.

In addition, Deublein, Schubert, Bryan, and de Soto Boria (2015)
developed an accident risk model using Bayesian Probabilistic Net-
works including road-related variables, such as the number of
lanes, curvature, and traffic characteristics. With a correct predic-
tion of 86.53% of the road segments with a tolerance of 25%, the
model could be applied to predict spatial ‘‘black spot” locations
regarding the accidental injuries on the Swiss highway network.
Beshah and Hill (2010) used a rule mining approach to classify road
traffic accidents using adaptive regression trees for a case study in
Ethiopia. The study included diverse data about the drivers’ age
and driving experience, the vehicle age, the road surface, as well
as light and weather conditions. Besides, recent approaches can
be mentioned that are characterized by similar pre-processing
steps of GIS data like for accident risk prediction (e.g., the predic-
tion of connected vehicle movement at intersections). Trajectory
movement labelling for predicting driver movements and for
warning at intersections ensure advanced transportation safety
using ML-based approaches to implement these technologies
(Komol et al., 2021; Shrivastava, Verma, & Jain, 2021).

Other studies compared ML techniques to test their quality or
predictive accuracy. Chang and Chen (2005), for instance, com-
pared a classification and regression tree (CART) with a negative
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binomial regression model to analyze the relationship between
traffic accidents and highway geometric variables, traffic charac-
teristics, and environmental factors in Taiwan. They found that
the CART model is an appropriate method for analyzing the fre-
quency of freeway accidents. Precipitation variables and daily traf-
fic volume are the key determinants for the accident risk. Chong,
Abraham, and Paprzycki (2005) compared the performance of neu-
ral networks, support vector machines, decision trees, and a con-
current hybrid model involving decision trees and neural
networks. The severity of an injury resulting from a traffic accident
was predicted. The hybrid approach of decision tree and neural
networks outperformed the individual approaches.

The applications and the comparisons of diverse ML techniques
to model traffic accidents show that these approaches are suitable
for accident risk prediction. Several studies are undertaken to
understand the characteristics of driver behavior, road conditions,
environmental and weather conditions that are related to the acci-
dent probability. However, for a risk prediction, it is not decisive to
know the impact of an individual factor, as analyzed by classical
statistics, but to develop a decision model considering the environ-
mental factors and the learning characteristics of ML techniques.
Thus, ML may also enlarge the knowledge about the accidents with
wildlife, as already applied for other road accidents types. A super-
vised ML classification seems to enable this WVC risk prediction.

3. Material and data preparation

3.1. Data description

For this study, a dataset of 730,867 WVCs that were officially
registered by the Police between 2010 and 2019 in Bavaria, Ger-
many was used (StMI & Bavarian State Police, 2020). Each of these
registered WVCs from the last 10 years contains a georeference
and a timestamp. Additional features were used that are identified
in previous studies as influential characteristics for road traffic

accidents with wildlife (Pagany, 2020) (Table 1): road-related fea-
tures, such as road class, road width, infrastructure elements,
(e.g., middle barriers, road barriers, and additional lanes), and
topographic features (e.g., ditches, or slopes aside the road net-
work). In addition, weather data were used, such as air tempera-
ture, precipitation, and cloud coverage, as well as land use data in
the prediction model. The land use data are classified in 12 classes
as follows: artificial land, cropland seasonal, cropland perennial,
forest broadleaved, forest coniferous, forest mixed, shrubland,
grassland, bare land, water, wetland, and snow and ice areas. Based
on the accident data, time-related features were derived, namely
the day of the year, the weekday, the hour of a day, and the solar
altitude.

The road information was obtained from the database BAYSIS
(Bavarian road infrastructure system) provided by the Bavarian
Ministry of the Interior, for Sport and Integration (StMI, 2017)
and the Official Topographical-Cartographic Information System
Data - Digital Landscape Models (ATKIS-DLM data) by the Survey-
ing Authorities of the Federal States of Germany (Surveying
Authorities of the Federal States of Germany, 2015). Weather data
from the German weather service (DWD, 2019) were used. The
DWD obtains its data from COSMO-REA6 - a regional reanalysis
dataset (product of a numerical data model that assimilates terres-
trial and remotely sensed weather data) that covers the EUROCOR-
DEX area with a spatial resolution of 6 � 6 km and uses the ERA-
INTERIM global reanalysis dataset for boundary conditions. For
the land use classification, PANGAEA land use data with a spatial
resolution of 30 � 30 m based on remote sensing Landsat and
LUCAS data (Pflugmacher, Rabe, Peters, & Hostert, 2018) from the
year 2018 were used in the prediction model.

3.2. Data pre-processing

The different datasets required data preparation and cleaning
for the later data mining process. Nearly all data required a trans-

Table 1
Data and derived features as input for the ML predictive analysis (not normalized values).

Data Source Feature/Label Unit Range

Wildlife-vehicle collisions (WVCs)
(spatiotemporal)

StMI & Bavarian State Police, 2020 WVC label - 1

Non-WVCs
(spatiotemporal)

Randomly calculated - 0

Road-related
(spatial)

ATKIS (mainly)
(Surveying Authorities of the Federal States of Germany (2015), 2015)

Road class 1–5
Road width metre 2 – 22

BAYSIS data (StMI, 2017) Middle barrier - 0–1
Road barriers - 0–1
Additional lanes - 0–1
Ditch - 0–1
Slope - 0–1

Weather
(spatiotemporal)

Weather data (DWD, 2019) Ambient temperature �C �22.20 to 39.07
Precipitation litre/m2 0–72.95
Cloud coverage % 0–100

Land use
(spatial)

PANGAEA land use data (Pflugmacher et al., 2018) Artificial land % 0–100
Cropland, seasonal % 0–100
Cropland, perennial % 0–100
Forest, broadleaved % 0–100
Forest, coniferous % 0–100
Forest, mixed % 0–100
Shrubland % 0–100
Grassland % 0–100
Bare land % 0–100
Water % 0–100
Wetland % 0–100
Snow and ice % -

Time-related
(temporal)

WVC data (StMI & Bavarian State Police, 2020) Day of year - 1–366
Weekday - 1–7
Hour of the day - 0–23
Solar altitude � �64.50–64.50
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formation of geographical projections and data pre-processing to
obtain a homogenous key component, with which the features
WVCs, and non-WVCs (as label) could be correlated. GIS methods
automated by Python scripts were used, namely GDAL and OGR
from the OSGeo library (OSGeo, 2019) for interacting with geodata
file formats, and shapely (Toblerity, 2020) for geometric process-
ing. The road shapefile ver01_l of the ATKIS-DLM data were divided
into point vectors with a distance of 25-metres along the road net-
work to define the set of locations to be examined (Fig. 1). These
locations were used as a basis layer to extract the feature values
from several other datasets.

From the ATKIS-DLM data, the information about the road class
and road width was obtained. Missing values of the road classes
were derived from the road names, for example, the federal road
class (German: B = Bundesstraße) from the street name ‘‘B 12,”
while the missing road width were derived from the road classes
using standardized values for road construction in Germany
(11.5 m for highways, 7.5 m for federal roads, 6.5 m for state roads,
and 5.5 m for municipal road (FGSV, 1996). To avoid duplicate
information, road axes of highways were deleted as the lane axes
are also registered for highways that run parallel to the road axis.
The road information was augmented by the street data of BAYSIS.
According to this road database, the road network was classified in
sections with middle barriers, additional lanes, ditches, and slopes
(Table 1). Details in the attribute column legend of the BAYSIS
shapefile Straßenbestand.Deckschichtalter were used for the clas-
sification (e.g., hard shoulders or bus bays were classified as roads
with an additional lane, while protective stripes with crash barriers
were classified as sections with barriers). To obtain all infrastruc-
ture elements at both sides of the road, vertical lines at the 25-
metre distance points from the ATKIS data were constructed. Along
these vertical lines, all elements of the BAYSIS shapefile were iden-
tified, and the information were written into the 25-metre point
layer as key elements for the later data mining.

The land use classes of the PANGAEA data were identified based
on the 25-metre points. The land use types were included on both
sides of the road within three different radii to test the impact of
the environmental land use of an accident within near, medium,
and long distances (Fig. 1, semicircles in the right image). The rel-
ative area share of each of the 12 different land use classes was cal-
culated separately for both sides of the street within semicircles of
100, 500, and 200 meter radii. Thus, six different buffers were used
for each land use type to model the impact of the land use struc-
ture at each potential accident location for ML analysis.

Furthermore, the CSV dataset of WVCs was stored as a shapefile
and joined to the nearest of the 25-metre points to create a spatial
reference. For the temporal reference, the timestamp of the WVCs

were discretised to an hourly resolution. In total, 730,867 WVCs
were registered but only 567,233 WVCs (78%) were included in the
predictive analysis, since the remaining accidents do not contain
any geographic references. A set of non-WVC locations was gener-
ated in addition to the WVC registrations that are required for the
ML approach. A number of 657 billion spatiotemporal points for
potential accident occurrences could be obtained by multiplying
the 7.5 million 25-meter road points and 87,600 hours of the 10-
year study period, but only 12 million non-WVCs are necessary for
the latter analysis (see chapter 4). Hence, spatiotemporal points
were randomly generated in an hourly resolution based on the 25-
meter distance points of the ATKIS road network using the random
library in Python based on the Mersenne Twister algorithm, while
spatiotemporal locations with the locations and timestamps of the
WVCs were excluded to obtain non-WVCs for supervised ML train-
ing. For each of the accidents and non-accidents, the timestamp
was used to obtain the features weekday, day of the year, and hour
of the day. In addition, the solar altitudewas calculated for each spa-
tiotemporal point using the solar position algorithm (Holmgren,
Hansen,&Mikofski, 2018). Finally, the features air temperature, pre-
cipitation, and cloud coverage were extracted from the weather
dataset by determining the fitting tile of the weather data at the
specific point and at the specific time.

A SQLite database was used to combine the different generated
datasets in one dataset with a label (WVC/non-WVC) as input for
the ML process. After the spatiotemporal points of non-WVCs and
the time-based features were generated, they were stored directly
in tables in the database. The samewas applied for theweather data,
which was selected according to the spatiotemporal locations. The
road infrastructure, landuse, andWVCdatawere stored in shapefiles
as an intermediate stepand, later, imported into thedatabase as sep-
arate tables for each shapefile. Finally, each data row has a reference
to one of the 25-mpoints from the ATKIS dataset usingWGS 84UTM
system (World Geographical System 84, Universal Transverse Mer-
cator) as geographical reference, and an hourly resolution (the hour
of the day and day of the year) as temporal dimension, which are
included in all tables as key elements. The normalization of the data
was done as part of the SQL statement that joined the several tables
to one source table for ML processing. In this table, each spatiotem-
poral point is characterizedby88 features,whereby-six classeswere
deleted due to the nonexistence of snow and ice areas (at both road-
sides within three radii).

3.3. Case study area

The data were applied for WVC analysis in Bavaria. The Free
State of Bavaria in the southeast of Germany covers 7,548 km2

Fig. 1. Data preparation using spatiotemporal points of 25-metres road sections (left image), including, e.g., land use environment within 100-, 500-, and 2000-metres radii
(right image).
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and seven administrative districts: Lower Bavaria, Upper Bavaria,
Lower Franconia, Middle Franconia, Upper Franconia, Upper Palati-
nate, and Swabia (Fig. 2; Table 2).

Bavaria borders the Czech Republic in the east and Austria in
the south-east and south. While a significant share of the around
13 million inhabitants in Bavaria live in a few metropolitan areas
(such as Munich or Nuremberg-Fuerth-Erlangen), large parts of
Bavaria, such as the Upper Palatinate and Lower Bavaria, are spar-
sely populated. The northern and eastern parts with the densely
forested Bavarian Forest belong to the German low mountain
range, while the mostly flat glacial foothills extend from the Alps
to the Danube basin. Almost 35% of the Bavarian area is forested.
Because of the altitude above sea level and the distance from the
sea, Bavaria’s climate is rougher and more continental than in most
other German federal states. WVCs mainly occur in rural areas, for
example, in the county Rottal-Inn in the southeast of Lower Bavaria
(Fig. 3). There is a low rate of accidents in the Alpine and forested
regions, such as the national parks Bavarian Forest and Berchtes-
gadener Land, as the road network is not as dense as in other areas.
Despite the dense road network, there is a low density of WVCs in
urban areas. The WVC density is the highest on state and county
roads in relation to the road length (Table 3).

4. Analysis

4.1. Selection of algorithms and parameters

The prediction analysis determines the collision risk in order to
warn drivers of WVCs only when necessary. The risk for WVCs was
calculated using ML algorithms in Python. The following algo-
rithms were used for the analysis: random forest (Breiman,
2001), feedforward neural networks (McCulloch & Pitts, 1943),
and support vector machine classifier (Vapnik, 1963). Since there
are no previous studies for risk prediction of WVCs with ML avail-
able, several variants of ML algorithms were tested. The algorithms

are chosen to test the prediction capability - in contrast to the com-
monly used statistical hotspot and impact analysis in WVC
research (Pagany, 2020). Research on traffic accidents in general
already applies the chosen ML algorithms, while there is still a
research gap for WVC prediction using such methods. Especially
the temporal forecast and theWVC risk prediction in areas without
historical datasets about WVCs are an advantage of the ML tech-
niques. In addition, these methods enable a steady training adjust-
ment of the algorithms due to changed environmental conditions.
Therewith, dynamic real-time warnings to the driver via a mobile
application (wuidi, 2020) is applicable in order to avoid accidents.
Hence, the paper focuses on the generation of ML models resulting
in high prediction rates through testing.

The impact of different training ratios between accidents and
non-accidents on the prediction quality was tested, as the actual
risk probability of WVCs and non-WVCs is not entirely known.
Only the locations and times with a registered WVC are an indica-
tor for spatiotemporal risk zones, while the remaining road sec-
tions and times are assumed to be low risk. While the probability
is high that only one, a vehicle, or an animal, or neither of themwill
cross a certain road at the same time, there is also a possibility that
both a vehicle and an animal cross at the same point at the same
time, but that the individual reaction of the driver or the animal
is such that a collision can be avoided. As the WVC data do not
allow any information about these near misses, but the risk is
higher than the actual WVC data suggest, higher, and also extreme
ratios of WVCs were used for ML training (25%, 50%, 75%, 90%
WVCs) (Fig. 4). Afterwards, the models were tested with a uniform
ratio of 5% WVCs and 95% non-WVCs to obtain comparable results.
Hence, the ML training were conducted with the Bavarian WVC
data and different sample sizes of non-WVCs for the predictive risk
analysis.

To test the temporal and spatial transferability, WVC data were
split in three ways, and the training and test data were enriched
with non-WVCs to obtain the abovementioned ratios for training

Fig. 2. Case study area of Bavaria (map on the left side) and districts (map on the right side).
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and testing. The random split in a ratio of 80% training data and
20% test data were used as a basis for comparison. Furthermore,
the predictive analyses were carried out with a training sample
containing WVCs and non-WCVs from between 2010 and 2017,
while data from 2018 and 2019 were used for testing (time-
based split). Also, the algorithm that was trained on the dataset
from Bavaria except Upper Bavaria, was then tested in Upper
Bavaria (geographical split) (Fig. 4).

Table 2
Population, area, and road length per districts based on ATKIS data and Destatis, (2020).

District Population Area Road length

km2 % km %

Lower Bavaria 1,192,641 9.48% 10,330 14.6% 44,436,083 25.96%
Upper Bavaria 4,418,828 35.12% 17,530 24.8% 27,839,851 16.26%
Lower Franconia 1,315,882 10.46% 8,531 12.1% 21,935,317 12.82%
Middle Franconia 1,717,670 13.65% 7,245 10.3% 17,027,147 9.95%
Upper Franconia 1,067,988 8.49% 7,231 10.2% 18,851,596 11.01%
Upper Palatinate 1,081,800 8.60% 9,691 13.7% 17,124,381 10.00%
Swabia 1,788,729 14.21% 9,992 14.2% 23,950,389 13.99%
Total 12,583,538 100.00% 45,476 100.00% 171,164,764 100.00%

Fig. 3. Heatmap of WVCs in Bavaria.

Table 3
Distribution of WVCs by road class.

Road class WVC share (%)

Municipal roads 17.09
Country roads 31.43
State roads 33.90
Federal roads 14.88
Highways 2.70
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From the class of neural networks, the feedforward neural net-
works performed best in a pre-test, where convolutional, recur-
rent, and feedforward neural networks were analyzed. Thus,
convolutional networks and recurrent networks, which are typi-
cally used for image classification and temporal processes, respec-
tively, can be excluded. With support vector machine classifier, a
very fundamental algorithm was added. In addition, random forest
was chosen as third option to have an algorithm, which yielded
good results in previous studies and enables impurity calculation
for the input features.

Furthermore, the hyperparameter tuning was done in an auto-
mated way using automated ML (AutoML) systems. The Struc-
turedDataClassifier from AutoKeras was used, which is based on
the TensorFlow library for the feedforward neural networks (Jin,
Song, & Hu, 2019). Moreover, auto-sklearn, which is an AutoML
toolkit for the scikit-learn library, was applied for the random for-
est and the support vector machine classifier (Feurer, Klein,
Eggensperger, Springenberg, Blum, & Hutter, 2015). Even though
the hyperparameters are chosen by AutoML systems, some specifi-
cations needed to be delimited.

In AutoKeras, it is necessary to specify the count of trials and the
epochs for the model training. Ten trails and 10 epochs were cho-
sen, as tests with 5 trails were insufficient for adequate results and
the training with 15 trails did not improve the results significantly
but took an inappropriately long runtime. To determine the num-
ber of epochs, several trainings were run with 20 epochs and
examined at which number of epochs the accuracy and loss func-
tions did not improve significantly. Using Auto-sklearn, the run
time of the entire process and of a single model training was spec-
ified, which indirectly defines the number of different hyperpa-
rameter settings. In addition, a number of 10 cores were
continually used for all model generations. For the further param-
eters, default values were used.

4.2. Evaluation metrics

To evaluate the results, confusion matrices (Table 4) and further
indicators were generated to show the numbers of correct and
incorrect matches of the classification. With the accuracy rate, all
correctly classified matches are related to the overall number of
matches of the confusion matrix (Eq. (1)). The sensitivity, also
called recall, is an indicator that shows how often WVCs are cor-
rectly classified in relation to the real number of WVCs (Eq. (2)).
Specificity shows how often non-WVCs are correctly classified in
relation to the real number of non-WVCs (Eq. (3)). While the false
negative (FN) rate is the inverse value of the sensitivity rate, the
false positive (FP) rate is the inverse of the specificity rate.

accuracy rate ¼ TP þ TN
TP þ TN þ FP þ FN

ð1Þ

sensitivity ¼ TP
TP þ FN

ð2Þ

specificity ¼ TN
TN þ FP

ð3Þ

Especially high specificity and sensitivity rates are useful indi-
cators for evaluating the quality of a WVC risk prediction model
concerning its application as warning service. Therefore, an own
measure, the risk prediction quality, is defined as the follows:
the mean value of the double-weighted sensitivity and single-
weighted specificity rate (Eq. (4)).

risk predictio nquality RPQð Þ ¼ 2 � sensitivityþ specificity
3

ð4Þ

With the double-weighted sensitivity, the emphasis is laid on
the potential to correctly classified WVC risk in contrast to false
classified high WVC risk. This sensitivity value is the basis for a
warning in the case of WVC risk and only a few non-warnings even
if the risk would be high. Too many warnings due to low specificity
rates would annoy the drivers without a reason for an accident
risk.

5. Results

With accuracy rates between 87.36% and 92.00%, all three ML
algorithms assign most observations correctly as WVCs or non-
WVCs (bold values in Table 5), using a ratio of 25% WVCs and
75% non-WVCs in the training dataset. With RPQ values of 86.7%
and 86.6%, neural networks and the random forest, respectively,
performed slightly better than the support vector machine classi-
fier with its highest value of 84.6% (Fig. 5, black line) (Table 6; bold
values > 75th quantile). The training ratio of 25% WVCs might
achieve the best accuracy rates, but it is not the best choice accord-
ing to the risk prediction quality measure (see Section 4). While
sensitivity rates of under 70% are calculated, more than 30% of
the WVCs are predicted as no risk cases, inversely. Using the mea-
sure of RPQ, the ratio of 75% WVCs and 25% non-WVCs has been
proven as the best training ratio. The training and test run of the
different case studies show that it is possible to forecast WVCs in
a temporal and in a spatial manner (bold values > 75th quantile;
modes: rnd = random, geo = geographical, and time = time-based;
Fig. 4). Hence, the applicability of predictive analysis for WVCs is
shown.

Based on the random forest, the importance of the individual
factors is calculated. The results also show that temporal, environ-
mental and roadside conditions affect the WVC risk (Fig. 6). Espe-

Fig. 4. Analyzing structure for the WVC risk prediction.

Table 4
Confusion Matrix.

WVC (1) predicted Non-WVC (0) predicted

WVC actual Actual/true positive (TP),
meaning WVC occurred, and
is predicted to be positive

False negative (FN), meaning WVC
occurred, and is predicted to be
negative

Non- WVC actual False positive (FP), meaning
no WVC occurred, but is
predicted to be positive

True negative (TN), meaning no WVC
occurred, and is predicted to be
negative
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Table 5
Confusion matrix of ML results due to WVC ratio, algorithm (neural network = NN, support vector machine classifier = SVM, random forest = RF), and mode (geographical
split = geo; randomly split = rnd; time-based split = time).

WVC non WVC

pred.
Non-WVC
= No Warn.

pred. WVC
= Warning

pred.
Non-WVC
= No Warn.

pred. WVC
= Warning

WVC ratio Algorithm Mode FN TP TN FP Accur %

25% NN Geo 45,027 88,600 2,358,856 180,057 91.58
Rnd 34,067 79,379 1,977,663 177,811 90.66
Time 39,280 84,946 1,902,819 161,669 90.82

SVC Geo 47,420 86,207 2,294,631 244,282 89.09
Rnd 39,785 73,661 1,919,229 236,245 87.83
Time 42,538 81,688 1,830,269 234,219 87.36

RF Geo 61,119 72,508 2,386,359 152,554 92.00
Rnd 39,622 73,824 1,953,723 201,751 89.36
Time 41,418 82,808 1,859,100 205,388 88.72

50% NN Geo 19,563 114,064 2,128,044 410,869 83.89
Rnd 14,355 99,091 1,743,486 411,988 81.21
Time 16,158 108,068 1,691,907 372,581 82.24

SVC Geo 21,475 112,152 2,047,878 491,035 80.82
Rnd 16,102 97,344 1,666,100 489,374 77.72
Time 18,361 105,865 1,603,721 460,767 78.11

RF Geo 19,356 114,271 2,087,965 450,948 82.40
Rnd 12,040 101,406 1,638,286 517,188 76.67
Time 14,051 110,175 1,622,192 442,296 79.15

75% NN Geo 7489 126,138 1,812,158 726,755 72.53
Rnd 4867 108,579 1,434,604 720,870 68.01
Time 5503 118,723 1,385,820 678,668 68.74

SVC Geo 7867 125,760 1,666,913 872,000 67.08
Rnd 5766 107,680 1,332,631 822,843 63.48
Time 6116 118,110 1,283,013 781,475 64.02

RF Geo 8546 125,081 1,839,873 699,040 73.52
Rnd 4821 108,625 1,445,009 710,465 68.47
Time 5122 119,104 1,388,963 675,525 68.90

90% NN Geo 1931 131,696 1,305,375 1,233,538 53.77
Rnd 2099 111,347 1,173,934 981,540 56.65
Time 1945 122,281 1,098,623 965,865 55.78

SVC Geo 1506 132,121 1,055,130 1,483,783 44.42
Rnd 1231 112,215 847,635 1,307,839 42.30
Time 1129 123,097 793,250 1,271,238 41.87

RF Geo 2251 131,376 1,348,305 1,190,608 55.37
Rnd 1753 111,693 1,091,939 1,063,535 53.05
Time 1763 122,463 1,053,540 1,010,948 53.73

Fig. 5. Sensitivity and specificity rates and their mean values as indicator for WVC risk prediction.
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cially the road-related factors road width (19%) and road class
(14%) are determinants for the WVC prediction. Also, artificial land
in the near and middle circle around the potential WVC locations
(6% and 4% for each side s1 and s2; see Fig. 6), and time-based fac-
tors, such as sun angle (6%), hour (3%), and day of the year (1%),
influence the ML prediction. Therein, the importance of the factors
should not be understood as individual impact, but as combination
of all factors influencing the prediction model. It is also indepen-
dent of whether the factors increase or reduce the WVC risk.
Finally, the ML analysis only determines the collision risk in order
to warn drivers of WVCs only when necessary.

6. Discussion

From the large dataset of WVCs, spatiotemporal environmental
patterns could be extracted with an ML model that predict the risk
for WVCs appropriately. Even when the accident conditions varied
case by case, it could be shown that the interaction of different
road-. infrastructure-. land use-. weather-. topographic-. and tem-
poral components is a complex cause-effect relationship for actual
collisions. With ML and the collected dataset for the last 10 years
covering the whole Bavaria, it was possible to predict WVCs spa-
tiotemporally in a resolution and regional extent that had never
been achieved before. Especially for dynamic warning systems,
highly detailed data mining seems to be a critical advantage for
precise warning opportunities. Thus, a detailed space–time-link
between the accidents and potential influencing factors was able

to be done. To not overlook the broader environment of WVCs,
which may have an influence, the proportional shares of each land
use type within the near, medium, and long distances, different
infrastructure elements, and the topography were considered in
the ML analysis.

The case study showed that ML, especially feedforward neural
networks and random forests, are suitable for an appropriate risk
prediction. Also, the support vector machine classifier achieved a
relatively high risk prediction quality (RPQ) – not as high as with
the beforementioned algorithms, but within a shorter runtime.
As the WVC data does not allow any information about near misses
and, hence the actual risk probability is not entirely known, differ-
ent ratios of WVCs were used for ML training. The models with a
training ratio of 75% WVCs and 25% non-WVCs yielded the highest
quality of WVC risk classification. AutoML helped to define the best
hyperparameters for a high quality of risk prediction.

The results show, on the one hand, the predictability in general,
as the RPQ achieved continually values of over 85% using feedfor-
ward neural networks and random forests (Table 6). On the other
hand, the transferability and applicability of the prediction model
is proven, as all modes – randomly split, time-based, and geo-
graphical training splits yielded similar high results. The model
was successfully tested for the Bavarian region, which shows that
a transfer of the risk prediction of WVCs is generally possible.

The developed method can be applied to areas outside the case
study region. As WVC data are only available for some areas, hav-
ing a method that can be applied anywhere may be helpful in tack-

Table 6
Metrics of WVC risk prediction due to WVC ratio, algorithm (neural network = NN, support vector machine classifier = SVM, random forest = RF), and mode (geographical
split = geo; randomly split = rnd; time-based split = time).

WVC ratio Algo-rithm Mode WVC Non-WVC sensitivity
þspecificity

2

FN
þFP

2

sensitiv :�
2þ specific:

3

FN � 2
þFP

3Sensitivity FN
rate

Specificity FP
rate

% % % % % % % %

25% NN geo 66.30 33.70 92.91 7.09 79.61 20.39 75.17 24.83
rnd 69.97 30.03 91.75 8.25 80.86 19.14 77.23 22.77
time 68.38 31.62 92.17 7.83 80.27 19.73 76.31 23.69

SVC geo 64.51 35.49 90.38 9.62 77.45 22.55 73.13 26.87
rnd 64.93 35.07 89.04 10.96 76.99 23.01 72.97 27.03
time 65.76 34.24 88.65 11.35 77.21 22.79 73.39 26.61

RF geo 54.26 45.74 93.99 6.01 74.13 25.87 67.50 32.50
rnd 65.07 34.93 90.64 9.36 77.86 22.14 73.60 26.40
time 66.66 33.34 90.05 9.95 78.36 21.64 74.46 25.54

50% NN geo 85.36 14.64 83.82 16.18 84.59 15.41 84.85 15.15
rnd 87.35 12.65 80.89 19.11 84.12 15.88 85.19 14.81
time 86.99 13.01 81.95 18.05 84.47 15.53 85.31 14.69

SVC geo 83.93 16.07 80.66 19.34 82.29 17.71 82.84 17.16
rnd 85.81 14.19 77.30 22.70 81.55 18.45 82.97 17.03
time 85.22 14.78 77.68 22.32 81.45 18.55 82.71 17.29

RF geo 85.51 14.49 82.24 17.76 83.88 16.12 84.42 15.58
rnd 89.39 10.61 76.01 23.99 82.70 17.30 84.93 15.07
time 88.69 11.31 78.58 21.42 83.63 16.37 85.32 14.68

75% NN geo 94.40 5.60 71.38 28.62 82.89 17.11 86.72 13.28
rnd 95.71 4.29 66.56 33.44 81.13 18.87 85.99 14.01
time 95.57 4.43 67.13 32.87 81.35 18.65 86.09 13.91

SVC geo 94.11 5.89 65.65 34.35 79.88 20.12 84.63 15.37
rnd 94.92 5.08 61.83 38.17 78.37 21.63 83.89 16.11
time 95.08 4.92 62.15 37.85 78.61 21.39 84.10 15.90

RF geo 93.60 6.40 72.47 27.53 83.04 16.96 86.56 13.44
rnd 95.75 4.25 67.04 32.96 81.39 18.61 86.18 13.82
time 95.88 4.12 67.28 32.72 81.58 18.42 86.34 13.66

90% NN geo 98.55 1.45 51.41 48.59 74.98 25.02 82.84 17.16
rnd 98.15 1.85 54.46 45.54 76.31 23.69 83.59 16.41
time 98.43 1.57 53.22 46.78 75.82 24.18 83.36 16.64

SVC geo 98.87 1.13 41.56 58.44 70.22 29.78 79.77 20.23
rnd 98.91 1.09 39.32 60.68 69.12 30.88 79.05 20.95
time 99.09 0.91 38.42 61.58 68.76 31.24 78.87 21.13

RF geo 98.32 1.68 53.11 46.89 75.71 24.29 83.25 16.75
rnd 98.45 1.55 50.66 49.34 74.56 25.44 82.52 17.48
time 98.58 1.42 51.03 48.97 74.81 25.19 82.73 17.27
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ling the problem on a global level. However, the global transfer-
ability must be proven in future research and probably adapted
to regional or species-specific characteristics. Since the case stud-
ies were only tested within Bavaria, this hypothesis is limited
because it has not been proven whether the spatial transferability
between different test areas in Bavaria also applies to other Euro-
pean or global regions. Since the prediction was made primarily
with deer (around 80% of the total sample), the system may be
overfit by learning pattern recognitions for collisions between deer
and vehicles. Hence, the risk prediction was not applied for species
that were not as frequently registered within the test region (e.g.,
foxes or badgers), nor for other non-native animal species. Also,
the nonexistence of land use classes such as snow and ice areas
in the Bavarian case study area may generate a bias for other areas
during the data pre-processing stage. A limiting factor remains the
data availability and quality for other parts of Europe and around
the world (Pagany, 2020).

Temporal forecast tests showed that it is possible to apply this
prediction analysis for dynamic warnings. As the drivers are more
precisely warned when the risk is potentially high and animal
movement is more likely, warning applications are implicitly also
a mitigation measure in the sense of road ecology and wildlife con-
servation. Real-time warnings regarding the current place, time,
and variable conditions avoid familiarization effect for drivers.
For providing real time safety warnings, drivers’ reaction time as
well as vehicle kinematic reaction must be considered, meaning
that the warnings needed to be provided earlier for driving along
a road. For WVC warning, the application Wildwarner (wuidi,
2020) is already tested successfully with positive feedback from
users (Trager, Kalová, Pagany, & Dorner, 2021).

The impurity calculations confirm that static and dynamic fac-
tors influence the WVC risk, which is also confirmed in previous
studies (Pagany, 2020). Road width and road class especially deter-
mine the risk prediction. The influence of both factors was con-
firmed in several other studies, such as Clevenger, Barrueto,
Gunson, Caryl, and Ford (2015), Pagany, Valdes, and Dorner
(2020), Santos, Lourenço, Mira, and Beja (2013), or Williams,

Collinson, Patterson-Abrolat, Marneweck, and Swanepoel (2019).
The majority of the studies identified more open roads with high
visibility through wider lanes, more gentle slopes, and fewer
curves as reinforcing for an accident risk. Implicitly, higher road
classes such as state and federal roads with a higher number of
lanes and broader road constructions are riskier than smaller
roads. In Germany, WVCs are the lowest on highways due to the
high rate of fenced road sections (Pagany, 2020).

In addition, this study also identified artificial or rather urban
areas as highly influential for WVC risk. However, the influence
of urban areas and population density is not clearly assignable in
scientific literature (Pagany, 2020). While some studies analyzed
urban areas as riskier for several species (Visintin, van der Ree, &
McCarthy, 2017; Wright, Coomber, Bellamy, Perkins, & Mathews,
2020), other studies identified road sections near urban areas as
less risky for wildlife (Jakubas, Ryś, & Lazarus, 2018; Kantola,
Tracy, Baum, Quinn, & Coulson, 2019; Zuberogoitia et al., 2014).
For the WVCs in Bavaria, the WVCs seem to be generally agglom-
erated in rural areas with high distance to urban areas (Fig. 3).

According to this study, temporal factors - sun angle, hour of the
day, and day of the year – also influence the WVC risk. Especially
the time factor seems to be related to wildlife’s behavior and activ-
ities due to migration (Coe et al., 2015), breeding (Grilo, Bissonette,
& Santos-Reis, 2009), or rutting (Zuberogoitia et al., 2014). Several
studies found daily peaks around dawn and dusk, which is a peak
time of movement for animals and for humans (rush hours) (Bíl,
Kubeček, Sedoník, & Andrášik, 2017; Laliberté & St-Laurent,
2020; Visintin et al., 2016). These peak times also correlates with
the changes of light conditions. As examples, Pagany and Dorner
(2016) found a temporal peak of accidents with wild boar in the
night hours in autumn, while Biggs, Sherwood, Michalak, Hansen,
and Bare (2004) identified an increased risk for deer during the
early evening hours in autumn and winter. Sullivan (2011) sees
the human and animals’ visibility, Rodríguez-Morales, Díaz-
Varela, and Marey-Pérez (2013) the wildlife’s activities at twilight
as causal factors. According to their study, Visintin et al. (2016)
found an influence of higher temperature on the WVC risk.

Fig. 6. Impurity results of features used in the random forest model (s1/s2: side 1/2 of the road); impurity � 1% is shown.
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The presence or absence of forested areas also influence the risk
prediction in the own analysis. In previous studies, the proximity
of the road network to forests and cropland is assessed as risky
for WVCs. Chen and Wu (2014), for instance, found that three-
quarters of their investigated WVCs had forest on both sides of
the road, while several studies have proven the same increasing
effect for cropland (Carvalho-Roel, Iannini-Custódio, & Marçal
Júnior, 2019; Cuyckens, Mochi, Vallejos, Perovic, & Biganzoli,
2016; Found & Boyce, 2011).

The importance of the factors should not be understood as indi-
vidual impact but in the combination of all factors considered into
the prediction model. It is not decisive to know the increasing or
decreasing impact of an individual factor on the WVC risk, as ana-
lyzed by previous WVC research using classical statistics, but to
develop a predictive learning model considering the environmen-
tal factors altogether.

Targeted traffic and ecological measures are possible through
the spatiotemporal data analysis and prediction, for example, to
warn drivers dynamically, or to install protective measures only
in times of high risk. As the case studies achieved a high quality
in the risk prediction of WVCs, a basis is found to apply appropriate
measures, on the one hand, for the management of road safety for
humans, and, on the other hand, for biological conservation. For
humans, the prediction model is able to provide dynamic warnings
due to the results with high resolution in space and time. There-
fore, impact studies for individual species are not relevant. How-
ever, for ecology management, species-specific risk analysis
would be interesting, as different species have different activity
times. Consequently, measures such as conscious feeding to
change the tracks of the animals, should be adapted to reduce road
crossings of a species at risky times and zones. As forest and sea-
sonal cropland on both sides of the road led to highWVC risk, mea-
sures should be implemented at these particular road sections.
Wide state and federal roads should especially be targeted. The
effect of light conditions leads us to conclude that temporal warn-
ings could be a suitable method of risk reduction.

Traffic volume and speed were two factors that were not
included into the ML analysis, as the available dataset of floating
car data does not provide representative information on the actual
speed and volume. If the traffic speed and the volume would be
available, they might help to improve the prediction performance.
Furthermore, it would be interesting to investigate further ML
algorithms to improve the WVC risk prediction and, thus, the road
safety for human and wildlife. Even when the prediction study
tried to include as many conditions as possible, based on extensive
data collection and feature engineering, not all eventualities could
be considered for the prediction. Even when the dynamic mea-
sures, such as the dynamic warning via a mobile application,
may mitigate the collision risk as drivers drove more attentively,
the remaining risk cannot be ruled out due to negligent driving
behavior or unpredictable movements of, for example, startled
animals.

7. Conclusions

The paper studied the WVCs of Bavaria from 2010 to 2019
including their environmental conditions, and investigated the
performance of a random forest, feedforward neural networks,
and a support vector machine for predicting WVC risk in a spa-
tiotemporal manner. A large number of input data concerning
WVCs was pre-processed together with a variety of environmental
factors and road conditions using GIS. The pre-processing step
enabled the researchers to incorporate all components, including
the heterogeneous datasets and spatial and temporal dimensions
of the chosen criteria into the WVC model. The risk prediction

quality - the mean value of the specificity and the double-
weighted sensitivity rate – was calculated as valuable indicator
for assessing risk prediction in the event of road accidents with
wildlife. With values of 86.7% and 86.6%, neural networks and ran-
dom forests are the best choice for WVC prediction. A ratio of 75%
WVCs and 25% non-WVCs was found to be the best choice for ML
training. Support vector machine classifiers achieved acceptable
results in shorter runtimes but at lower prediction rates.

The 36 test runs have proven that the approach can be trans-
ferred temporally and spatially. The spatial transferability was ver-
ified since the algorithm was successfully tested in Upper Bavaria
with prediction values as high as with randomly split training data.
The WVC forecast in a temporal manner was also proven through
training with datasets from the first eight years (2010–2017),
and in the prediction and testing with WVC data of 2018 and
2019. Hence, this study shows that a high quality of risk prediction
for the occurrence of WVCs is possible, not only for real-time warn-
ings but also for regions where accident data are not available. In
addition to previous studies, the tests have also shown that it is
important to predict WVCs spatiotemporally, as a combination of
static and dynamic factors determines the predictive analysis.
Other studies onWVCs have mainly focused on impact and hotspot
analysis. This paper extended the WVC research by applying data
mining techniques for the WVC risk prediction.

This developed prediction model for WVC risk makes a valuable
contribution to take appropriate action at the actual spatiotempo-
ral accident hotspots, even when accidents with wildlife are rarely
registered. The model has the potential to be transferable to areas
without WVC data availability and, thus, can help decision makers
to define better traffic safety control policies, such as dynamical
warnings on a global scale. Nevertheless, the limitations of this
study show that more efforts should be made to improve data
quality and availability of the necessary input data for a globally
applicable risk-learning system for the reduction of traffic
accidents.

Acknowledgments

This research was funded by the German Federal Ministry of
Transport and Digital Infrastructure (BMVI) as part of the mFund
project ‘‘WilDa – DynamicWildlife-vehicle collision warning, using
heterogeneous traffic, accident and environmental data as well as
big data concepts” grant number 19F2014A. I thank the Bavarian
Ministry of the Interior, for Sport and Integration & Bavarian State
Police for the data provision.

References

Abdelwahab, H. T., & Abdel-Aty, M. A. (2001). Development of Artificial Neural
Network Models to Predict Driver Injury Severity in Traffic Accidents at
Signalized Intersections. Transportation Research Record, 1746. Paper No. 01-
2234.

Arevalo, J. E., Honda, W., Arce-Arias, A., & Häger, A. (2017). Spatiotemporal variation
of roadkills show mass mortality events for amphibians in a highly trafficked
road adjacent to a national park, Costa Rica. Revista de Biología Tropical, 65(4),
1261–1276. https://doi.org/10.15517/rbt.v65i4.27903.

Beshah, T. & Hill, S. (2010). Artificial Intelligence for Development, Papers from the
2010 AAAI Spring Symposium, Technical Report SS-10-01, Stanford, California,
USA, March 22-24, 2010. Retrieved March 12, 2020, from http://www.aaai.org/
ocs/index.php/SSS/SSS10/paper/view/1173.

Biggs, J., Sherwood, S., Michalak, S., Hansen, L., & Bare, C. (2004). Animal-related
vehicle accidents at the Los Alamos National Laboratory, New Mexico.
Southwestern Naturalist, 49(3), 384–394. https://doi.org/10.1894/0038-4909.

Bíl, M., Andrášik, R., Svoboda, T., & Sedoník, J. (2016). The KDE+ software: A tool for
effective identification and ranking of animal-vehicle collision hotspots along
networks. Landscape Ecology, 31(2), 231–237. https://doi.org/10.1007/s10980-
015-0265-6.
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a b s t r a c t

Objective: Falls in older adults are associated with increased motor vehicle crash risk, possibly mediated
by driving behavior. We examined the relationship of falls and fear of falling (FOF) with subsequent
objectively measured driving habits. Methods: This multi-site, prospective cohort study enrolled 2990
active drivers aged 65–79 (53% female). At enrollment, we assessed falls in the past year and FOF
(Short Falls Efficacy Scale-International). Driving outcomes included exposure, avoidance of difficult con-
ditions, and unsafe driving during one-year follow-up, using in-vehicle Global Positioning System
devices. Results: Past-year falls were associated with more hard braking events (HBE). High FOF was asso-
ciated with driving fewer days, miles, and trips, driving nearer home and more HBE. Differences were
attenuated and not significant after accounting for health, function, medications and sociodemographics.
Discussion: Differences in objectively measured driving habits according to past-year fall history and FOF
were largely accounted for by differences in health and medications. Rather than directly affecting driv-
ing, falls and FOF may serve as markers for crash risk and reduced community mobility due to age-related
changes and poor health.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Over the past two decades, the number of licensed older drivers
and the miles they drive have steadily risen (Pomidor, 2019). In
many societies, driving is vital to maintaining mobility -- the abil-
ity to move within one’s environment – which is essential for
healthy aging (Webber et al., 2010). However, fatal motor vehicle
crashes per vehicle mile traveled begin to increase at ages 70–74
and continue to increase with age (Cox & Cicchino, 2021), making
the prevention of crashes among older drivers an important public
health concern.

The risk of crashes for older drivers relates in part to age-related
functional changes, medical conditions and medications that affect
driving ability (Pomidor, 2019). Falls are one such age-related con-
dition, common among older adults (Bergen et al., 2016), that have
been associated with an increased risk of motor vehicle crashes
(MVC). In a systematic review of 15 studies of varying designs,
sizes and geographic locations, Scott et al. (2017) found a fall his-
tory to be associated with a 40% increased risk of subsequent MVC,
as well as a higher risk of MVC-related hospitalization and death.
The mechanisms underlying the relationship between falls and
crashes are unclear but might result from changes in driving
behaviors and patterns after a fall. Fall injuries may cause func-
tional impairments (e.g., fracture that reduces range of motion)
that directly affect driving ability or behaviors. Falls, regardless
of injury, might also lead to changes in driving behaviors through
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their psychological impact. Older adults who fall are significantly
more likely to develop fear of falling (FOF) (Friedman et al.,
2002), a concern that can lead to limitations in physical and social
activity (Scheffer et al., 2008; Tinetti & Powell, 1993), self-care and
household activities (Liu et al., 2021), and could potentially result
in changes in driving habits as well. Finally, falls may be markers
for age-related health and functional declines that influence both
falls and driving abilities and behaviors, such as cognitive, vision
and hearing impairment, gait and balance problems, and use of
psychotropic medications (Deandrea et al., 2010; Karthaus &
Falkenstein, 2016; Pomidor, 2019).

While changes in driving behavior associated with falls or FOF
might explain the observed association between falls and MVC,
the relationship between falls, FOF and driving habits has not been
well-delineated. Scott et al. (2017) did not find consistent evidence
of an association between falls and subsequent driving habits from
the seven studies identified that had examined and reported driv-
ing habits. These studies were limited by their cross-sectional
design (Forrest et al., 1997; Lyman et al., 2001; Vance et al.,
2006), small samples (Crizzle et al., 2013; Lyman et al., 2001;
Marie Dit Asse et al., 2014) and use of self-reported driving behav-
ior outcomes, which may be subject to bias (Dugan & Lee, 2013;
Forrest et al., 1997; Lyman et al., 2001; Marie Dit Asse et al.,
2014; MacLeod et al., 2014; Vance et al., 2006). Only one study
examined the relationship between falls and objectively measured
driving habits, assessing 27 older adults with Parkinson’s disease
followed for two weeks (Crizzle et al., 2013). This study found that
participants who had fallen in the past year exhibited more hard
braking and drove more slowly than those without a fall. In addi-
tion to the small sample restricted to persons affected by Parkin-
son’s, this study did not account for demographic or health-
related differences between individuals who had and had not
fallen. The literature examining FOF in relation to driving habits
is similarly limited. One cohort study found that older women
expressing high FOF were more likely to report driving cessation
or reduction in the subsequent six years than women with low
FOF, although this pattern was not found for men (Marie Dit Asse
et al., 2014). A study with older residents of retirement communi-
ties (71% women) found that FOF was negatively associated with
the number of objectively measured vehicle trips taken per day
over six days’ follow-up, but not with daily distance or minutes
for vehicle trips (Takemoto et al., 2015). Studies in larger samples
examining objectively measured driving habits over a longer per-
iod of time could help to establish whether falls or FOF (or both)
are associated with changes in driving habits and driving behaviors
among older adults.

The current study aimed to examine associations of self-
reported history of having fallen, and of fear of falling, with objec-
tively measured driving patterns during one year of follow-up in a
large, geographically diverse cohort of older drivers.

2. Materials and methods

2.1. Study design

The AAA LongROAD study is a prospective cohort study
designed to examine medical, behavioral, environmental, and
other factors associated with safe driving in older adults. Long-
ROAD enrollment occurred at five US sites (Ann Arbor, MI; Balti-
more, MD; Cooperstown, NY; Denver, CO; and San Diego, CA).
The study design and population have been described in detail pre-
viously; the study collects self-reported and objectively measured
data on health, functioning, and driving behaviors (Li et al., 2017).
A sample of 3000 drivers with average follow-up of 2.5 years was
planned to provide study power >80% to detect an age-adjusted

risk ratio of 3.0 for crash involvement associated with mild cogni-
tive impairment (see Li et al., 2017). The study was approved by
the institutional review board at each site, including Bassett
Research Institute, Columbia University, Johns Hopkins University,
University of California San Diego, University of Colorado Anschutz
Medical Campus, and University of Michigan. All enrolled partici-
pants provided written informed consent for participation and
received $100 at the baseline visit. The STROBE cohort reporting
guidelines were followed for this report (von Elm et al., 2007).

2.2. Sample

Study participants were aged 65–79 years at enrollment, had a
valid driver’s license, drove on average at least once a week, drove
one car (1996 or newer with an accessible OBDII port) at least 80%
of the time, spoke English, had no significant cognitive impairment
(e.g., Alzheimer’s disease) based on medical record review and a
Six-Item Screener score �4 (sensitivity 67.5% and specificity
96.1% for clinically diagnosed dementia) (Callahan et al., 2002),
and resided in the catchment area at least 10 months a year with
no plans to move away within 5 years (Li et al., 2017). Using elec-
tronic medical records from healthcare systems affiliated with
study sites, study staff identified potentially eligible patients, sent
initial recruitment letters followed by telephone calls for eligibility
screening, and scheduled eligible, interested participants for a
baseline study visit for enrollment and data collection. Of 40,806
individuals sent recruitment letters, 19.0% could not be contacted
by phone, 29.7% declined eligibility screening, 19.0% were ineligi-
ble (most often due to no/infrequent driving or ineligible resi-
dence), 25.0% were eligible but declined, and 7.3% (range 5.1–
18.3% across study sites) (n = 2990 participants) enrolled (Li
et al., 2017). Recruitment and enrollment were completed between
July 2015 and March 2017.

2.3. Driving outcomes

We objectively measured driving outcomes with a device
installed in each participant’s vehicle that collected data when
the vehicle was turned on. The device could determine if the par-
ticipant was the driver using a Bluetooth receiver to detect partic-
ipant codes and signal strengths transmitted by Bluetooth beacons
carried by the participant. This study used data recorded during
the first 12 months after the baseline fall history. Driving measures
are defined in Table 1. Driving habit measures were based on pre-
vious work (Molnar et al., 2013a), conceptualized based on three
components of the Driving Habits Questionnaire (DHQ) (Owsley
et al., 1999): driving space, driving exposure, and driving avoid-
ance. Two driving measures - rapid deceleration (‘‘hard braking”)
events and speeding events (Table 1) - served as proxies for unsafe
driving (Chevalier et al., 2017; Eby et al., 2019; Williams et al.,
2006). We excluded participants if they were missing all driving
measurements (n = 15) or drove fewer than 14 days or 100 miles
during the 12-month period (n = 18). We derived means and stan-
dard deviations for each driving habit measure from the full
12 months of data. Two variables with skewed distributions (pro-
portion of trips at night and number of rapid deceleration events)
were log-transformed. Speeding events, which were uncommon
(median = 1 event/1000 miles driven), were categorized as any ver-
sus none during the 12-month period.

2.4. Exposures

At enrollment, research staff administered questionnaires about
demographics, health and healthcare utilization. We used the fol-
lowing variables as primary exposures: (1) ‘‘In the last 12 months
have you fallen down?” (Yes/No), and (2) the 7-item Short Falls
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Efficacy Scale-International (Short FES-I), which assesses concerns
about falling (categorized as Low [<11]/High [11–28]) (Delbaere
et al., 2010). For those who answered ‘‘Yes” to having fallen, we
also asked, ‘‘In the last 12 months, have you fallen down more than
one time? (Yes/No).” We excluded participants from all analyses if
they did not answer the question about falling in the last
12 months (n = 16) and from analyses of FOF if they were missing
Short FES-I scores (n = 3).

2.5. Covariates

Demographic characteristics collected at baseline included age
group, gender, race, marital status, educational attainment, house-
hold income, work for pay in the past month and urbanicity of the

participant’s residence. Self-reported health characteristics
included: vision with correction (rated as poor to excellent);
Patient-Reported Outcomes Measurement Information System
short form (PROMIS SF) measures of physical function, cognitive
health (‘‘applied cognition – general concerns”), depression and
anger (HealthMeasures, 2020) (as detailed in Li et al. (2017));
and self-reported driving reduction due to a health condition in
the past 12 months (Yes/No). Moderate and severe categories of
physical (dys)function were combined for analysis due to small
numbers. None of the participants had more than slight concerns
about their cognition; these scores were categorized into tertiles
for analysis. We assessed self-reported health-care utilization in
the past 12 months (i.e., emergency department visits [None, 1, 2

or More] or hospitalizations [None/Any]). Use of potentially

impairing substances included assessment of alcohol and medica-
tion use. Alcohol consumption frequency in the past three months
was categorized into any versus none, as few reported more than
light-to-moderate drinking. Current medication use (prescribed
and over-the-counter) was collected and categorized according to
the American Hospital Formulary System (AHFS) classification, as
described in Hill et al (2020). We examined medications that act
on the central nervous and cardiovascular systems, which have
been associated with fall risk (Hartikainen et al., 2007; Park
et al., 2015). Individuals who reported taking one or more psy-
chotherapeutic, anxiolytic, sedative, hypnotic or anticonvulsant
agents were categorized as taking a central nervous system (CNS)

medication. Individuals who reported taking one or more antiar-
rhythmic, cardiotonic, or diuretic agents were categorized as tak-
ing a cardiovascular medication.

2.6. Statistical analysis

Chi-Square tests (or Fisher’s exact tests) were used to assess
each covariate’s association with each exposure of interest. Unad-
justed associations between each exposure and each driving habit
of interest were examined using separate linear or logistic regres-
sion models, as appropriate. For each driving outcome, we
accounted for potential differences in age group, gender, race and
marital status between participants with and without a past-year
history of falls (Yes/No) or concern about falling (High/Low) in all
multivariable models (‘‘base models”). Participants missing data
on any of these four sociodemographic variables were excluded
from adjusted analyses (n = 75). Self-reported measures of health,
health care utilization, medication or alcohol use, and additional
sociodemographic factors were assessed as potential covariates if
they were associated with both fall history or concern about falling
and the driving outcome measure at p < 0.20. As a sensitivity anal-
ysis, we also examined exposure to past-year falls categorized as
none, one and more than one. Model assumptions and fit were
assessed using residuals, probability plots, and Akaike information
criteria (AIC) as appropriate. All results are reported as beta esti-
mates or odds ratios, as indicated, with 95% confidence intervals
(CI), using an alpha level of 0.05 for testing statistical significance.
All analyses were conducted using SAS University Edition software
(version 9.04.01, SAS Institute, Inc., Cary, North Carolina).

3. Results

Of the 2990 participants enrolled in LongROAD, 2941 (98.4%)
had complete data on both self-reported falls and objective driving
measures; 2938 of these (99.9%) also had FOF data. Adjusted base
models examining self-reported falls and FOF included 2866 and
2863 participants, respectively.

A substantial proportion (28.2%) reported having fallen at least
once in the 12 months prior to enrollment, and 5.1% had fallen
more than once, while 18.6% expressed a high FOF (Table 2). Table 2
shows characteristics of the sample by fall history. At baseline,

Table 1
Means, standard deviations, definitions, and category for each driving habit measure.

Objective Driving Measure Mean
(SD)

Definition for the Monthly Variable (Trip is defined as ignition on to ignition off) Category

Average Percent of Trips Within
15 Miles of Home

64.1
(22.4)

Percent of trips traveled in month within 15 miles of home. Driving
Space

Average Number of Miles 736.0
(433.6)

Total number of miles driven in month. Driving
Exposure

Average Number of Days
Driving

21.0
(5.5)

Total number of days in month with at least one trip. Driving
Exposure

Average Number of Trips 110.8
(53.3)

Total number of trips in a month. Driving
Exposure

Average Percent of Trips at
Night

1.9 (0.7) Percent of trips in month during which at least 80% of trip was during nighttime, with nighttime defined as
end of evening civil twilight to beginning of morning civil twilight or a solar angle greater than 96 degrees.

Driving
Avoidance

Average Percent of Trips on
High Speed Roads

12.8
(11.0)

Percent of trips in month during which at least 20% of distance travelled was at a speed of 60 MPH or
greater.

Driving
Avoidance

Average Percent Trips in AM
Peak

7.1 (4.9) Percent of all trips taken in month during 7:00–9:00 AM on weekdays. Driving
Avoidance

Average Percent Trips in PM
Peak

9.6 (4.4) Percent of all trips taken in month during 4:00–6:00 PM on weekdays. Driving
Avoidance

Right to Left Turn Ratio 0.9 (0.1) Ratio of all right-hand to left-hand turning events identified for driver in month. Driving
Avoidance

Average Speeding Events 7.8
(17.2)

Number of speeding events (speed > 80 MPH sustained for at least 8 seconds) per 1000 miles driven. Unsafe
Driving

Average Rapid Deceleration
Events

5.4 (6.4) Number of events with deceleration greater than or equal to 0.4 g (hard braking, near crash, crash) per 1000
miles driven.

Unsafe
Driving
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compared to participants who had not fallen in the past year, par-
ticipants who had fallen were twice as likely to report high FOF
(28.7% vs 14.6%, p < 0.001). Those with a past-year fall history were

significantly more likely to be female (59.5% vs 50.4%, p < 0.001)
and of white race (91.3%% vs 88.2%, p = 0.015). They also perceived
their visual acuity, physical and cognitive function to be poorer,

Table 2
Characteristics of Older Drivers with and without a History of Falls in the Past 12 Months, LongROAD Cohort of Older Drivers.

Characteristics Past-Year Fall
N = 828 (28.2%)

No Past-Year Fall
N = 2113 (71.8%)

p-value

Short FES-I
High Concern (�11) 238 (28.7) 309 (14.6) <0.001
Low Concern (<11) 590 (71.3) 1803 (85.4)

Age Group
65–69 329 (39.7) 893 (42.3) 0.457
70–74 296 (35.7) 722 (34.2)
75–79 203 (24.5) 498 (23.6)

Gender
Female 493 (59.5) 1064 (50.4) <0.001
Male 335 (40.5) 1049 (49.6)

Race
White 745 (91.3) 1830 (88.2) 0.015
Non-White 71 (8.7) 246 (11.8)

Marital Status
Married or Living with Partner 527 (64.1) 1420 (67.9) 0.052
Separated, Divorced, Widowed, Never Married 295 (35.9) 672 (32.1)

Highest Level of Education
Less than High School 18 (2.2) 43 (2.0) 0.968
High School, Vocational, Some College, Associate 282 (34.1) 702 (33.3)
Bachelor Degree 190 (23.0) 494 (23.5)
Master, Professional, Doctoral Degree 336 (40.7) 867 (41.2)

Total Household Income
$100,000 or more 252 (31.3) 693 (34.1) 0.216
$80,000–$99,999 118 (14.7) 304 (14.9)
$50,000–$79,999 198 (24.6) 514 (25.3)
Less than $50,000 237 (29.4) 523 (25.7)

Worked for Pay Last Month
Yes, Full-Time 66 (8.0) 220 (10.5) 0.084
Yes, Part Time 178 (21.6) 410 (19.5)
No 579 (70.4) 1470 (70.0)

Urbanicity of Residence
Metropolitan Core 595 (71.9) 1545 (73.1) 0.788
Metropolitan Area/Non-Core 120 (14.5) 293 (13.9)
Micropolitan/Small Town/Rural 113 (13.6) 275 (13.0)

Eyesight with Correction
Excellent 186 (22.5) 556 (26.3) 0.031
Very Good 342 (41.3) 888 (42.1)
Good 264 (31.9) 603 (28.6)
Fair + Poor 36 (4.4) 64 (3.03)

Physical Function Limitations
Moderate to Severe (T-Score � 39.9) 114 (13.9) 124 (5.9) <0.001
Mild (T- Score 40.0–55.0) 369 (45.0) 741 (35.4)
None to Slight (T score > 55.0) 337 (41.1) 1230 (58.7)

Applied Cognition-General Concerns (T-Score Tertiles)
T-Score > 32.4 320 (38.7) 615 (29.2) <0.001
T-Score 26.3–32.3 214 (25.9) 548 (26.0)
T-Score < 26.2 292 (35.4) 941 (44.7)

Depression (T-scores)
Moderate to Severe (T-Score � 60.0) 17 (2.1) 23 (1.1) 0.022
Mild (T- Score 55.0–59.9) 50 (6.1) 94 (4.5)
None to Slight (T score < 55.0) 759 (91.9) 1994 (94.5)

Anger (T-Scores)
Moderate to Severe (T-Score � 60.0) 13 (1.6) 18 (0.9) 0.012
Mild (T- Score 55.0–59.9) 39 (4.7) 62 (2.9)
None to Slight (T score < 55.0) 772 (93.7) 2030 (96.2)

Decreased Driving Due to Health in Past 12 Months 146 (17.7) 188 (8.9) <0.001
Emergency Department Visits Past 12 Months
2+ 75 (9.1) 110 (5.2) <0.001
1 182 (22.0) 310 (14.7)

At Least One Hospital Stay Past 12 Months 177 (21.4) 275 (13.1) <0.001
Any Alcohol Consumption Past 3 Months 612 (73.91) 1528 (72.3) 0.391
Current Use Central Nervous System Medications* 348 (42.0) 571 (27.0) <0.001
Current Use Cardiovascular Medications** 211 (25.5) 532 (25.2) 0.864

Missing data: race (n = 49, 1.7%), marital status (n = 27, 0.9%), total household income (n = 102, 3.5%), worked for pay (n = 18, 0.6%), hospital stay (n = 12, 0.4%), physical
function limitations (n = 26, 0.9%); variables with 1–11 missing values (<0.4%) included highest level of education, emergency department visits, hospital stays, alcohol use,
decreased driving due to health in past 12 months, depression, anger, applied cognition-general concerns, eyesight with correction and short FES-I. Remaining variables had
no missing data.

* Anticonvulsants, Psychotherapeutic Agents, Anxiolytics, Sedatives, Hypnotics.
** Antiarrhythmics, Cardiotonic Agents, Diuretics.
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described more current symptoms of depression and anger, and
were more likely to have reduced their driving due to a health con-
dition and to have had greater healthcare utilization in the past
12 months, and to use central nervous system medications cur-
rently (Table 2).

Drivers who did and did not report any past-year fall at baseline
had similar driving exposure, driving space and driving avoidance
(as defined in Table 1) during the first 12 months after baseline,
after accounting for gender, age group, race, and marital status
(Table 3). Participants who fell had a median of four rapid deceler-
ation events per 1000 miles driven versus three per 1000 miles
among participants who had not fallen. There were significantly
more hard-braking events per 1000 miles driven in participants
who had fallen in the past year versus participants who had not.
Drivers who did and did not report any past-year fall at baseline
did not differ significantly in their odds of having had at least
one speeding event per 1000 miles driven. The difference in rapid
deceleration events was attenuated and no longer statistically sig-
nificant when group differences in general concerns about cogni-
tion and current use of CNS medications were taken into
account. Neither cognitive concerns nor central nervous system
medication use substantively affected the magnitude, direction or
statistical significance of the other results (Table 3). No other dif-
ferences in participant characteristics between groups were
retained in adjusted models.

Sensitivity analysis revealed similar results for persons with
more than one fall and persons with only one fall in the past year,
compared to participants with no falls, except that persons with
more than one fall made a significantly smaller proportion of driv-
ing trips during morning rush hour (adjusted beta = �0.79 [95%CI:
�1.35, �0.22]).

Nearly all sociodemographic characteristics differed signifi-
cantly between participants with high versus low concern about
falling. Participants with high concern were more likely to be
female (63.3% vs 50.6%, p < 0.001), ages 75–79 years (30.7% vs
22.2%, p < 0.001), and non-white race (14.4% vs 10.0%, p = 0.002),
and less likely to be married or living with a partner (55.6% vs
68.6%, p < 0.001). Further, they were less likely to have a Bachelor’s
or higher degree (53.6% vs 66.6%, p < 0.001) or to work full-time in
the last month (5.7% vs 10.6%, p < 0.001), and more likely to have a
total household income less than $50,000 (38.0% vs 23.0%,

p < 0.001). Differences between participants with high versus low
FOF in perceived vision with correction, concerns about cognition,
emergency department (ED) visits, hospitalizations, use of CNS
medications and decreased driving due to a health problem were
similar to differences observed between participants who had
and had not fallen. In addition, participants who expressed high
FOF reported poorer physical function (median t-score 43.4 vs
56.9, p < 0.001) and more often used cardiovascular medications
(32.9% vs 23.9%, p < 0.001) compared to participants with low FOF.

Compared to participants with low FOF, participants with high
FOF drove significantly fewer miles, days, and trips per month (all
p < 0.01) and made more trips within 15 miles of home (p < 0.001)
during the 12 months after baseline (Table 4). Driving avoidance
was similar between participants with high versus low FOF, except
that the former were significantly more likely to avoid trips during
morning rush hour. Participants with high FOF, like participants
with a fall history, had significantly more hard braking events
but did not differ in speeding events.

After adjusting for additional sociodemographic, cognitive, and
health factors, healthcare utilization and CNS medication use, par-
ticipants with high FOF did not differ significantly from partici-
pants with low FOF in their driving exposure, driving space, or
unsafe driving (Table 4). However, individuals with high FOF took
a significantly smaller percentage of trips in morning rush hour
and a significantly greater percentage of trips during evening rush
hour. Groups did not differ significantly by any other measure of
driving avoidance.

4. Discussion

Older drivers who reported at least one fall in the past year had
a modestly higher rate of rapid deceleration events, a potential
marker for unsafe driving, compared to adults who did not report
falling. The observed difference was attenuated after accounting
for differences in cognitive concerns and CNS medication use.
Otherwise, driving habits measured objectively over a 12-month
period were essentially unrelated to recent fall history. On the
other hand, older drivers with a high FOF drove significantly differ-
ently than participants with low FOF; that is, they drove shorter
distances, less often, and closer to home, and demonstrated more
hard braking. Nearly all differences between participants with high

Table 3
Association between Past Year Fall and Objectively-Measured Driving Habits in the Subsequent 12 Months, LongROAD Cohort of Older Drivers.

Driving Outcomes Past-Year Fall
n = 828

No Past-Year Fall
n = 2113

Base Model a Adjusted Model

Mean (SD) Mean (SD) Beta Estimate (95% CI) Beta Estimate (95% CI)

Driving Exposure
Miles Driven 732.7 (433.8) 737.3 (433.7) 4.16 (�30.73, 39.06) 15.92 (�19.34, 51.17) bc

Days Driving 20.9 (5.5) 21.0 (5.5) �0.14 (�0.59, 0.31) �0.06 (�0.51, 0.39) c

Trips Driven 110.3 (53.5) 111.0 (53.3) 0.65 (�3.70, 5.00) 1.45 (�2.93, 5.83) c

Driving Space
% Trips Within 15 Miles of Home 63.9 (22.2) 64.2 (22.4) �0.25 (�2.04, 1.53) �1.01 (�2.81, 0.78) bc

Driving Avoidance
% Trips on High Speed Roads 12.2 (10.6) 13.1 (11.1) �0.77 (�1.66, 0.11) �0.77 (�1.66, 0.11)
% Trips in AM Peak 6.8 (4.9) 7.2 (4.9) �0.32 (�0.72, 0.08) �0.24 (�0.64, 0.16) c

% Trips in PM Peak 9.7 (4.3) 9.5 (4.5) 0.19 (�0.17, 0.55) 0.19 (�0.17, 0.55)
Log % Trips at Night 1.8 (0.7) 1.8 (0.7) 0.01 (�0.04, 0.07) 0.02 (�0.03, 0.08) c

Right-to-Left Turn Ratio 0.9 (0.1) 0.9 (0.1) 0.00 (�0.01, 0.01) 0.00 (�0.01, 0.01) bc

Unsafe Driving
Log Rapid Deceleration Events per 1000 Miles Driven 1.6 (0.7) 1.5 (0.7) 0.08 (0.03, 0.14) 0.06 (�0.00, 0.12) bc

N (%) N (%) Odds Ratio (95% CI) Odds Ratio (95% CI)

At Least One Speeding Event per 1000 Miles Driven 468.0 (56.5) 1236.0 (58.5) 0.94 (0.80, 1.11) 0.90 (0.76, 1.07) b

Bold font indicates statistical significance at p < 0.05.
a Base model adjusted for gender, age, race, and marital status.
b Adjusted for cognitive concerns.
c Adjusted for current use of central nervous system medications (psychotherapeutics, anxiolytics, sedatives, hypnotics and anticonvulsants).
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versus low FOF were accounted for by health and sociodemo-
graphic differences between these two groups.

Like our study, the systematic review by Scott et al. (2017) did
not find consistent evidence of an association between prior self-
reported falls and driving frequency, distance or space. However,
all but one of those studies were based on subjectively-measured
driving habits. The one included study with objectively-measured
naturalistic driving (Crizzle et al., 2013) was limited to a small
number of patients with Parkinson’s disease followed for only
two weeks, but similarly found no significant differences in driving
exposure between those who had and had not fallen. Overall, our
data suggest that having a past-year fall history does not lead older
drivers to substantially reduce where or how often they drive. In
contrast, FOF was found to be significantly associated with driving
less often and for shorter distances. Previous research has shown
that FOF is associated with cognitive decline, frailty, poor health,
and gait abnormalities (Scheffer et al., 2008). While actual func-
tional declines influence driving ability, both actual capacity and
self-perceived physical, cognitive and perceptual deficits influence
driving behavior (Anstey et al., 2005; Betz & Lowenstein, 2010;
Molnar et al., 2013a,b; Molnar et al., 2015). Consistent with past
research, we found that greater concerns about cognitive function
and poorer perceived physical function helped explain observed
differences in driving exposure and space between participants
with high and low FOF. FOF may be a marker for perceived sensory,
cognitive or physical deficits that lead participants to limit their
driving exposure. FOF has previously been shown to be associated
with restrictions in amount and type of physical and social activity
(Scheffer et al., 2008). Our findings demonstrate that FOF is simi-
larly associated with reduced driving mobility, with potentially
serious adverse effects on access to goods and services and on
social and civic engagement (Dickerson et al., 2019; Oxley &
Whelan, 2008; Satariano et al., 2019; Webber et al., 2010).

We found little evidence that either FOF or a history of falls was
associated with avoidance of difficult driving situations (e.g., driv-
ing during rush hour or at night). Evidence from prior studies is
limited and inconsistent. Crizzle et al. (2013) similarly found no
evidence that those with a history of falls had greater
objectively-measured driving avoidance. In contrast, Vance et al.
(2006) found that the number of self-reported falls was positively

correlated with a composite driving avoidance score. Regardless of
fall history or FOF, older drivers enrolled in our study generally
avoided challenging driving situations, making relatively small
percentages of trips on highways, during rush hour or at night.

Both a history of falls and a high FOF were associated with a
modestly higher rate of rapid deceleration events (RDEs), whch
indicate hard braking. Crizzle et al. (2013) also found significantly
more hard braking among those with a fall history in a small sam-
ple with Parkinson’s disease during two weeks of objectively-
measured driving. Rapid deceleration events (RDEs) may relate to
near crashes or crashes (Chevalier et al., 2017; Dingus et al.,
2006; Yan et al., 2008), and have also been associated with driving
violations (Zhao et al., 2012) and declining functional abilities (Eby
et al., 2019). Cognitive impairment, which is associated with both
fall risk (Deandrea et al., 2010) and FOF (Scheffer et al., 2008),
may contribute to rapid deceleration events (Eby et al., 2019)
and poorer driving performance (Hird et al., 2016; Jekel et al.,
2015). In our sample, participants who had fallen assessed their
cognitive function to be poorer than did those who had not fallen.
We also found that participants with a fall history were more likely
to currently take CNS medications, which may adversely impact
driving performance. Use of drugs affecting the CNS are indepen-
dent risk factors for both falls (Hartikainen et al., 2007; Park
et al., 2015) and impaired driving (Hill et al., 2020; Hetland &
Carr, 2014). Accounting for CNS medication use amd participants’
concerns about their cognition attenuated the estimated associa-
tion of past-year falls with rapid deceleration events, supporting
the concept of underlying risk leading to both increased falls and
poorer driving performance. It must be noted that the median dif-
ference in rapid deceleration events between those who fell and
those who did not was less than one event per 1000 miles driven.
Whether such a small difference translates into meaningful differ-
ences in crash risk is uncertain.

Our results showed that participants with high concern about
falling had significantly lower education level and household
income than those with low FOF. Numerous studies of
community-dwelling older adults in diverse countries have simi-
larly documented an association between lower education and
increased fear of falling, after accounting for demographic, social
and physical risk factors (Braga Lde et al., 2016; Choi et al., 2015;

Table 4
Association between Fear of Falling and Objectively-Measured Driving Habits in the Subsequent 12 Months, LongROAD Cohort of Older Drivers.

Driving Outcomes High Fall Concern
n = 547

Low Fall Concern
n = 2391

Base Modela Adjusted Model

Mean (SD) Mean (SD) Beta Estimate (95% CI) Beta Estimate (95% CI)

Driving Exposure
Miles Driven 659.4 (442.5) 752.5 (427.5) �60.66 (–101.15, –20.18) �10.92 (�57.04, 35.20)bcdef

Days Driving 20.3 (6.0) 21.2 (5.4) �0.84 (�1.36, �0.31) �0.31 (�0.90, 0.27) cdef

Trips Driven 104.0 (50.2) 112.4 (54.0) �7.48 (�12.56, �2.41) �3.00 (�8.69, 2.70) cdefg

Driving Space
% of Trips Within 15 Miles of Home 68.7 (21.7) 63.1 (22.4) 3.92 (1.84, 5.99) 1.81 (�0.05, 4.13) bcdg

Driving Avoidance
% Trips on High Speed Roads 11.5 (10.4) 13.1 (11.1) �0.88 (�1.92, 0.15) �0.08 (�1.11, 0.95) efgh

% Trips in AM Peak 6.1 (4.6) 7.3 (4.9) �1.08 (�1.54, �0.62) �0.57 (�1.08, �0.06) cde

% Trips in PM Peak 9.9 (4.5) 9.5 (4.4) 0.41 (�0.01, 0.83) 0.60 (0.18, 1.02) deh

Log % of Trips at Night 1.8 (0.7) 1.9 (0.7) �0.01 (�0.07, 0.06) 0.01 (�0.06, 0.07) bceh

Right-to-Left Turn Ratio 0.9 (0.1) 0.9 (0.1) 0.00 (�0.01, 0.01) �0.01 (�0.02. 0.01) bc

Unsafe Driving
Log Rapid Deceleration Events per 1000 Miles Driven 1.7 (0.8) 1.5 (0.7) 0.10 (0.03, 0.17) 0.05 (�0.02, 0.12) bdfi

N (%) N (%) Odds Ratio (95% CI) Odds Ratio (95% CI)

At Least One Speeding Event 308 (56.3) 1393 (58.3) 0.95 (0.79, 1.16) 0.98 (0.80, 1.20) bfh

Bold font indicates statistical significance at p < 0.05.
aBase model adjusted for gender, age, race, and marital status. Additional adjustment for general cognitive concernsb, physical functionc, current use of central nervous system
medications (included psychotherapeutics, anxiolytics, sedatives, hypnotics, and anticonvulsants)d, work for pay in last monthe, total household incomef, alcohol con-
sumption past three monthsg, highest level of educationh, hospital stay past 12 monthsi.
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Curcio et al., 2020; Dierking et al., 2016; Kumar et al., 2014; Lee
et al., 2018; Mane et al., 2014; Oh et al., 2017), although a few stud-
ies found no association (Malini et al., 2016; Moreira et al., 2017;
Pirrie et al., 2020). Several studies have also noted a relationship
of FOF with lower socioeconomic status (SES) (Kumar et al.,
2014; Vellas et al., 1997), although most studies examining SES
have reported no association in adjusted models (Choi et al.,
2015; Lee et al., 2018; Lee et al., 2018; Malini et al., 2016; Mane
et al., 2014). Substantial evidence exists that lower education and
income are correlated with poor health (Glymour et al., 2014).
Thus, the greater odds of fear of falling reported by older drivers
with lower education and income in our study may primarily
reflect poorer health, although we did adjust for diverse measures
of health in models of driving outcomes, such as cognitive and
physical function, selected medications and hospitalization. Low
education and socioeconomic status may also have a more direct
effect on fear of falling, as Paiva et al. (2020) suggests: ‘‘Individuals
who live in situations of social vulnerability experiencing material
deprivation, a higher level of stress, fewer options, . . ., and limited
access to healthcare services suffer more intense consequences of
falls.” Thus, greater FOF may reflect awareness on the part of
socioeconomically disadvantaged older adults of the potentially
more serious consequences for them in the event of a fall. Regard-
less of the mechanism, this suggests that social disadvantage may
lead to greater reductions in access to goods and services and to
social and civic engagement as a consequence of higher FOF and
associated reduced driving mobility, thus further exacerbating
social inequalities in older adults.

This study had several limitations. Past-year fall history was
self-reported. Research suggests under-reporting of falls by older
adults (Ganz et al., 2005; Peel, 2000), which may have biased
results toward the null. However, in the systematic review by
Scott et al. (2017) all studies that specified the method of fall
assessment used self-report; hence, our measure is consistent with
other studies examining falls in relation to driving and crash risk.
There were few speeding and rapid deceleration events, which
reduced the study’s power to identify differences between those
who did and did not fall in the past year. We were unable to deter-
mine from our data whether participants’ driving habits had chan-
ged subsequent to their fall or to examine temporal relationships
between falls and use of CNS medication. We examined self-
reported health characteristics as covariates. While perceived
health is likely to be an important influence on both FOF and driv-
ing habits, we acknowledge that inclusion of objective sensory and
physical function may have yielded differing results in adjusted
models. Further, we lacked data on fall injuries, precluding evalu-
ations of fall injuries’ influence on driving habits. Although study
participants were mostly relatively affluent, well-educated older
drivers, approximately-one-third lacked a bachelor’s degree and
more than half had household incomes below the US median. Nev-
ertheless, the adverse effects of FOF on driving may have been
underestimated due to the sample characteristics. These same
characteristics may also reduce the generalizability of our findings
to other more socioeconomically diverse populations. Participants
were recruited at sites that were selected for geographic diversity
and may not represent the general US population. Among the
strengths of this study are its inclusion of a large sample of older
drivers recruited at geographically diverse sites, the use of objec-
tive driving data over a 12-month period after baseline, and the
ability to account for differences in demographics, health and func-
tional ability, and health care utilization between those with and
without a fall history, and between those with high versus low FOF.

In conclusion, we found little evidence that the previously
observed motor vehicle crash risk associated with a history of falls
in older adults could be explained by differences in driving habits
subsequent to the fall(s), when driving behaviors are measured

objectively. The few differences in driving habits observed
between those who fell and those who did not were largely
explained by differences in perceived cognitive function and use
of CNS medications. Rather than directly causing crash risk, falls
may serve as a marker for older drivers who are at higher risk
for motor vehicle crashes due to underlying age-related changes.
We also found that older drivers with high FOF drove fewer days
and miles, made fewer trips, and drove closer to home. Whether
FOF itself reduces driving mobility or is a marker for actual or per-
ceived physical, visual, and/or mental declines associated with
aging or disease, remains unclear. Further studies with prospective
collection of data on falls, fall injuries, and FOF, and examination of
changes in driving habits in relation to each of these, can help to
clarify the underlying relationships among them. Clinical trials
may determine whether addressing the underlying factors that
may have led to the fall, for example, careful assessment of cogni-
tive function and consideration of dosage, frequency or class of
medications taken that are known to have CNS effects, is more
effective for reducing crashes than on-road driver training or sim-
ilar measures to improve driving practices among those who have
fallen. Similarly, clinical trials in persons with high fear of falling
should evaluate the effects on mobility, quality of life, and inde-
pendence of interventions to counteract physical, visual, and/or
mental declines associated with aging, and of interventions to
identify and access alternative transportation resources.
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a b s t r a c t

Introduction: Most people have experienced low back pain (LBP) more or less in their lifetime. Heavier
load weight could increase the risk of LBP, especially in repetitive lifting and carrying tasks. The risk could
also increase with the frequency of lifting. This study aims to investigate the effects of a passive back-
support exoskeleton (PBSE) on trunk muscle activation, kinematics, and physical capacity in a repetitive
lifting task and a carrying task in consideration of load weights in a laboratory setting. Results: Results
showed that using the PBSE, the activities of the thoracic erector spinae and lumbar erector spinae mus-
cles were reduced significantly by nearly 7% MVC and 3% MVC in the repetitive lifting task and the car-
rying task, respectively. There was no significant effect of the PBSE on the spine kinematics and physical
capacity. Practical Applications: This study supports the use of the PBSE to reduce trunk muscle activity in
repetitive lifting and carrying tasks.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Low back pain and manual handling tasks

Low back pain (LBP) is a significant occupational health issue
among workers (Kudo, Yamada, & Ito, 2019), a leading cause of dis-
ability (Ferguson et al., 2019), and falls within the realm of muscu-
loskeletal disorders (Wang, Liu, Lu, & Koo, 2015). Most people
experience LBP more or less in their lifetime. The most frequently
affected area is between the inferior margin of the 12th rib and
inferior gluteal folds (Koes, Van Tulder, & Thomas, 2006). The inci-
dence of LBP increases with age, and this incidence reaches a peak
in the 30-year-old population (Hoy, Brooks, Blyth, & Buchbinder,
2010). It was reported that LBP prevalence rates may range from
4% (Freburger et al., 2009) to 69% (Ganasegeran, Perianayagam,
Nagaraj, & Al-Dubai, 2014), which depends on the length of time
and pain intensity. The least commonly used remedies for LBP
were taking time off from work (i.e., lost work time) and seeking
medical care (Davis & Kotowski, 2015).

Manual handling tasks of heavy loads may enhance the risk of
LPB in different industrial sectors, such as the healthcare industry
(Nourollahi, Afshari, & Dianat, 2018) and construction industry

(Wang, Dai, & Ning, 2015). The risk can also increase with the fre-
quency of lifting (Hoogendoorn et al., 2000). According to a
prospective cohort study of personal risk factors for LBP, bending
for more than two hours every day is strongly and independently
associated with the subsequent LBP, and the risk was even higher
in those bending both forward and sideways (Ramond-Roquin
et al., 2015). The degree of trunk flexion is also a risk factor of
LBP. When a worker’s trunk is a minimum of 60 degrees of flexion
for more than 5% of the daily working time, working on the
extreme flexion angle can increase the risk of LBP (Hoogendoorn
et al., 2000). In a three-year follow-up study, the researchers found
that prolonged standing, awkward lifting, and squatting/kneeling
were highly related to mechanical LBP (Sterud & Tynes, 2013).
Flexion of the trunk was classified as a moderate risk factor for
LBP, especially at greater levels of exposure during repetitive lifting
(Hoogendoorn et al., 2000). From the perspectives of kinematics,
the risk of low back disorder due to working at limit angles can
be reduced by limiting the peak flexion angle of lumbar spine
(Adams & Hutton, 1982, 1986; Adams, McNally, Chinn, & Dolan,
1994). Passive back-support exoskeleton (PBSE) for preventing
workers from LBP is attracting remarkable attention of safety
researchers (Amandels, het Eyndt, Daenen, & Hermans, 2018;
Bosch, van Eck, Knitel, & de Looze, 2016; Motmans, Debaets, &
Chrispeels, 2018).
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1.2. Previous studies on passive back-support exoskeletons in manual
handling tasks

Bosch et al. (2016) found that using a PBSE in a prolonged
forward-bended work task can reduce 35–38% of lower muscle
activity, lower physical discomfort in the low back, and increase
endurance time, but increase physical discomfort in the chest
region. For dynamic lifting and static holding tasks, using a PBSE
can reduce approximate 10–40% of back muscle activity (De Looze,
Bosch, Krause, Stadler, & O’Sullivan, 2016). Using a PBSE can also
reduce Trapezius muscle activity during a reaching-bending task
(Amandels et al., 2018). Motmans et al. (2018) found that during
order picking the back muscle activity was reduced by 9–12% when
wearing a PBSE. Huysamen et al. (2018) investigated a PBSE for lift-
ing and lowering tasks and found that the PBSE can reduce Biceps
Femoris and Erector Spinae muscle activity by 15% and 5%, respec-
tively. PBSEs can significantly reduce perceived musculoskeletal
effort in the trunk region (Huysamen et al., 2018). Koopman,
Kingma, Faber, de Looze, and van Dieën (2019) investigated the
effect of a PBSE on the activity of back and abdominal muscles, the
flexion of hip and lumbar during a static bending task at five various
hand heights. Subsequently, Alemi, Geissinger, Simon, Chang, and
Asbeck (2019) and Alemi, Madinei, Kim, Srinivasan, and Nussbaum
(2020) focused on repetitive lifting tasks and found that the use of
PBSEs reduces the average peak and mean muscle activity of back
and legmuscles in the taskswith different lifting technics (symmet-
ric or asymmetric, kneeling, stoop, squat, and freestyle).

1.3. Research rationale and objective

Although the effects of PBSEs on muscle activity in manual han-
dling tasks have been widely investigated in the literature, the
knowledge about the effects of PBSEs on the activity of trunk mus-
cles during repetitive lifting and carrying is insufficient, leaving a
research gap. Spine kinematics is a risk factor of LBP (Hemming,
Sheeran, van Deursen, & Sparkes, 2018; Papi, Bull, & McGregor,
2018) and physical capacity is one of interest in LBP related studies
(Demoulin et al., 2013; Jakobsson, Gutke, Mokkink, Smeets, &
Lundberg, 2019; Rasmussen et al., 2013). However, whether using
PBSEs affects the spine kinematics and physical capacity of workers
in repetitive lifting and carrying tasks has not been examined in the
literature. Therefore, the objective of the current studywas to exam-
ine the effects of a PBSE on the activity of trunk muscles, the spine
kinematics and physical capacity ofworkers during repetitive lifting
and carrying tasks. The hypotheses testedwere: (1) using a PBSE can
reduce trunk muscle activity (including thoracic erector spinae and
lumbar erector spinae) during repetitive lifting and carrying tasks;
(2) using a PBSE can reduce trunk muscle activity with the load
weight; (3) using a PBSE can reduce more trunk muscle activity in
lifting task than carrying task; (4) using a PBSE could benefit the
users in both lifting and carrying tasks with different load weights
by decreasing the trunk flexion; and (5) using a PBSE can increase
the physical capacity during repetitive lifting task. The results of this
study are expected to improve the existing literature on PBSEs in
repetitive lifting and carrying tasks, enhance the understanding of
how the PBSEs may affect muscle activity and body motion, eluci-
date the role of exoskeleton in preventing LBP in people, and provide
practical recommendations for designing effective PBSEs.

2. Methodology

2.1. Study design

This was a cross-sectional experimental study conducted in a
laboratory setting from February 2021 to May 2021. Each partici-

pant was required to perform two manual handling tasks (a repet-
itive load-lifting task and a load-carrying task). The muscle
activities and kinematics of the trunk in each condition, and the
physical capacity in the lifting task were recorded. All participants
provided their informed consent as approved by the Human Sub-
ject Ethics Subcommittee.

2.2. Participants

Convenience sampling was used for this study. Twenty healthy
males were recruited from the Hong Kong Polytechnic University.
Participant inclusion criteria were: (a) Chinese male adults, and
(b) Mandarin or English speakers. Participant exclusion criteria
were: (a) medical history of cardiovascular disease, (b) recent (past
3 months) musculoskeletal injury or pain, and (c) exposure to
COVID-19 cases in the last 28 days.

2.3. Exoskeleton

A PBSE device named ‘‘Muscle Suit Every” (Innophys, Japan)
(Fig. 1) was used in this study. The actuator of this device is McKib-
ben artificial muscles, which consists of an internal elastomeric
bladder surrounded by a woven braided shell. The advantages of
this device are lightweight, flexible, and simple construction. It
could provide the spine with the maximum assistive force of
25.5 kg (56.2 lb) during lifting and carrying tasks. The exoskeleton
has two sizes, which are small/medium size (Height �
Width � Depth = 805 mm � 465 mm � 170 mm, weight = 4.3 kg)
for body height of 150 cm to 165 cm, and medium/large size
(Height �Width � Depth = 840 mm � 465 mm � 170 mm,
weight = 4.4 kg) for body height of 160 cm to 185 cm. If the body
height of the subjects was between 160 cm and 165 cm, they can
select either the small/medium size or medium/large size of the
exoskeleton, depending on which one can provide a better fit for
them. Instruction sheets provided by the manufacturer of the
exoskeleton for the proper use of the exoskeleton were given to
the subjects. Table 1 shows the nine steps taken to properly use
the exoskeleton. Additionally, a 30-min training session was pro-
vided to the subjects to ensure they selected and used the
exoskeleton properly for the lifting and carrying tasks.

2.4. Experimental tasks

The tasks include a load-lifting task and a load-carrying task.
Each task involved four conditions, with a PBSE or without a PBSE,
5 kg or 15 kg load weight. Those two tasks were selected because
they were closely related to LBP (Coenen, Kingma, Boot, Bongers,
& van Dieën, 2014; Hoogendoorn et al., 2000; Wai, Roffey,
Bishop, Kwon, & Dagenais, 2010). According to a psychophysical

Fig. 1. Muscle Suit Every (Innophys, Japan).
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study, the maximum acceptable workloads for repetitive lifting
during an 8-hour workday in industrial populations is 17.5 kg
(Legg & Myles, 1981). In order to minimize the risk of injury of par-
ticipants, 5 kg and 15 kg were selected as the load weights in this
study for male adults (Heydari, Hoviattalab, Azghani,
Ramezanzadehkoldeh, & Parnianpour, 2013; Huysamen, Power, &
O’Sullivan, 2020).

2.4.1. Repetitive Load-Lifting task
In lifting task, participants were asked to repetitively lift a two-

handled toolbox (Fig. 2) until subjective fatigue using a squat pos-
ture in four conditions of load weights (5 kg and 15 kg) and inter-
ventions (without the PBSE and with the PBSE). Subjective fatigue
in this study was defined as overall fatigue. Lumbar Spine and tho-
racic spine are supposed to be the most affected joints during such
tasks. The lifting task was a standardized task in which one full
cycle included lifting the load from the ground level to the waist
level with the angle of the elbow joint reaching 90 degrees, and
then lowering the box down on the floor. Participants cannot move
their feet during the full cycle. The lifting-and-lowering frequency
was fixed at 10 full cycles per minute and controlled by a metro-
nome. Participants performed repetitive lifting until subjective
fatigue was reached (i.e., the participant could not complete a cycle
of lifting even with a strong verbal encouragement). A 20-min
recovery period was provided after each condition (Theurel,
Desbrosses, Roux, & Savescu, 2018).

2.4.2. Load-carrying task
In the carrying task, participants were asked to walk a distance

of eight meters at a free chosen (a usual walking pace) speed, car-

rying the two-handled toolbox (Fig. 3) in four conditions of load
weights (5 kg and 15 kg) and interventions (without exoskeleton
and with exoskeleton). During the carrying task, the participant
kept the trunk upright and looked ahead, carrying the box at the
waist level and with the elbow flexion at 90 degrees. For each con-
dition, the carrying task was repeated three times, and a break of
10 seconds was given between each repetition. A 5-min recovery
period was provided after each condition. This rest arrangement
was adopted from a previous study of Theurel et al. (2018) to avoid
any carryover fatigue across conditions.

2.5. Outcome measures

2.5.1. Surface electromyography (sEMG)
Muscle activity level of the thoracic erector spinae (TES) and

lumbar erector spinae (LES) muscles were recorded on left and
right sides using sEMG device (aktos, myon AG, Schwarzenburg,
Switzerland) (Fig. 4). Before attaching the electrodes, the skin
was shaved and cleaned by water, sandpaper and 75% alcohol to
ensure the skin impedance was below 5 kX (Theurel et al.,
2018). Standardized electrodes placement were conducted accord-
ing to SENIAM Guidelines (Hermens & Freriks, 1997). Then, two
pairs of wireless bipolar Ag/AgCl surface electrodes with 20 mm
inter-electrode distance were attached bilaterally to the left and
right sides of TES and LES. These muscles were selected because
of their relevance to the tasks (Vleeming, Pool-Goudzwaard,
Stoeckart, van Wingerden, & Snijders, 1995).

Prior to the lifting task, the participant was instructed to per-
form maximum voluntary isometric contraction (MVIC) of trunk
muscles (TES and LES). The trunk MVIC was performed by stretch-
ing backwards against maximum resistance. The participant was in
the prone position with the trunk suspended. One researcher
pressed the ankle of the participant to provide stability, another
researcher applied resistance near the scapular region. When per-
forming the task, the provider was asked to increase the resisting
force gradually until they reached maximum effort (Fig. 5). Non-
threatening verbal encouragement was provided throughout. The
participant maintained the MVIC for 5 seconds, and repeated MVIC
trial twice with 2-min rest between trials. sEMG signals were
recorded at 2000 Hz, and filtered at 20–500 Hz bandpass. Then
the maximum root mean square (RMS) of each muscle was identi-
fied over successive periods of 100 ms sliding windows using
MATLAB software (the MathWorks Inc., Natrick, MA, USA). The
highest RMS sEMG signal of each muscle was chosen for
normalization.

Table 1
Steps taken to properly use the exoskeleton.

Steps Content

1. Using the shoulder belts and putting the exoskeleton on like a
backpack.

2. Pulling the shoulder belt adjustors and adjusting the exoskeleton so
that the waist belt is at waist height.

3. After fastening the waist belt, pulling the left and right adjustors to
firmly tighten the belt.

4. Adjusting the length of the hip belt.
5. Bringing the thigh pads around to the front.
6. Pumping the air pump 45 times and filling the exoskeleton with air.
7. Allowing enough space for one fist to fit in the space between back

and the suit.
8. Fastening the left and right chest adjustors.
9. The process is complete.

Fig. 2. Load-lifting task with the PBSE. Fig. 3. Load-carrying task with exoskeleton.
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Full-wave rectification and signal smoothing with a constant
window of 100 ms RMS algorithm were used to process all sEMG
signals. For the lifting task and carrying task, the maximum RMS
values of EMG signals of various muscles from the entire motion
were identified and subsequently divided by the corresponding
maximum RMS of MVC to obtain the percentage of muscle activity
(%MVC).

2.5.2. Spine kinematics
Kinematics data for flexion angle of thoracic and lumbar seg-

ments were measured using the MyoMotion system (Noraxon
USA, Scoosdale, Arizona), and three motion sensors were placed
over T4, L1, and S1 (Fig. 6). Previous studies have shown that trunk
flexion is a risk factor for low back injuries, and workers have an
increased risk of LBP with a minimum of 60 degrees of trunk flex-
ion over 5% of the working time (Hoogendoorn et al., 2000). Also,
body kinematics are closely associated with muscle activity as
muscle performances changing at different joint angles
(Leinonen, Kankaanpää, Airaksinen, & Hänninen, 2000). Partici-
pants were required to stand upright as the reference standing
position for the calibration before each condition of tasks. Peak
angles and flexion range of selected segments during the lifting
and carrying were recorded for analysis.

2.5.3. Physical capacity
The number of the full cycles in the lifting task that participants

can make with each condition until their subjective fatigue was
recorded. The physical capacity of the participants in the lifting
task can be reflected by the number of full cycles. The greater
the number of the full cycles, the higher the physical capacity of
the participants in the lifting task.

2.6. Protocol

The experimental process was shown in Fig. 7. Before the exper-
iment, the researchers explained the experimental process and
showed the experimental tasks to the participants. Also, the partic-
ipants were required to read the information sheet and sign the
consent form, and then familiarize with the exoskeleton. The
demographic data of the participant including age, height, weight,
body mass index (BMI), and exercise frequency were recorded first.

After the skin preparation, electrodes were attached to the par-
ticipants to test the MVIC of TES and LES. Then, the participant
wore the motion sensors on selected regions to perform the exper-
imental task. First, the participant was instructed to perform the
lifting task until exhaustion in four conditions according to the
order generated by Latin square in advance: (a) lifting 5 kg load
weight with exoskeleton; (b) lifting 15 kg load weight with
exoskeleton; (c) lifting 5 kg load weight without exoskeleton;
and (d) lifting 15 kg load weight without exoskeleton. A 20-min
break was given between two conditions. Before each condition,
the participant was required to keep upright as the reference
standing position to calibrate the motion sensor. The muscle activ-
ities and kinematics of the trunk in each condition as well as the
number of the full cycles in each condition of the lifting task were
recorded.

Subsequently, the carrying task was performed at the daily
walking speed in four conditions based on the order generated
by Latin square in advance: (a) carrying 5 kg load weight with
exoskeleton; (b) carrying 15 kg load weight with exoskeleton; (c)
carrying 5 kg load weight without exoskeleton; and (d) carrying
15 kg load weight without exoskeleton. Each condition was
repeated three times, with 10 seconds rest between each repetition
and 5 min rest between two conditions. Before each condition, the
participant was required to keep upright as the reference standing
position to calibrate the motion sensor. The muscle activities and
kinematics of the trunk in each condition of the carrying task were
recorded.

2.7. Statistical analysis

Demographic data including age, BMI, and exercise frequency
were analyzed by descriptive statistics, including means and stan-

Fig. 4. Position of the sEMG electrodes (TES: thoracic erector spinae; LES: lumbar
erector spinae).

Fig. 5. MVIC test of trunk muscles.

Fig. 6. Position of the motion sensors (T4: the 4th Thoracic column; L1: the first
lumbar column; S1: sacrum).
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dard deviations. The raw sEMG and kinematics data were pro-
cessed by MatLab software (The MathsWorks Inc., Natrick, MA,
USA).

The independent variables in this study were two levels of load
weights (5 kg and 15 kg), two styles of tasks (lifting task and carry-
ing task), and two interventions (with exoskeleton and without
exoskeleton). Three dependent variables were muscle activities
for four muscles (lTES, rTES, lLES, and rLES), peak flexion angle
and flexion range of thoracic and lumbar segments, and repetitions
of lifting. SPSS Statistics Software Version 26 (IBM, USA) was used
to do statistical analysis. The normality and the homogeneity of the
variance of all data were tested by the Shapiro-Wilk test. The data
violated the assumption of normality, therefore, all statistical tests
performed were non-parametric. Wilcoxon Signed-Rank test was
conducted for each outcome variable separately (Park, 2021). The
a value at 0.05 and the level of statistical significance at p < 0.05
were set.

3. Results

3.1. Demographic characteristic of the participants

Table 2 showed the demographic characteristic of the 20 male
participants [mean age = 24.15 ± 3.20]. The mean body height
and weight are 1.75 ± 0.08 m and 69.17 ± 12.89 kg, respectively.
The BMI of 20 male participants ranged from 17.07 to 29.80 kg/
m2, with an average of 22.56 ± 3.51 kg/m2. For exercise frequency,
the mean value was 2.40 ± 1.62 times per week.

3.2. Changes in trunk muscle activity

The mean and standard deviation of trunk muscle activities are
shown in Table 3. The trunk muscle activities in mean %MVIC ran-
ged from 14.39 ± 6.54 to 48.55 ± 14.98 when the exoskeleton was

used, while between 16.52 ± 5.98 and 55.61 ± 14.57 when the
exoskeleton was not used. The exoskeleton significantly reduced
the muscle activities of all trunk muscles, including left thoracic
erector spinae (lTES) (p < 0.01), right thoracic erector spinae (rTES)
(p < 0.05), left lumbar erector spinae (lLES) (p < 0.01), and right
lumbar erector spinae (rLES) (p < 0.01), under two levels of load
weights and two levels of tasks (Fig. 8). The trunk muscle activities
showed significant reduction in mean % MVIC ranged from
2.14 ± 2.93 to 8.17 ± 7.02 with the exoskeleton (p < 0.05). This find-
ing supported the first hypothesis that the PBSE could benefit the
users in both lifting and carrying tasks with different load weights
by reducing trunk muscle activity.

3.2.1. Changes in trunk muscle activity in consideration of load
weights

Based on the beneficial effect of the exoskeleton on trunk mus-
cle activity, we further evaluated the effectiveness of the exoskele-
ton on trunk muscle activity in consideration of load weights by
comparing the reduction of muscle activity in two levels of load
weights. With 5 kg load weight, the exoskeleton reduced trunk
muscle activities in mean %MVIC of 2.14 ± 2.93 to 7.33 ± 4.12,
while 3.01 ± 3.59 to 8.17 ± 7.02 reduction in mean %MVIC was
observed with 15 kg load weight. Overall, with the increase in load
weight, the effectiveness of the exoskeleton on the trunk muscles
increased slightly, but no significant difference was observed
(p > 0.05) except for rTES with lifting task (p < 0.05) (Fig. 9). This
finding rejected the second hypothesis that the benefits of the PBSE
in reducing trunk muscle activity could increase with the load
weight.

3.2.2. Changes in trunk muscle activity in consideration of tasks
The effectiveness of the exoskeleton on two tasks by comparing

the reduction of muscle activity in lifting task and carrying task
was further evaluated. In lifting tasks, the exoskeleton reduced

Fig. 7. Flow diagram of experimental process.

Table 2
Demographic data of participants.

Mean SD Min Max

Age 24.15 3.20 19 30
Height (m) 1.75 0.08 1.64 1.96
Weight (kg) 69.17 12.89 49.2 91.1
Body Mass Index (kg/m2) 22.56 3.51 17.07 29.80
Exercise Frequency (times/week) 2.40 1.62 1 6
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the trunk muscle activities in mean %MVIC of 5.20 ± 4.91 to
8.17 ± 7.02, while decreasing 2.14 ± 2.93 to 3.53 ± 3.70 in carrying
task. Significantly more reduction was observed on muscle activi-
ties of the TES in the lifting task (p < 0.05), while for LES, only a sig-
nificant difference was observed in the case of lLES with 15 kg load
weight (p < 0.01) (Fig. 10). This finding supported the third hypoth-
esis that the PBSE could help more in lifting task than carrying task.

3.3. Changes in spine kinematics

For lifting task, the maximal flexion angle of thoracic increased
1.12 ± 10.24 to 4.61 ± 9.44 and minimal angle increased
0.95 ± 11.02 to 4.62 ± 10.58 when the exoskeleton was used

(Fig. 11). Significant difference of peak flexion angle of thoracic
was observed in condition with 15 kg load weight (p < 0.05). Peak
flexion angle of lumbar decreased slightly, but no significant differ-
ence was observed (p > 0.05). As for the flexion range, it decreased
in thoracic and lumbar segments when the exoskeleton was used,
but no significant difference was observed (p > 0.05) (Fig. 12). For
carrying task, the peak flexion angle of thoracic increased, but sig-
nificant difference only observed on minimal flexion angle in con-
dition with 5 kg load weight (p < 0.05) (Fig. 13). The peak flexion
angle of lumbar decreased, and significant difference only observed
on minimal flexion angle in condition with 5 kg load weight
(p < 0.05). As for flexion range, it decreased in thoracic and lumbar
segments when the exoskeleton was used, but no significant differ-

Table 3
Muscle activity of thoracic erector spinae and lumbar erector spinae muscles under the two conditions (with exoskeleton vs without exoskeleton).

Muscle Task Load weight %MVIC with Exoskeleton Mean (SD) %MVIC without Exoskeleton Mean (SD) % Changed Mean (SD) p value

lTES Lifting 5 kg 25.32(4.95) 32.65 (5.43) �7.33 (4.12) **<0.001
15 kg 41.91(8.83) 50.08 (9.19) �8.17 (7.02) **<0.001

Carrying 5 kg 14.66 (7.26) 17.20 (8.17) �2.54 (2.10) **<0.001
15 kg 31.33 (15.75) 34.50 (15.89) �3.18 (5.24) **0.009

rTES Lifting 5 kg 26.15(6.07) 31.89 (6.54) �5.74 (3.57) **<0.001
15 kg 42.04(11.31) 50.03 (11.79) �7.98 (4.61) **<0.001

Carrying 5 kg 14.39 (6.54) 16.52 (5.98) �2.14 (2.93) **0.003
15 kg 31.43 (16.63) 34.56 (16.62) �3.12 (6.05) *0.015

lLES Lifting 5 kg 36.52(13.30) 41.72 (12.12) �5.20 (4.91) **0.001
15 kg 48.55(14.98) 55.61 (14.57) �7.05 (3.84) **<0.001

Carrying 5 kg 17.89 (8.15) 21.28 (9.58) �3.40 (4.02) **0.002
15 kg 33.22 (14.38) 36.22 (14.34) �3.01 (3.59) **0.004

rLES Lifting 5 kg 33.00(10.37) 39.56 (12.16) �6.56 (5.90) **<0.001
15 kg 44.36(11.60) 50.19 (11.30) �5.83 (3.57) **<0.001

Carrying 5 kg 17.68 (8.87) 21.02 (11.04) �3.34 (4.49) **0.002
15 kg 31.76 (15.75) 35.30 (15.25) �3.53 (3.70) **0.002

lTES - left thoracic erector spinae, rTES - right thoracic erector spinae, lLES - left lumbar erector spinae, rLES - right lumbar erector spinae.
*significant at p < 0.05, **significant at p < 0.01.
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ence was observed (p > 0.05) (Fig. 14). These findings partially sup-
ported the fourth hypothesis that the PBSE could benefit the users
in both lifting and carrying tasks with different load weights by
decreasing the trunk flexion.

3.4. Changes in physical capacity

For physical capacity, participants can make 2–3 more full
cycles in the lifting task when the exoskeleton was used (Table 4).
However, there was no significant difference between two condi-
tions (with exoskeleton vs without exoskeleton) (p > 0.05)
(Fig. 15). This finding rejected the fifth hypothesis that using a
PBSE can increase the physical capacity during repetitive lifting
task.

4. Discussion

This study aimed to investigate the effects of the PBSE on trunk
muscle activation, kinematics, and physical capacity in repetitive
lifting task and carrying tasks in consideration of load weights.
The results showed that the exoskeleton can effectively reduce
trunk muscle activity in repeated lifting and carrying tasks, and
the peak flexion angle showed significant improvement in some
conditions. These results were basically consistent with the
hypotheses of this study. As for physical capacity in the repetitive
lifting task, the exoskeleton showed no significant increase by ana-
lyzing the number of repetitive lifting. Moreover, the effectiveness
of the exoskeleton did not change with the increase in load weight,
and the exoskeleton was more effective for lifting tasks compared
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to carrying task. The PBSE not only can effectively reduce trunk
muscle activity (presented by %MVIC) and peak flexion angle of
the trunk, but also did not affect the physical capacity.

4.1. The effect of exoskeleton on trunk muscle activity

The results showed that the exoskeleton decreased the muscle
activity of TES and LES by 5–9% in the repetitive lifting task and

2–4% in the carrying task. Our findings advocated the previous PBSE
studies (Alemi et al., 2020; Poliero et al., 2020; von Glinski et al.,
2019; Yin, Yang, Wang, & Qu, 2019). This may be caused by similar
devices design and principles of the PBSE. The exoskeleton takes
advantage of ‘‘Artificial Muscles,” which are parallel to the erector
spinae muscles and could store energy during the bending process
and release energy when standing, thereby reducing the demand of
the relevant muscles (Abdoli-E, Agnew, & Stevenson, 2006).
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Table 4
Physical capacity during lifting task under the two conditions (with exoskeleton vs without exoskeleton).

Load Weight Intervention Physical capacity changed P value

5 kg with exoskeleton 39.35 (18.54) 3.40 (14.91) 0.723
without exoskeleton 35.95 (14.41)

15 kg with exoskeleton 22.10 (9.10) 2.45 (8.07) 0.239
without exoskeleton 19.65 (5.00)

*significant at p < 0.05, **significant at p < 0.01.
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Fig. 15. Physical capacity during lifting task under the two conditions (with exoskeleton vs without exoskeleton) *significant at p < 0.05, **significant at p < 0.01.
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The extensor strength related to the amplitude of the elec-
tromyogram is the main factor leading to the compression force
of the lumbar intervertebral joints (Potvin, Norman, & McGill,
1991). A decrease in paraspinal muscle activity (muscle amplitude)
is corresponding to a decrease in the load on the intervertebral disc
(Healey, Fowler, Burden, & McEwan, 2005). Since severe and
chronic LBP was most often induced by the excessive compression
force on lumbar intervertebral disc (Adams, 2004), PBSEs can
reduce the load of the intervertebral disc by reducing the activity
of the paravertebral muscles. It can help workers reduce the mus-
cle demand of tasks in the first few weeks after returning to work
and also effectively reduce the recurrence of LBP and restore health
(Abdoli-E et al., 2006). In addition, LBP caused by repetitive lifting
or load carrying tasks can be effectively avoided by the PBSE to
reduce the damage on low back that would otherwise occur easily.
Therefore, the PBSE also helps to protect the low back that has been
injured in the past, and thus reduce the occurrence of LBP.

However, it was also noticed that the decrease in trunk muscle
activity (about 10%) during repetitive lifting task was lower than
the 10–40% decrease in sEMG reported in previous studies (De
Looze et al., 2016). This result can be explained in the following
ways. First, although previous studies reported a large decline in
trunk muscle activity, the working postures utilized were all stoop
postures. The stoop posture puts more pressure on the non-
contracting connective tissue, resulting in excessive bending of
the lumbar spine, and therefore has a higher risk of injury
(Kingma, Faber, & Van Dieën, 2010; McGill, Hughson, & Parks,
2000; Straker, 2003). However, this study utilized the squat posi-
tion that is relatively more protective to the lower back
(Bazrgari, Shirazi-Adl, & Arjmand, 2007; van Dieën, Hoozemans,
& Toussaint, 1999). This study has proved that the exoskeleton
can still effectively reduce the back muscle activity in the protec-
tive squatting posture. The results of previous studies on the effec-
tiveness of PBSEs considering posture are inconsistent. Koopman
et al. (2020) and Abdoli-E et al. (2006) reported that the effective-
ness on reduction of comprehensive electromyography of thoracic
and lumbar spine of PBSEs in squatting and bending posture in lift-
ing tasks was similar (Abdoli-E et al., 2006; Koopman et al., 2020),
while Alemi et al. (2019) reported that PBSE in the squatting pos-
ture can reduce back muscle activity more than the stoop posture
(Alemi et al., 2019). This inconsistency should be investigated in
the future studies. Secondly, the exoskeleton cannot be flexibly
adjusted to fit each participant very well. The exoskeleton utilized
in this study has a limited adjustable range, but the basic parame-
ters of the participants are quite different (Table 2). In some cases,
the exoskeleton cannot achieve the most desired effect. Similar
design drawbacks have also been reported in previous study
(Koopman, Toxiri, et al., 2019). Thirdly, the participants in this
study moved at the same speed regardless of interventions. Previ-
ous studies reported that the effectiveness of PBSEs on reducing
muscle activity in lifting tasks may be affected by slower move-
ment speed (Alemi et al., 2019; Koopman, Toxiri, et al., 2019). Com-
pared with the normal lifting movements, a significantly higher
peak torque for the fast lifting movements was reported (Kingma
et al., 2001), and as the trunk flexion angular acceleration
increased, the muscle activity decreased, among which the erector
spinae muscles decrease the most (Marras & Mirka, 1993). How-
ever, in this study, participants were asked to perform weightlift-
ing tasks at 10 full cycles per minute in each condition.

4.1.1. Effectiveness of exoskeleton on sEMG in consideration of load
weights

In order to evaluate the effectiveness of the exoskeleton on
sEMG in consideration of load weights, we compared the reduction
of muscle activity with the load of 5 kg and with 15 kg respectively.
Only significant difference on rTES in repetitive lifting task was

observed. The heavier the load, the more improvement of the
exoskeleton on rTES (p = 0.030). As for other muscles and carrying
tasks, although the exoskeleton reduced the muscle activity more
as weight increases, the difference was not significant. Based on
the literature review, no research explored this point, leaving a
research gap.

4.1.2. Effectiveness of exoskeleton on sEMG in consideration of tasks
In order to evaluate the improvement of the exoskeleton on

task, we compared the reduction of muscle activity in lifting and
carrying task. This study found that the exoskeleton was more
effective in lifting task in comparison with carrying task. In fact,
few studies directly compared the effect of exoskeleton in different
types of tasks. Based on the literature review, one study on active
PBSE reported similar results (Poliero et al., 2020). This may be
because the support of the PBSE relies on the trunk flexion to gen-
erate power, and the trunk flexion in the carrying task was less
than that of the lifting task (Baltrusch, Van Dieën, Van
Bennekom, & Houdijk, 2018).

4.2. The effect of exoskeleton on kinematics

According to the kinematics results, the flexion angles with the
exoskeleton at the thoracic spine were greater than the angle with-
out the exoskeleton, with an increase of 1 to 5 degrees, although
most of the differences were not statistically significant. These
findings were basically similar with the conclusions of some previ-
ous experiments that PBSEs could benefit in reducing the situation
of people working with an improper flexion angle (Kim, Madinei,
Alemi, Srinivasan, & Nussbaum, 2020; Koopman, Toxiri, et al.,
2019; Sadler, Graham, & Stevenson, 2011; Simon, Alemi, &
Asbeck, 2021; Ulrey & Fathallah, 2013). Given a greater flexion
angle at the thoracic spine, the exoskeleton can provide a greater
assistive force using the actuator (i.e., McKibben artificial muscles).
As a result, thoracic muscle sEMGs are much smaller with the
device than those without the device in both tasks.

Previous studies have pointed out that it may take more than
two days for the participants to adapt to PBSE (Alemi et al.,
2019; Gordon & Ferris, 2007). During our experiment, we did not
give the participants enough time to adapt to the exoskeleton,
which may affect the results of motion. The effect of the exoskele-
ton also depends on the body height and body weight of the user as
well as the degree of relaxation of the participants (Simon et al.,
2021). However, participants in our study have a large variation
in body shape, in some cases, it was observed that the exoskeleton
was prone to slip relative to the limb during the task, which was
also reported in previous studies (Accoto et al., 2014; Neckel,
Wisman, & Hidler, 2006). Also, according to the feedbacks of partic-
ipants, the design of the PBSEs cannot avoid this slippage, and this
is consistent with the findings in the previous study (Alemi et al.,
2020), which may reduce the supportive effect of the exoskeleton.
Some PBSE designs use a flexible beam to allow the trunk to move
freely (Näf et al., 2018), which may affect the results. However, for
‘Muscle Suit Every,’ only limited misalignment compensating
mechanisms could be met due to the existence of flexible beams
and the lack of flex slider (which is a flexible back structure that
allows the flexible beam on the back to be further elongated).
These also cause discomfort during the use. According to the feed-
backs of participants, walking seems more difficult because of the
restriction from thigh structure by the frame and pads of the
exoskeleton. This is not surprising, because in a passive device,
the users have to work against the device while pushing the leg
forward. In addition, unlike bending over to lift loads, the peak
lumbar flexion angle reached by squat lifting is smaller and there-
fore avoids the risk of working at limit angle.
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By limiting the range of lumbar flexion, the PBSEs could reduce
the risk of low back disorder due to working at limit angles.
Because the smaller the flexion angles of the lumbar, the compres-
sion on the anterior portion of the lumbar vertebral discs is less
(Adams & Hutton, 1982, 1986; Adams et al., 1994). However, the
prolonged flexion of the trunk could increase the laxity of the
non-contractile connective tissues, thereby inducing the low back
injury (Ulrey & Fathallah, 2013). By limiting the trunk flexion,
the compression on the lumbar intervertebral discs and the
amount of stretching in the posterior ligaments of the spine could
be decreased (Ulrey & Fathallah, 2013). Furthermore, the laxity of
the passive tissues could also increase with the cumulative
mechanical low back load throughout the work, thereby increasing
the range of motion of the trunk (Adams & Dolan, 1996; Adams,
Dolan, & Hutton, 1987; Coenen et al., 2014). From this point of
view, the PBSEs could prevent people from working at the limit
flexion angle by limiting the motion of trunk during the lifting
(Bonato et al., 2003; Ulrey & Fathallah, 2013).

4.3. The effect of passive exoskeleton on physical capacity

In repetitive lifting task, this study found that the exoskeleton
did not significantly affect the number of the full cycles regardless
of the load weight, which showed that the exoskeleton may not
increase the physical activity of the participants. This finding was
consistent with a previous study that used metabolic demand as
the indicator of physical capacity (Whitfield, Costigan, Stevenson,
& Smallman, 2014). But considering the weight of the exoskeleton
itself (4.3 kg and 4.4 kg), it may suggest that the weight of the
exoskeleton itself may not bring additional burdens to the users.
Although one study that also utilized the number of repetitions
as the outcome measure reported significant increase with another
model of a PBSE (Miura et al., 2018), the task in that study was car-
ried out with a stoop posture. The squat technique requires more
metabolic energy than the stoop technique (Baltrusch et al.,
2019; Whitfield et al., 2014), which may be the potential cause
of inconsistent results.

4.4. Practical implications

This study focused on the repetitive lifting and load carrying
tasks that cause the risk of LBP, and found some favorable effects
of the exoskeleton on trunk muscle activity and trunk flexion
angle. Moreover, unlike the studies based on the stoop posture
(Ulrey & Fathallah, 2013; Yin et al., 2019), this experiment proved
that the PBSE can further reduce the load on the back with the pro-
tective squat posture. In addition, we included the outcome mea-
sure of the number of the full cycles in repetitive lifting task,
which further proved that the exoskeleton, as the device with cer-
tain weight and volume, may not affect the flexibility and physical
ability of the users. This study provides new supportive evidence
for the application of PBSE on reducing the risk of injury in the
low back for people executing highly demanding tasks, such as
repetitive lifting and load carrying. Since the PBSE helped more
in lifting task than carrying task, this study especially recom-
mended the application of this exoskeleton to repetitive lifting
tasks. However, during the experiment, it was observed that in
some cases the exoskeleton could not match the participants prop-
erly. Therefore, the PBSE may need to be designed more adjustable.
Also, it was observed that the exoskeleton was prone to slip rela-
tive to the limb during the task. It suggested that a flex slider
may be added to the exoskeleton to avoid this problem. Some par-
ticipants reported that the exoskeleton itself was so heavy that
wearing the exoskeleton increased subjective fatigue. Thus, the
exoskeleton can be optimized by using light-weight and strong

materials. Besides, sufficient time should be given to the users to
become familiar with the exoskeleton before practical implication.

4.5. Limitations of present study

There were some limitations in this study. First, only the trunk
muscles were measured, and we did not check for additional load-
ing in other joints. Previous studies found that the reduced load on
the low back can be transferred to the gluteal muscles (Vleeming
et al., 1995). Also, it was found that PBSEs reduce erector spinae
muscle activity while increasing leg muscle activity (Barrett,
2001). Therefore, it is unknown whether the exoskeleton may
transfer the reduced load of the low back to the lower limbs and
increase the risk of injury of lower limbs. Secondly, only biome-
chanical measures were involved in this study, but the practical
application of the exoskeleton should take into account the impact
on functional tasks and subjective acceptance of the user. Some
studies with functional measures have reported that PBSEs were
not conducive to walking, ladder climbing, and other functional
tasks (Baltrusch et al., 2018; Kozinc, Baltrusch, Houdijk, &
Šarabon, 2021). Taking into account the satisfaction and wearing
comfort of user on the exoskeleton, subjective indicators may need
to be included in the outcome measures to explore the acceptance
of users on the exoskeleton. Lastly, this is a cross-sectional study,
ideally, randomized controlled trials can provide strong evidence.

5. Conclusion

This study successfully explored the biomechanical effects of
the PBSE in repetitive lifting task and carrying task in consideration
of load weights. The biomechanical measures such as muscle activ-
ity demonstrated that the exoskeleton decreased trunk muscle
activity significantly during repetitive lifting task and carrying
task, implying potential effects of reducing back load in both the
thoracic and lumbar regions. The kinematics parameters also
showed some improvement in peak flexion angle while the flexion
range did not change, indicating that the exoskeleton contributed
to reducing the situation of people working on the limited flexion
angle, thereby reducing the risk of injury without affecting flexibil-
ity. Meanwhile, this study further explored the effectiveness of the
exoskeleton, and results showed that the effectiveness did not
change with the increase in load weight, and the exoskeleton
was more beneficial to lifting compared to carrying. Moreover,
physical capacity did not show significant difference, implying that
the weight of the exoskeleton did not affect the physical capacity of
the user. These results support the positive benefits of the
exoskeleton in high-risk tasks that cause LBP. Future research is
recommended to involve more joints and subjective measures
and to comprehensively determine the PBSE effects.
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Introduction: Developers of in-vehicle safety systems need to have data allowing them to identify traffic
safety issues and to estimate the benefit of the systems in the region where it is to be used, before they
are deployed on-road. Developers typically want in-depth crash data. However, such data are often not
available. There is a need to identify and validate complementary data sources that can complement
in-depth crash data, such as Naturalistic Driving Data (NDD). However, few crashes are found in such
data. This paper investigates how rear-end crashes that are artificially generated from two different
sources of non-crash NDD (highD and SHRP2) compare to rear-end in-depth crash data (GIDAS).
Method: Crash characteristics and the performance of two conceptual automated emergency braking
(AEB) systems were obtained through virtual simulations – simulating the time-series crash data from
each data source. Results: Results show substantial differences in the estimated impact speeds between
the artificially generated crashes based on both sources of NDD, and the in-depth crash data; both with
and without AEB systems. Scenario types also differed substantially, where the NDD have many fewer
scenarios where the following-vehicle is not following the lead vehicle, but instead catches-up at high
speed. However, crashes based on NDD near-crashes show similar pre-crash criticality (time-to-
collision) to in-depth crash data. Conclusions: If crashes based on near-crashes are to be used in the design
and assessment of preventive safety systems, it has to be done with great care, and crashes created purely
from small amounts of everyday driving NDD are not of much use in such assessment. Practical applica-
tions: Researchers and developers of in-vehicle safety systems can use the results from this study: (a)
when deciding which data to use for virtual safety assessment of such systems, and (b) to understand
the limitations of NDD.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Traffic crashes are the eighth leading cause of death worldwide;
every year 1.35 million people lose their lives in traffic crashes
(WHO, 2018). Fatal rear-end crashes accounted for 7.2% of all fatal
crashes in the United States (U.S.) in 2017 (NHTSA, 2019).

Safety measures have for many years been developed to address
traffic safety. Available safety measures include preventive safety
systems, aimed at avoiding or mitigating the consequences of a
possible crash before impact, and protective safety systems, aimed
at protecting the occupants from the consequences of a crash dur-
ing impact. One example of an effective protective safety system

for rear-end crashes is whiplash protection with energy-
controlling structures and optimized headrest designs (Kullgren,
Krafft, Lie, & Tingvall, 2007; Kullgren, Stigson, & Krafft, 2013). For
preventive safety, Automated Emergency Braking (AEB) has been
shown to be an effective preventive safety system, reducing the
number and severity of rear-end crashes substantially (Cicchino,
2017; Fildes et al., 2015).

There are different types of AEB algorithms. Early AEB systems
only included time-to-collision (TTC; based on the vehicles’ rela-
tive distance, speeds and accelerations) and the braking response
by the driver of the following vehicle (FV) (Brännström, Sjöberg,
& Coelingh, 2008), while more mature systems may also consider
the FV driver’s ability to steer away comfortably (in addition or
as an alternative to braking; see Brännström, Coelingh, & Sjöberg,
2010, 2014; Sander, 2018). This consideration reduces false posi-
tives, which are activations when either there is no real need for

https://doi.org/10.1016/j.jsr.2022.08.011
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it or the driver does not feel it is warranted (Bliss & Acton, 2003;
Coelingh, Jakobsson, Lind, & Lindman, 2007; Sander & Lubbe,
2016). In the latter case, drivers may still avoid the crash while
remaining inside their comfort zone. We have chosen to quantify
the comfort zone boundary by selecting an acceptable lateral accel-
eration for the steering-away maneuvers. The term ‘‘comfortable
steering” will be used to describe maneuvers that do not take dri-
vers out of their comfort zone, even when performed when braking
is no longer an option to avoid a crash. An AEB considering comfort
zone boundaries delays the intervention until the driver cannot
avoid the crash by steering in a comfortable way (e.g., when the
lateral acceleration crosses the driver’s comfort zone boundary;
see Bärgman, Smith, and Werneke, 2015; Summala, 2007).

To quantify the benefit of safety systems, such as AEB, develop-
ers need both assessment methods and data. They need to assess to
what extent a specific concept (or even the specific application of a
system) will affect safety all through the systems’ life cycle
(Alvarez et al., 2017). This type of assessment is prospective, pre-
dicting the potential safety benefit of a system before data are
available from real-world crashes. There are different methods
available for the prospective assessment of AEB systems. One
increasingly popular method is virtual simulations in computers.
This allows for early assessment of a system’s potential, and
enables fast and iterative improvement of its safety effectiveness.
Virtual traffic simulation is one such approach. The movement of
traffic participants is modeled with respect to vehicle dynamics,
and driver behavior and control, or alternatively, with added auto-
mated control (Fahrenkrog et al., 2019; Helmer, 2014). When traf-
fic characteristics, driver, and automation behavior are modeled
accurately, one can expect to create an accurate representation of
crashes as the outcome of interest; however, such detailed model-
ing is highly ambitious (Dobberstein et al., 2021). The benefit of
automation can be determined by comparing a simulation with
only human drivers to simulations with automation, either by re-
simulating selected critical events (Fahrenkrog et al., 2019;
Hallerbach, 2020) or only the crash events generated in the
human-driver-only simulations (Tanaka, 2015). Traffic simulation
for safety benefit assessment holds the promise of creating an
essentially unlimited amount of parameter variations and crash
events. However, as driver behavior is complex and modeling them
accurately (enough) is difficult (Markkula, 2015), such models
‘‘only represent the behavior of real drivers to a certain extent”
(Bjorvatn et al., 2021, p. 123) and results are sensitive to the vari-
ations of such models (ISO, 2021). Note that the traffic simulation
approach is often targeting assessments of higher levels of
automation.

Counterfactual or ‘‘what-if” simulations is another simulation-
based assessment method that has been used extensively to assess
advanced driver assistance systems (ADAS; Bärgman, Lisovskaja,
Victor, Flannagan, & Dozza, 2015; Davis, Hourdos, Xiong, &
Chatterjee, 2011; McLaughlin, Hankey, & Dingus, 2008; Scanlon
et al., 2021). These simulations typically assess safety by using
pre-crash kinematics from real-world data (Kusano & Gabler,
2012; Lindman & Tivesten, 2006; Sander, 2018; Scanlon et al.,
2021), simulating each event with and without an algorithm mod-
eling the preventive safety system under assessment (Kusano &
Gabler, 2012; Sander, 2018). The results are typically provided in
the form of the proportion of crashes that were avoided with the
system, and the impact speed (or injury risk) distribution of the
crashes that still occurred after the system was applied. In this
way it is possible to virtually compare the original, baseline event
with the modified (‘‘what-if”) events that include the AEB system.

Data on pre-crash kinematics are needed to perform the coun-
terfactual AEB simulations. Different sources of pre-crash kinemat-
ics data include in-depth crash reconstruction, event data
recorders (EDRs), and naturalistic driving data (NDD), which are

collected either in-vehicle or on-site (i.e., monitoring a specific
piece of road; see Krajewski et al., 2018).

In-depth reconstructed crash databases include information not
only about the crash, but also about the pre-crash phase (Bakker
et al., 2017). Experts can reconstruct the pre-crash kinematics
and document many other aspects of the crash, such as the road
geometry and other environmental factors—as well as the injuries
sustained by the humans involved in the crash (Otte, Krettek,
Brunner, & Zwipp, 2003). Typically, however, very little informa-
tion is available about the pre-crash phase (Schubert, Erbsmehl,
& Hannawald, 2013). Also, in-depth crash data with reconstructed
pre-crash kinematics are not available in all countries or regions
for which safety systems (such as AEB) should be evaluated
prospectively. One example of an in-depth crash database is the
German In-Depth Accident Study (GIDAS), which started collecting
crash data in 1999. Approximately 2,000 crashes from the cities of
Hannover and Dresden and their surroundings are added every
year (Otte et al., 2003; Liers, 2018). GIDAS crashes are all recon-
structed with estimates of crash kinematics and impact speed.

For a subset of crashes in the GIDAS crash database a Pre-Crash
Matrix (PCM) is created, which includes the pre-crash kinematics
of the vehicles involved up to five seconds before the collision.
The crashes are reconstructed using a structured approach
(Schubert et al., 2013). As of February 2018, the GIDAS PCM data-
base contained 9,729 crashes (VUFO, 2020). Reconstruction of pre-
crash kinematics has also been performed for other in-depth data-
bases, such as the Initiative for the Global Harmonization of Acci-
dent Data (IGLAD) (Spitzhüttl, Petzold, & Liers, 2015) and the
Road Accident Sampling System India (RASSI) (Shaikh & Sander,
2018).

The pre-crash kinematics data from reconstructed crashes can
be used directly in counterfactual simulations (Rosén, 2013;
Sander, 2018; Scanlon et al., 2021). Typically, the system under
assessment is applied to the pre-crash kinematics and, for each
timestep, a threat assessment analysis is performed. The simula-
tion framework always includes a vehicle model, and often a model
of the driver. The outcomes of the simulations consist of avoided or
(hopefully) crashes with reduced impact speed and, thus, miti-
gated injury risk. That is, counterfactual simulations can also
include collision models, so that in case of a crash the occupants’
injury risks can be studied (Sander & Lubbe, 2016, 2018).

As an alternative to using data from in-depth crash investiga-
tions, real-world pre-crash kinematics for counterfactual simula-
tions can be extracted from event data recorders. These recorders
are already mandatory in new vehicles in several countries
(NHTSA, 2006; UNECE, 2019), and more countries are following
suit (Šajn, 2019). The event data recorders of today typically
record, among other things, the vehicle speed in the few seconds
leading up to the crash and the acceleration during the crash. How-
ever, the pre-crash data are often recorded at a low frequency (1–
5 Hz), so it is often not known exactly when (within the 200 ms to
1 s that the sample frequency provides) the impact occurred,
which reduces reconstruction quality (Thomson et al., 2013) and,
naturally, impacts simulation validity. Nevertheless, event data
recorders are a useful information source when reconstructing
crashes: similar to in-depth reconstructed crash databases, they
represent real-world crashes and have been used extensively as a
basis for counterfactual simulations (Bareiss, Scanlon, Sherony, &
Gabler, 2019; Kusano & Gabler, 2012; Scanlon, Kusano, & Gabler,
2015; Scanlon, Page, Sherony, & Gabler, 2016).

Lastly, NDD can also be a source of pre-crash kinematics data
for counterfactual simulations. NDD are recorded unobtrusively
in real-traffic, and two main types of such data exist: site-based
NDD and in-vehicle NDD.

Site-based NDD are collected at one or more specific sites,
where, typically, cameras, radars or LIDARs collect data about
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road-user movements over a time duration from minutes to
months (Bock et al., 2020; Krajewski, Moers, Bock, Vater, &
Eckstein, 2020; Krajewski et al., 2018; Laureshyn, 2010; Smith,
Thome, Blåberg, & Bärgman, 2009). The data are post-processed
to produce trajectories and other information, such as speed and
acceleration, about the road users captured in the recordings. Most
of the data from site-based NDD collections capture normal every-
day driving without any critical events; they contain very few
crashes (Van Nes, Christoph, Hoedemaeker, & Van Der Horst,
2013). The highD dataset is one example of recent site-based
NDD which only includes normal everyday driving data
(Krajewski et al., 2018). The data were collected by drones record-
ing video of six stretches of highway in North Rhine-Westphalia,
Germany in 2017 and 2018. There were 60 recordings, and the
drones recorded 17 minutes per recording, on average. A total of
110,000 vehicle trajectories were recorded, with a typical length
(longitudinal road segment) of 420 m. The highD data are freely
available for research purposes (Krajewski et al., 2018).

In contrast to site-based NDD, in-vehicle NDD are collected
from vehicles instrumented with a data acquisition system that
collects vehicle information such as speed and acceleration, driver
information such as glance behavior, and data about surrounding
traffic (typically using radar and cameras). The largest in-vehicle
NDD study to date is SHRP2: data were collected on 3,247 drivers
who drove a total of almost 80 million km over a period of three
years in the United States. Since SHRP2 collected so much data,
more than 1,000 crashes of different severities were recorded
(SHRP2 crash severity levels 1–3), as were other critical events
(e.g., near-crashes: see Blatt et al., 2015; VTTI, 2020).

NDD have been used to study the safety benefit of, for example,
forward collision warning (FCW) and AEB (Bärgman, Boda, &
Dozza, 2017; Woodrooffe et al., 2012). When NDD are used in
counterfactual simulations of rear-end crashes, the evasive maneu-
ver of the FV in each event can be replaced by an evasive maneuver
created by a quantitative driver response model (Bärgman et al.,
2017). The main reason for this replacement is that each crash or
near-crash is just one instance of the behavior of that driver, which
just happened to produce that particular crash or near-crash. If the
driver had acted differently, a crash may have been a near-crash or
a more severe crash, or a near-crash could have become a crash.
Here the underlying mathematical models of driver behavior
(glance and response models) are fundamental for exploring the
various possibilities (Bärgman et al., 2017). The simplest possible
replacement behavior is to assume the driver sleeping. That is, that
the driver does not act at all during the crash. This can be consid-
ered a worst-case behavior in any particular situation. Another
way of using NDD that includes normal driving (and, possibly
near-crashes) is to get distributions for stochastic variations, which
can be used to both define the exposure to driving scenarios and to
vary scenario characteristics. These distributions can then be used
in, or together or compared with, virtual traffic simulations. There
is research quantifying the relationship between near-crash
increase and crash increase (Guo, Klauer, McGill, & Dingus, 2010;
Victor et al., 2015), but the same cause-effect behavior is less
noticeable when using normal driving data. For these reasons,
working with exposure to scenarios from normal driving in rela-
tion to crash occurrence needs to be done with caution
(Woodrooffe et al., 2012).

The choice of data source (and whether to remove evasive
maneuvers from the original event) in a counterfactual simulation
is driven by several factors, including what systems are to be
assessed (e.g., whether driver behavior is to be evaluated), and
whether the data are available. The availability of in-depth crash
data with reconstructed pre-crash kinematics and even data recor-
der data is limited. When a preventive (or protective) safety sys-
tem is to be developed for a specific market where in-depth

reconstructed crashes or event data recorder data are not available,
alternatives are needed. One option is to collect NDD and create
synthetic crashes based on the structured application of models
of driver behavior to non-crashes, as described above (Bärgman
et al., 2017).

In this study we investigate the feasibility of using site-based
NDD (highD) and in-vehicle NDD (SHRP2) non-crashes to create
counterfactually simulated crashes, by comparing the resulting
crash characteristics with those from reconstructed in-depth
crashes (GIDAS). Comparing highD to GIDAS is comparing two
samples of German highway rear-end crashes, hence we believe
the comparison gives direct insights in how well the generated
NDD crashes represent the reconstructed actual crashes. To study
the suitability of generated crashes from the U.S. SHRP2 data, they
would ideally be compared to a crash sample of identical sampling
criteria, which we did not do, as such time series pre-crash data
were not readily available. However, as SHRP2 is by far the most
comprehensive NDD in the world to date, and GIDAS-PCM is one
of the most commonly used high-quality crash datasets for coun-
terfactual benefit assessment (of, for example, AEB), our compar-
ison aims to study general comparability of data and results from
the application of two different AEB system, rather than focusing
on regional comparability. We evaluate both the crash avoidance
and false positive rates of AEB systems. If the simulated crash char-
acteristics are comparable to those of the reconstructed crashes, in
the comparison of German highway rear-end crashes, then it may
be feasible to use the more readily available and affordable NDD
for early prospective assessments of preventive safety systems. If
the U.S. NDD data were comparable to German highway crashes,
then results are not sensitive to data choice, suggesting a liberal
interpretation on generalization is suitable, at least for the rela-
tively similar driving cultures of the United States and Germany.

The aim of this study can be divided into three parts: first, to
compare crash characteristics generated from NDD with real
reconstructed crashes; second, to quantify the influence of the data
source on a comparison of the practical safety benefits of two AEB
algorithms (one basic and one more advanced based on driver
comfort zone boundaries, which seeks to reduce false positive acti-
vations by accounting for FV steering maneuvers); third, to demon-
strate the use of NDD for assessing AEB algorithm false positive
rates (and to confirm the hypothesis that the more advanced AEB
system has a lower false positive rate).

2. Method

This section describes the data used in the study, the crash gen-
eration process, the AEB system application, and the simulation
framework. Finally, the analysis steps are outlined.

2.1. Data

Three different sources of data were used in this study: GIDAS
(Otte et al., 2003), SHRP2 (Victor et al., 2015; VTTI, 2020) and
highD (Krajewski et al., 2018).

2.1.1. GIDAS – PCM
In this study-two subsets of GIDAS data, released in July 2018,

were used. The first subset consists of all the highway rear-end
crashes for which PCMwas available. This subset was used as a ref-
erence for the counterfactual simulations assessing AEB. The sec-
ond subset contained all GIDAS highway rear-end crashes in
which the following vehicle (FV) did not perform an evasive brak-
ing maneuver prior to impact with a braking lead vehicle (LV), rep-
resenting crashes as similar as possible to the crashes generated
from NDD (where we, in the crash generation, assumed sleeping
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drivers). This subset includes cases for which PCM data were
unavailable. Because impact speed is usually estimated for all
GIDAS crashes even when PCM is not available, this subset was
used as a reference in the assessment of the differences in impact
speed. Within this subset (crashes with no driver evasive maneu-
ver beforehand), PCM was available only in 7 of the 46 crashes.
AEB assessment was not performed separately on these seven
crashes as the low number of cases would have been too few for
a relevant comparison. Note that we filtered out all but highway
rear-end crashes from the GIDAS data (both with and without
PCM), to maximize the match with the highD data.

The vehicles’ relative longitudinal distance and lateral overlap
in the pre-crash phase are used to predict the collision path in
the AEB implementation. However, PCM does not directly code
those values, so they were derived using other metrics in the
PCM data. The predicted future path of the FV was generated as
an arc with an assumed constant yaw rate for the cases when
the FV turned, or as a straight line for the cases when the FV went
straight. See Appendix A for a detailed description of the overlap
calculations.

2.1.2. highD
The first naturalistic driving dataset used in this study is the

highD dataset (Krajewski et al., 2018). It consists of processed
drone video recordings of vehicles on German highways. Relevant
time-varying parameters such as position, speed, and acceleration
of the vehicles were extracted. The criticality of the interaction
between each pair of vehicles (FV and LV) was assessed by extract-
ing each LV’s lowest acceleration value (its harshest braking
maneuver) along with the time it occurred. The time headway
between the FV and the LV was noted at that instant in time.
Fig. 1 shows the relationship between the minimum acceleration
and the time headway for all vehicle pairs in the dataset. In this
study, only FV/LV interactions with a minimum LV acceleration
of �2 m/s2 or less and a time headway of five seconds or less were
considered potentially critical and used in the crash generation
process.

The highD datasets also provided information about the amount
of lateral overlap between the LV and the FV. Fig. 2 shows the dis-
tribution of the overlaps at the time of minimum acceleration (and
time headway extraction; see Fig. 1). The mode of the distribution
is at approximately 1.70 m, a reasonable vehicle width in Germany.
The distribution in Fig. 2 was obtained by taking the lesser of the
left and right overlaps, assuming that the FV can always choose
to steer left or right of the LV and that the FV and LV trajectories

are always parallel to the road (information about yaw angle of
the vehicles were thus not included in the data).

2.1.3. SHRP2
The second naturalistic driving dataset used in this study com-

prises a subset of the SHRP2 naturalistic driving study. The subset
originally contained 46 crashes and 211 near-crashes (Victor et al.,
2015). In this study only the near-crashes were used. These near-
crashes were manually reviewed by expert annotators, after an ini-
tial pre-filtering using kinematic or proximity triggers (e.g., longi-
tudinal acceleration; see Hankey et al., 2016 p. 25–26 for details
about the near-crash definition used). Of the 211 near-crashes,
only 190 had the full kinematics data for both LV and FV vehicles.
In 17 cases the crash generation procedure (described in Sec-
tion 2.2) did not result in a crash, so those were discarded. An addi-
tional 42 of the generated crashes were not included, as the LV
performed more than one braking maneuver, increasing and
decreasing speed multiple times. The number of (near-crash-
based) crashes used in the final analysis was thus 131. Note that,
in contrast to the closely matched GIDAS PCM and highD data,
the U.S. SHRP2 data were not restricted to highway crashes; it
included crashes across several road types (such as rural, urban,
suburban, and highway).

The comfort-based AEB algorithm (CAEB algorithm, see Sec-
tion 2.3) requires lateral offset distances to make steering avoid-
ance assessments feasible, but this information was not available
in the SHRP2 dataset. Therefore, the offset distribution in the highD
data was also used for the SHRP2-generated crashes, assuming par-
allel trajectories. Multiple simulations were run for each of the
original crashes, applying each offset (bin) from the distribution
in Fig. 2. The relative probabilities (weights) for each offset (bin)
were considered in post-processing and the final results were cal-
culated by weighting the simulation outcomes by their relative
probabilities (per bin).

An illustration of the data usage and crash generation process in
the study can be found in Fig. 3. For each dataset, only a subset was
used for the crash generation and AEB application.

2.2. Crash generation

Crashes were generated from the two naturalistic driving data-
sets. The original kinematics of the events from highD and SHRP2
were used to define the moment the LV started braking as the
moment when the LV reached an acceleration of �1 m/s2. Deceler-
ations closer to zero were probably caused by the driver’s foot lift-

Fig. 1. Contour map of the acceleration and the time headway for all events in the
highD dataset. The potential criticality of the scenario increases to the left and
down. The grey area contains all the events considered for crash generation.

Fig. 2. Distribution of minimum lateral overlap within highD dataset.
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ing slightly from the accelerator pedal, and therefore were not con-
sidered further in this work. From the LV’s start of braking, the
speed of the FV was set to be constant until the crash happened.
That is, the FV driver never performed any deceleration in response
to the LV deceleration—basically simulating a sleeping driver. Fig. 4
shows this modification process, which was applied for all the
highD scenarios and SHRP2 near-crashes used in the study. In
many of the selected highD cases, although criticality was estab-
lished by the LV kinematics, the event ended before the FV could
reach the LV because it occurred near the end of the segment of
road that each drone covered and recorded. (The segment was only
420 m long, and the LV decelerations happened at different points
over this distance). A total of 361 events were excluded from highD
dataset as a result. In total, 378 crashes were generated from highD
and 131 (all) from SHRP2.

2.3. AEB algorithm descriptions

This work used a reference AEB algorithm (RAEB) and an AEB
based on drivers’ comfort zone boundaries with respect to lateral
acceleration (comfort-based AEB; CAEB). Each algorithm was
applied to the crashes from all three datasets in order to compare
crash avoidance and mitigation results.

The RAEB, based on the work of Brännström et al. (2008), only
considers possible longitudinal avoidance by the system. That is,
it does not include the driver’s capacity to avoid the crash by com-
fortable steering, instead identifying the moment when the decel-
eration required by the system to avoid the crash passes a

threshold (the point in time after which the FV would be unable
to avoid a crash). The RAEB considers the current speed, accelera-
tion, and relative distance of the FV and LV as well as the maximum
braking performance of the FV braking system. The values used to
quantify braking performances were the maximum deceleration
reachable by the vehicle (�10 m/s2), the jerk reachable by the
braking system (�50 m/s3), and the time delay of the braking sys-
tem (0.08 s, from Bärgman et al., 2017; Brännström et al., 2008).
After the RAEB activation, the FV evasive maneuver (braking)
played out according to the values used as input for the braking
system limits. If the vehicle was traveling in a straight line, the
braking maneuver was simulated in the same direction of travel.
If the vehicle was turning (e.g., in a curve), the braking maneuver
was simulated with the assumption that the FV traveled at a con-
stant steering angle.

The CAEB algorithm was also applied to all crashes in the study.
Unlike the RAEB, this algorithm took into account the capability of
drivers to avoid crashes by performing a comfortable steering
maneuver. Depending on the relative speeds involved in the event,
a driver might still comfortably perform an evasive steering
maneuver to avoid a crash even when the BAEB may have already
triggered (Brännström et al., 2014). Thus the CAEB may eliminate
some early interventions (potential false positives). The algorithm
also includes parameters of driver comfort limits in terms of lateral
acceleration and a basic single-track bicycle model that defined the
lateral dynamics of the vehicle. The bicycle model is only a first
approximation of a vehicle but it was considered sufficiently accu-
rate for this study.

The CAEB algorithm simulated an S-shaped maneuver by the
driver: at the end of its trajectory, the FV is parallel to its position
at the beginning and is next to the LV. That is, the FV and the LV are
in the same longitudinal position but separated by a lateral safety
distance (see Appendix A). The S shape was designed as follows:
the angle of the steering wheel was gradually increased, consider-
ing the limit for steering wheel speed of 720�/s (Brännström et al.,
2014) and the driver comfort limit for lateral acceleration of 5 m/s2

(Sander, 2018). The latter is determined by the vehicle turning
(yaw) rate and the vehicle speed. When the maximum tolerable
lateral acceleration (the driver’s comfort zone boundary) was
reached, the steering angle was kept constant until the FV steered
back, ending its trajectory parallel to its position at the start of the
maneuver.

A key parameter for the generation of the FV’s trajectory was
the lateral distance the FV needed to traverse to avoid a crash with
the LV, which depends on the lateral overlap (see Appendix A). The

Fig. 3. Visual representation of the data selection process for crash generation and comparison, for highD, SHRP2 and GIDAS databases.

Fig. 4. Conceptual demonstration of the removal of the FV’s braking.
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simulations of the trajectories included the lateral overlap, and the
additional safety distance simulations included run-time estima-
tions of the lateral distance traveled by the FV. To speed up simu-
lations, only the first half of the FV trajectory was simulated: after
the FV had traveled half the required lateral distance, the second
half of the trajectory was assumed to mirror the first half. Addi-
tional vehicle dynamics during lane changing, such as tire slip,
were ignored.

The CAEB algorithm was designed to reduce false positive acti-
vations and thus activates later than RAEB. Hence, RAEB interven-
tion timing was used as the starting point for the activation
decision of CAEB. From this starting point the vehicles were simu-
lated as follows: (a) the LV continued along its original path and (b)
the FV was projected along the newly created steering trajectory. If
the FV was able to complete the steering trajectory and avoid a
crash with the LV, then the AEB intervention was delayed (by
one time-step); otherwise the AEB activated. This process was iter-
ated, with the FV getting closer to the LV at each iteration, until the
new trajectory resulted in a crash with the LV. Once the steering
trajectory resulted in a crash, the AEB was activated and the eva-
sive braking maneuver was applied (simulated).

2.3.1. False positive assessment
The false positive performances of the two AEB algorithms were

assessed by applying them to the original events used to generate
the crashes for the AEB assessments. Only the potentially critical
highD events used to generate crashes (378 events, see Section 2.2)
were considered of interest for the false positive assessment; all
the other events recorded weak or absent LV braking maneuvers.
For the false positive assessment of SHRP2, the original events
included only previously selected near-crashes (131 events, see
Section 2.1.3). In summary, critical (non-crash) events from the
original highD and SHRP2 data (including the original braking
behavior of the FV) were simulated with the RAEB and CAEB
systems.

3. Results

In this section the results of the study are presented. First, for all
datasets, generated crashes are compared to real-world crashes.
Second, the results of the AEB algorithms’ application to the data
are shown, followed by the results from the analysis of false
positives.

3.1. Crash comparison

Fig. 5a shows a comparison of the cumulative distributions of
the maximum level of deceleration reached by the LV in the pre-
crash phase across the three datasets. The SHRP2 and PCM events
show harsher braking maneuver s (higher values of deceleration)
than the highD events. However, there are more PCM events with
relatively low maximum decelerations, in which the LV did not
brake or only braked slightly. Note that this also includes LVs that
stand still, for example in a traffic jam.

Fig. 5b shows a comparison of the time elapsed from the start of
LV braking to the crash across the three datasets. The distributions
for SHRP2 and highD consider all the generated crashes, while the
PCM distribution only includes crashes in which the LV braked
with a deceleration of at least �1 m/s2 (60 crashes, from Fig. 5a),
the same threshold used for the highD crash generation. PCM
crashes where the LV applied more than �1 m/s2 deceleration
show a time-to-crash comparable to that of crashes generated
from SHRP2 near-crashes. However, there is a substantial differ-
ence in the time-to-crash between SHRP2 and PCM on the one
hand and highD on the other.

Fig. 5c compares the impact speeds across the three datasets
(without AEB applied to the data). As the analyzed crashes are
rear-end crashes only, the impact speed was computed as the rel-
ative speed between the vehicles, assuming that they were driving
parallel to each other. The crashes generated from the naturalistic
datasets show an overall substantially lower impact speed com-
pared to the real crashes in PCM. The distribution of crashes in
the GIDAS database where the LV was braking but the FV did not
brake is also shown. Because not all crashes in GIDAS have been
reconstructed into PCM (recall that PCM data were available only
for seven of these crashes), simulations were performed on all
rear-end PCMs (including those with FV braking), increasing the
case count to N = 134. The distributions of the impact speed for
all rear-end PCM crashes and the GIDAS no-FV-braking crashes
are similar, especially for impact speeds between 10 m/s and
20 m/s, with larger differences in the tails.

Fig. 5d shows the relative FV-LV speed at the point when the LV
deceleration reaches �1m/s2, or, if the LV did not brake, when the
FV starts braking or, if also the FV did not brake, when it crashes.
The two NDD are very similar in the initial conditions, while the
PCM data has much higher initial relative speeds.

Fig. 5e shows the comparison of the lateral overlaps (see Sec
2.1.1) at the time of the crash, indicating that the overlaps were
lower for the PCM crashes than for the highD-based crashes. As
noted, SHRP2-based crashes did not include information about
the lateral overlap, so they were not included in the comparison.

3.2. The influence of data source choice on the comparison of AEB
safety performance

The two AEB algorithms were applied to the crashes of all data-
sets. The RAEB only considers longitudinal kinematics, while the
more advanced CAEB aims to decrease early (nuisance) interven-
tions by accounting for the potential of the driver’s evasive action
(comfortable steering). Fig. 6a shows the cumulative frequencies of
impact speed when the RAEB is applied and the crashes are miti-
gated, but not completely avoided (non-crashes are excluded;
remaining crashes are N = 22 for PCM, N = 11 for highD and
N = 12 for SHRP2). The remaining crashes all have lower impact
speeds than the original crashes, and the crashes generated from
highD and SHRP2 have lower impact speeds than the crashes from
the PCM. Fig. 6b shows the cumulative frequencies of impact
speeds of the mitigated crashes when the CAEB is applied to all
three datasets. The impact speeds are higher than those obtained
with the RAEB, and fewer original crashes were avoided (N = 34
for PCM, N = 41 for highD and N = 19.9 for SHRP2). (Recall that
for SHRP2 crashes, the results include the weighting process
described in Section 2.1.3, applying the offset distribution from
highD crashes, which is why there are non-integer crash results
for SHRP2). Fig. 6c shows the crash avoidance performances (as
percentages of original crashes) of the two tested algorithms. As
expected, the RAEB avoided more crashes than the CAEB for all
the datasets tested.

3.3. False positive analysis

False positives were analysed in the original highD and SHRP2
no-crash events. The RAEB and CAEB algorithms were applied
and the results were compared. The application of RAEB to highD
resulted in four false positives, all occurring at very low-speed
(<3 m/s) events in traffic jams, with FV and LV vehicles closely fol-
lowing each other. CAEB did not avoid any of these four false pos-
itive interventions, probably because of the short distances
between vehicles (as they were low-speed events), together with
the fact that steering is much less effective at low speeds. For
SHRP2, the analysis of false positives was first performed on all
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131 events, and then on a subset of these events—those in which at
least one of the vehicles reached a speed of 60 km/h (N = 42). This
subset was considered more similar to the other datasets in this
study. The RAEB application resulted in 28 false positives in 131
events (21.3%); seven occurred in the 42 high-speed events

(16.7%). As noted previously, for the application of CAEB to SHRP2
data the simulations used the overlap distribution from the highD
data (see Fig. 2). The simulation results were weighted according to
the probability of each simulated overlap. The results of this proce-
dure were not necessarily integers. To make this apparent to the

Fig. 5. (a) Cumulative frequency of LV maximum deceleration during the pre-crash phase. (b) Cumulative frequency of the time elapsed from LV braking initiation to the
crash (at �2 m/s2). (c) Cumulative frequency of original impact speed of all datasets. (d) Cumulative frequency of the relative speeds at the start of the event. (e) Cumulative
frequency of lateral overlap between LV and FV at the time of crash.
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reader the false positive counts were, in Table 1, intentionally left
with one decimal place. The false positives decreased from 28 to
24.8 (from seven to 5.9 at high speed) when the CAEB was applied.
The results are summed up in Table 1.

As expected, when SHRP2 crashes were simulated with small
overlaps (see Fig. 2), the CAEB produced fewer false positives than
the RAEB. As an example, the CAEB avoided six false positives (two
of which were at high speed) at the (Fig. 2) bin with the smallest
overlap.

4. Discussion

This study explored the possibility of using crashes generated
from non-crash naturalistic driving data (NDD) to complement,

or, in some instances even replace, real crashes with time-series
kinematics (e.g., from reconstructions) for counterfactual assess-
ment of AEB systems. This possibility would be useful for analysis
of safety benefit (and, potentially, system optimization) for coun-
tries lacking crash data with time-series kinematics. We have
shown that, in general, crashes generated from NDD have substan-
tially lower impact speeds than real crashes (GIDAS PCM), but the
pre-crash criticality in crashes generated from U.S. NDD (SHPR2)
near-crashes is comparable to the criticality in real German
crashes.

4.1. Comparing crash characteristics across datasets

4.1.1. Crash generation
The events from the two naturalistic datasets used in this study,

the highD everyday highway driving and the SHRP2 near-crashes,
by definition are not crashes. As an aim of this study was to inves-
tigate the suitability of using non-crash NDD to simulate counter-
factual crashes, only near-crashes from SHRP2 were included in the
study (i.e., not crashes). To generate a crash, the FV braking maneu-
ver had to be removed, so the start of the FV braking had to be
defined. In other studies this process was done manually
(Bärgman et al., 2017) or computationally by fitting a piecewise
linear model to the FV deceleration (Markkula, Engström, Lodin,
Bärgman, & Victor, 2016; Svärd, Markkula, Engström, Granum, &

Fig. 6. (a) Cumulative frequency of the impact speed in crashes remaining after basic AEB application. (b) Cumulative frequency of the impact speeds in crashes remaining
after advanced AEB application. N* is the theoretical number of avoided crashes resulting from the weighting process of the probabilities of the overlaps. (c) Bar plot showing
the percentage of avoided (original) crashes for each dataset and both AEB systems.

Table 1
False positive counts in highD and SHRP2 events for the application of RAEB and
CAEB.

highD SHRP2

RAEB CAEB RAEB CAEB*

Low speed 4 4 21 18.9
High speed 0 0 7 5.9
Total 4 4 28 24.8

* Values for CAEB applied to SHRP2 are weighted according to the overlap
probability, possibly resulting in non-integers.
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Bärgman, 2017). In this study, however, a different approach was
used: an LV deceleration threshold of �1 m/s2 defined the point
in time when the FV speed was set to remain constant, eliminating
any further deceleration. That is, the FV driver may or may not
have initiated braking at that time. This process can be seen as sim-
ulating a substantially ‘‘distracted” FV driver or, maybe more accu-
rately (as the duration of eyes-off-road is typically quite long) a
sleeping driver, as the driver does not react to the unfolding of
the critical event. This approach was used because of the different
nature of the datasets analyzed compared to those in previous
studies. Removing the evasive maneuver can be considered the
worst possible outcome (unless the FV driver accelerates into the
crash, which would be even worse — but would be unlikely).

The times needed for the FV to crash into the LV (Fig. 5b) were
similar between GIDAS PCM and SHRP2, reflecting the fact that
SHPR2 data actually capture critical events—but they were sub-
stantially different for highD and SHRP2, reflecting the different
origins of the two datasets (everyday driving vs critical events).
This difference indicates that highD data are likely not suitable as
an artificial source of critical events, neither with respect to timing
(criticality) nor impact speed. Some highD events proved to be
more safety–critical than others, but a much more extensive data
collection (capturing more critical events) is needed to make a
highD-like dataset even marginally useful for, for example, AEB
assessment. Note that SHRP2 collected over 3,958 driving man-
years (the total number of years that data were collected of partic-
ipants’ everyday driving), and still only captured 125 rear-end
crashes. Although highD captured many vehicles simultaneously,
the amount of data collected (time per vehicle) was several orders
of magnitude less than that of SHRP2; further, all data were
recorded on straight highways.

In addition to differences in timing and impact speed, the differ-
ences in LV decelerations between the datasets (Fig. 5a) is also
likely to affect the AEB assessment. In particular, there were many
PCM crashes that had low, or no, LV deceleration, while the SHRP2
LV decelerations were much higher compared to highD, and the
highD decelerations were quite uniform (and never lower than
1 m/s2, per definition). The LV decelerations for highD are simply
everyday driving decelerations. In order to produce the high
impact speeds of the PCM, they are likely not simple car-
following events with the LV braking creating the crash; instead,
the LV is at a standstill, or driving at a substantially lower speed
than the FV, with the FV catching up (or the LV is cutting in front
of the FV, at high relative speed). The differences in scenarios can
also be seen in Fig. 5d, where 13% of the PCM cases had a relative
speed of up to 10 km/h, while 75% of the SHRP2 cases and 89% of
the highD cases had low relative speeds (up to 10 km/h). These
findings demonstrate that much care should be taken when (if)
using crashes generated from near-crashes for virtual safety
assessment. Selection criteria (incl. event categorization – specific
subtype of the events used) must be at the forefront of the consid-
erations. If the algorithms act differently in the two types of events
(e.g., LV braking and FV catch-up), the results are likely to be
misleading.

4.1.2. Crash comparison
The comparison of impact speed (Fig. 5c) makes it clear that

overall, the GIDAS PCM crashes have much higher impact speeds
compared to the generated crashes. Although the PCM crashes
were only highway rear-end scenarios, there were sometimes
specific circumstances resulting in more critical events, such as
the very late appearance of the LV in the FV’s path (e.g., due to a
cut-in). Therefore, the higher impact speeds were expected, espe-
cially when compared to the SHRP2-based crashes, which were
mostly lower-speed events (and only a relatively small proportion
occurred on highways). That is, the low initial speeds (and possibly

short time headway) in the SHRP2-based crashes—and the fact that
most were car-following situations (and not FV catch-up situa-
tions, with large relative speed differences)—kept them from
becoming high impact-speed crashes such as those found in GIDAS
PCM data.

What makes the situations less critical in the highD than in the
GIDAS PCM is that the LVs typically decelerate less in the former
(see Fig. 5a). Further, in the latter, although the LV did not always
brake, there were also cases with high LV deceleration (when the
LV appeared suddenly in the path of the FV). These cases did not
occur in highD: as noted, the deceleration in highD was more
uniform.

In summary, the results of this study show that the impact
speeds of crashes generated from site-based or in-vehicle NDD
near-crashes during normal driving are substantially lower than
the impact speeds of real crashes—at least, the real crashes from
the GIDAS PCM used here. One reason for the difference is probably
that, for an event to be included, the GIDAS PCM required that at
least one person be suspected of being injured. If the PCM data also
included crashes without personal injury, it may be that the
crashes generated from NDD would be similar to the lower tail of
the PCM data’s impact speed distribution. However, as safety
assessment typically prioritizes avoiding human injuries, this
observation may not be relevant.

The comparison of lateral overlap at the time of the crash
(Fig. 5e) showed similarities between the highD and GIDAS PCM
data, but PCM on average had smaller overlaps (0.26 m smaller).
The difference in distributions is noticeable for medium overlaps
(0.8–1.6 m), while for small overlaps (<0.5 m) the distributions
are relatively similar. This difference could be due to an evasive
steering maneuver performed by the driver of the FV in the PCM
events, resulting in a crash involving only one portion of the vehi-
cle front bumper. In highD the cases with small overlaps are rarer,
as the crashes were generated from normal highway driving sce-
narios, with the vehicles usually driving in the middle of the lane.

The highD overlaps represent normal driving behavior, so we
believe that it is reasonable to virtually apply them to NDD near-
crashes as part of the crash generation process. However, although
the SHRP2 and GIDAS overlaps were similar, the limited event
matching between highD and SHRP2 reduces the validity of apply-
ing the highD overlaps to SHRP2 data—yet another argument for
aiming to use better matched datasets. In fact, the effect on the
results if the assumption of similarity of overlaps is violated is
not obvious. Actually, it may be counterintuitive: if the overlap
in SHRP2 is smaller than that applied from highD (Fig. 2; requiring
less steering to avoid a crash), the AEB would likely avoid fewer
crashes (since the AEB response would be delayed)—and vice versa
(a larger overlap would result in more avoided crashes).

4.2. The influence of data source choice on the comparison of AEB
safety performance

4.2.1. Comparing crash characteristics across AEB algorithms
Two different AEB algorithms were applied to the crashes from

the three datasets. The first algorithm, the RAEB, performs a run-
time threat assessment based exclusively on the longitudinal kine-
matics of the two vehicles. When the algorithm detects that the FV
will soon be unable to brake in time to avoid a crash, it initiates an
automated braking maneuver. The second algorithm, the CAEB,
goes a step further and accounts for the possibility that the driver
will avoid the crash by comfortable steering. Numerous studies
consider steering as an opportunity to avoid crashes (Brännström
et al., 2010, 2014; Sander, 2018). The purpose of this addition to
the AEB algorithm is to try to avoid as many unnecessary interven-
tions as possible, as there could be cases in which the driver is
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aware of the LV and is planning to perform a late, but comfortable,
steering maneuver: for example, when about to overtake.

On the one hand, the number of interventions that are too early
to be accepted by the driver could potentially be reduced by con-
sidering comfortable steering, but on the other hand these delayed
AEB interventions result in more, or more severe, crashes (i.e.,
increased impact speed; see Fig. 6a,b). That is, if the FV driver does
not perform the expected steering maneuver, the vehicle’s AEB sys-
tem may no longer have the time to brake to avoid the collision.
This outcome is also shown in Fig. 6c, where the CAEB is less effec-
tive at avoiding crashes than the RAEB. Both the fewer avoided
crashes and the less reduced impact speed are direct consequences
of the delayed AEB intervention. This finding was expected; safety
system manufacturers are constantly balancing the potential
improvement in user acceptance (Bliss & Acton, 2003; Coelingh
et al., 2007) against the decreased effectiveness of the safety sys-
tem at reducing the number and severity of rear-end crashes.

If crashes generated from near-crashes are to be used for AEB
safety assessment, it is important to perform sensitivity analyses
on the effects of LV decelerations, and differences in performance
between the car-following versus FV-catch-up-to-LV (or cut-in)
scenarios, on the preventive systems performance; our analyses
show that the differences between the PCM and near-crash gener-
ated crashes are large with respect to LV decelerations and sce-
nario type, also for near-crashes. This will likely have different
impact on the safety performance assessment, depending on the
AEB algorithm. Possibly probability weighting on, for example, sce-
nario type, based on more representative crash databases, may
mitigate potential effects of data source differences with respect
to safety performance.

4.2.2. False positive analysis
Analysis of false positives is an important part of the assess-

ment of preventive safety systems (Bliss & Acton, 2003; Coelingh
et al., 2007; Sander & Lubbe, 2016). With respect to our false pos-
itive analysis, it is important to note that when an AEB system was
triggered for a near-crash in the SHRP2 data, the situation may not
actually have been a false positive, as it actually was quite critical.
However, for consistency we decided to consider all AEB triggers as
false positives in our analysis and discussion.

There were substantial differences between highD and SHRP2
datasets in the results from the simulation and analysis of false
positives. The few highD false positives were all cases in which
the FV was following the LV closely at a very low speed, represen-
tative of a traffic jam—perhaps not very relevant for human injury
prevention. The SHRP2 events, on the other hand, had more false
positives, and the dynamics were more safety–critical (at least,
the speeds were higher). These differences mirror the near-crash
nature of the SHRP2 events compared to the normal highway driv-
ing in highD (see Table 1).

The number of false positive activations was smaller with CAEB
than RAEB, as logic suggests, although the reduction was substan-
tially less than expected. However, we do show that crashes gener-
ated from NDD near-crashes are potentially a good source of data
for false positive analysis. In contrast, highD, which contains
approximately 17 hours of data (60 recordings of 17 minutes) with
approximately 30 vehicles in the image at all times and records FV/
LV interactions in normal driving data, appears not to be very use-
ful for understanding even AEB false positive performance – if an
AEB system triggered in such events, it would truly be a poorly
designed system.

4.3. Limitations and future work

Amain limitation of this study is the assumption that FV drivers
are not reacting at all to LV braking. That is, we are basically

assuming the drivers are sleeping. However, it is possible to virtu-
ally add glance behaviors and brake responses to generated events
(Bärgman et al., 2017; Bärgman, Lisovskaja, et al., 2015; Lee, Lee,
Bärgman, Lee, & Reimer, 2018), using distributions of documented
glance behaviors (Morando, Victor, & Dozza, 2019) and driver
response models (Markkula et al., 2016; Svärd et al., 2017). This
aggregation of knowledge about driver behavior enables the gener-
ation of synthetic crashes and counterfactual simulations that take
other factors, such as driver distraction, into account (Bärgman,
Lisovskaja, et al., 2015; Bärgman & Victor, 2020). However,
although driver glance behavior models have been included in pre-
vious studies, the approach to apply glances to non-crashes as part
of crash generation has not been systematically validated (using,
e.g., in-depth crash data). Applying glances to non-crashes in a
study similar to this one would bring us one step closer to validat-
ing the approach.

In addition to improving the generation of synthetic crashes by
adding driver behaviors, investigating different types of crash sce-
narios could be a next step—expanding from rear-end crashes to,
for example, intersection crashes. There are site-based intersection
NDD available from drone collections (Bock et al., 2020), similar to
the highD data; however, given the results of our study, they would
likely be of little use for safety assessment of, for example, AEB.
Going forward, the focus must be on identifying and using data
sources containing critical events, instead of using small samples
of everyday driving. It may, however, still be relevant to use
crashes generated also from drone based NDD, such as Bock et al.
(2020), for methodological work related to safety assessment,
where correct absolute safety benefit estimates are not the main
focus.

Further, the simulations themselves are simplifications of real-
ity. For example, the inclusion of more advanced vehicle models
and mature AEB algorithms (e.g., in production) would likely
improve the generalizability of the simulations. Future research
would benefit from working closely with vehicle manufacturers,
which have access to both of these. Also, for the RAEB algorithm,
all vehicles were assumed to have the same values of jerk and
(reachable) deceleration, regardless of the varying performances
that different cars can have, and the weather conditions (e.g., rain
and ice—braking performance was not tuned to reflect possible
changes in road friction coefficient).

It is also important to consider what specific variables are
important for specific benefit analysis. This study has shown that
the lateral overlap between the LV and FV is important when using
rear-end NDD to assess rear-end crashes. Consequently, its precise
and accurate recording should be a priority in future data collec-
tion – also in critical event NDD recordings.

In this study the scope was to investigate how normal driving
and near-crash NDD can (or cannot) be used to generate crashes
for counterfactual safety assessment, with focus on AEB (which
will be part of all levels of vehicle automation for the foreseeable
future). We are not studying how NDD could be used in the process
to generate crashes through, for example, traffic simulations.
Research and development should continue for both the traffic
simulations-based approach (typically targeting higher levels of
automation) and for counterfactual safety assessment, with focus
on ways of ensuring precise and accurate results, while making
sure stakeholders easily can understand assumptions and limita-
tions, and their implications on results and interpretation. Further,
as needs now arise to assess the safety of higher levels of vehicle
automation, estimating crash rates and exposure ‘‘of the future”
is crucial. However, the method used in this study – counterfactual
simulations (with or without crash generation) – do not attempt to
predict the future rates. Instead the crash rates from, for example,
crash databases would typically be used (i.e., simply using the orig-
inal base rates per scenario type). Further development of methods
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to estimate future crash rates and scenario exposure is needed,
where the use of traffic simulations is one path that should be pur-
sued, with focus on validation.

Finally, another main limitation of our analysis is the limited
matching of events across datasets. Although the comparability
between the highD data and the GIDAS data is high, as both were
collected on German highways, the types of scenarios differ sub-
stantially: the highD events are almost all car-following, while
many of the GIDAS crashes consist of a car catching up to a lead
vehicle at high relative speed. The SHRP2 and GIDAS data differ
in a different way: the SHRP2 near-crashes rarely occurred on
highways and the driving speeds were substantially lower than
in GIDAS; there was also a large difference in the proportion of
car-following versus catch-up scenarios. Further, the fact that
highD is site-based NDD, while SHRP2 and GIDAS data are col-
lected in-vehicle (SHRP2) and crash-based (GIDAS), is likely to
affect comparability. Site-based NDD is unlikely to capture crashes
that are related to driving context and infrastructure, while contin-
uous in-vehicle and crash-based data collection capture crashes
(and for SHRP2, critical events) in all contexts. In the SHRP2 data-
base the events were all safety–critical near-crashes, but only a
fraction of the events was at high speed, unlike highD and GIDAS
PCM databases, which included mostly high-speed driving events.
Also, our use of German crash data (GIDAS) and U.S. in-vehicle
NDD (SHRP2) makes it difficult to determine if differences are pri-
marily due to differences between regions, or if they are funda-
mental data source differences. However, the similarities in
criticality indicate that some liberal generalizations (also between
regions) on the relative effect of different AEB systems may be pos-
sible, in our case likely due to the driving cultures of Germany and
the United States being relatively similar. The validity of such lib-
eral generalization is, however, likely much dependent on the driv-
ing cultures of the involved regions (see, e.g., the comparison
between China and the United States, Bianchi Piccinini,
Engström, Bärgman, & Wang, 2017)). Consequently, future studies
generating and analyzing more closely matched events, differing
only in that some are generated from near-crashes and others from
in-depth crash databases, would be most valuable.

5. Conclusion

In-depth crash data with reconstructed pre-crash kinematics
can be used to develop both protective and preventive safety sys-
tems that are highly effective. Since such data are not available
everywhere, alternative data sources are needed to make at least
rough estimates of system performance in regions without them,
as part of the system development process. This work studied
the suitability of using easier-to-obtain non-crash naturalistic driv-
ing data (NDD) as a complementary data source for use in virtual
assessment of preventive safety systems (specifically AEB).

Results show that virtual AEB assessments based on site-based
NDD recordings of everyday driving on highways had neither the
criticality nor the impact speed of assessments based on traditional
pre-crash kinematics from in-depth reconstructions of crashes. We
have consequently shown that site-based NDD that only capture a
few tens of hours of normal driving are not suitable for assessing
preventive safety performance, crash avoidance, or impact and
injury risk reduction.

However, our results also show that the event criticality and the
proportion of avoided crashes (but not impact speeds or impact
speed reductions) were similar between crashes based on U.S.
near-crashes and those based on a traditional German in-depth
crash database. Therefore, critical-event near-crash data may be
useful to complement in-depth crash data when comparing the
safety benefit of different systems. The near crash data also allows

an assessment of false-positive activations highlighting differences
between systems. However, our results show that data sources
that include original crashes, such as in-depth crash data, are still
very important and preferred.

With respect to practical applications of our research, the
results from our study can be used by system developers and
researchers when deciding which data to use for virtual safety
assessment (e.g., if NDD is an option). The paper further provides
insights into the limitations of NDD for safety assessment, which
is important to understand when NDD are considered for use in
virtual safety assessment.
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Appendix A

In the case of an intersection of the predicted FV path with the
LV position, the relative longitudinal distance was measured fol-
lowing the FV’s predicted path (along either the arc or the line).
The lateral overlap is the lateral relative distance between the FV
and the LV. That is, if all vehicles were of equal width and directly
behind each other (complete overlap), there would be only one
overlap value: the vehicle width. That is, the following driver needs
to move a full vehicle width to the left (or right) to just barely avoid
crashing, in a critical rear-end situation. Overlap values lower than
the vehicle width occur when the LV and the FV are travelling at
different lateral positions in the same lane. Overlap was computed
by measuring the distance of the four vertices of the rectangle rep-
resenting the LV to the centreline of the path for left (dlLV ) and right
(drLV ) sides of the LV and adding half the width of the FV (dlFV or
drFV , right and left half of the FV width, respectively, based on
whether the steering maneuver is about to take place to the left
or to the right of the LV) and an additional safety distance of one
metre (e), so that once the FV has completed the lateral movement
it has some lateral clearance to the LV, rather than almost touching
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as it passes (see Fig. A1a,b). Fig. A1b shows how the total clearance
distance (dtot) was measured: it includes the overlap of the vehicles
(dlLV + dlFV ) and the additional safety distance ðeÞ. This procedure
assured the availability of all the relevant metrics needed for the
AEB application for the PCM crashes.
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a b s t r a c t

Introduction: Age-related frailty leaves older drivers with the greatest fatality risk when involved in a
crash compared with younger demographics. This study explored how vehicle features differed between
crash-involved older and middle-aged drivers and estimated how those differences contribute to excess
older driver fatalities. Methods: We merged Florida’s crash data from 2014–2018 with Insurance Institute
for Highway Safety and Highway Loss Data Institute databases. We compared the distribution of passen-
ger vehicle age, type, size, and safety features among crash-involved older drivers (ages 70 and older)
with crash-involved middle-aged drivers (ages 35–54). From logistic regression models, we estimated
declines in older driver fatalities if they drove vehicles like those driven by middle-aged drivers under
all and side-impact crash scenarios. Results: Older drivers in crashes were more likely to be in vehicles
that were lighter, older, and without standard electronic stability control, standard head-protecting side
airbags, and ratings of good in two IIHS crash tests than middle-aged drivers. In adjusted models, the
fatality risk for older drivers in all crashes was significantly higher when ESC was not standard (odds ratio
[OR], 1.37; 95% confidence interval [CI], 1.12–1.68) or when driving small passenger cars relative to large
SUVs (OR, 2.02; 95% CI, 1.25–3.26); in driver-side crashes, the fatality risk doubled when vehicles did not
have standard head-protecting side airbags (OR, 2.03; 95% CI, 1.58–2.62). If older drivers drove vehicles
similar to middle-aged drivers, we estimated 3.3% and 4.7% fewer deaths in all and side-impact crashes,
respectively. Conclusions: These results contribute to evidence suggesting that newer, more crashworthy
vehicles with crash mitigation features benefit older drivers because of their heightened risk of crash-
related fatality. Practical Applications: At a minimum, older drivers should aim to drive equipped vehicles
with widely available features proven to reduce fatalities.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Police-reported crashes per vehicle miles traveled for older dri-
vers ages 70 and older have improved drastically since their mid-
1990s peak, with rates declining more among older drivers than
middle-aged drivers through 2016–2017 (43% vs 13%) (Cox &
Cicchino, 2021). The decline in crash involvements contributed to
a 50% decline in fatal crashes per vehicle miles traveled among
older drivers, but older driver deaths per 1,000 crashes declined
just 17% during the same period (Cox & Cicchino, 2021). Crash sur-
vivability remains low among this demographic due to age-related
fragility (Cicchino, 2015). Consequently, fatal crash rate increases
beginning at age 70 persist and the risk of dying in a crash contin-
ues to climb after middle-age (Cox & Cicchino, 2021).

Although drivers in their 70s do not experience excess crashes
per vehicle miles traveled compared with middle-aged drivers, cer-
tain crash scenarios become more common with rising age due to
age-related cognitive and visual declines (Anstey et al., 2005; Cox
& Cicchino, 2021; Lombardi et al., 2017; Owsley et al., 1991).
Intersection-related crashes in which older drivers are the struck
(rather than the striking) vehicle due to failure to yield or looking
but not seeing are particularly common (Alam & Spainhour, 2008;
Budd et al., 2012; Clarke et al., 2010; Lombardi et al., 2017;
Mayhew et al., 2006; Stamatiadis et al., 1991; Stutts et al., 2009)
with older drivers 76% more likely to be involved and nearly-
seven times more likely to be killed than middle-aged drivers in
left-turn crashes across the path of another vehicle (Cox et al.,
2022). Countermeasures that target survivability and the unique
crash scenarios older drivers face may help reduce fatalities, and
the recent safety enhancements to vehicles show promise in fur-
ther contributing to declines in motor-vehicle-crash fatality rates
among this vulnerable population (Cicchino, 2015).
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Despite this potential, older drivers tend to drive vehicles that
are less safe because they are older models, have fewer safety fea-
tures, and are likely lighter than those driven by some younger
demographics. A prevalence study using quasi-induced exposure
methods discovered that median vehicle age increased from five
years among drivers ages 25–64 to eight years among drivers ages
85 and older and that older drivers were less likely to drive vehi-
cles equipped with safety features like electronic stability control
(ESC) and side airbags than their middle-aged counterparts
(Metzger et al., 2020). A recent survey found that drivers 70 and
older reported keeping their vehicles longer and being less likely
to have requested safety features like side airbags and crash avoid-
ance technologies when purchasing their primary vehicle than
middle-aged participants (Cox & Cicchino, 2022). Both studies
found that older drivers primarily drove passenger cars, which
tend to be smaller and lighter than other vehicle types (Cox &
Cicchino, 2022; Metzger et al., 2020).

An overwhelming body of evidence has revealed that newer
model year vehicles protect against serious and fatal injury among
drivers of all ages (National Highway Traffic Safety Administration
[NHTSA], 2013; Ryb et al., 2009; Ryb et al., 2011). More recently,
Fausto and Tefft (2018) found comparable results among drivers
ages 65 and older. In their study using nationally representative
data from police-reported crashes and data from a census of fatal
crashes from 2010–2015, newer vehicle age alone, defined as
model year 2010 and newer, significantly lowered the risk of fatal
injury compared with older model-year vehicles (Fausto & Tefft,
2018). However, the effect of vehicle age on driver fatality is con-
founded by advancements in both safety features and crashworthi-
ness associated with newer vehicle models, which are the true
drivers of motor-vehicle fatality reductions. Crashworthiness has
steadily improved through vehicle design changes and the equip-
ment of features like side airbags, which allow for better injury
outcomes (Highway Loss Data Institute [HLDI], 2020b; Teoh &
Lund, 2011). Driver death risk in 2009 model year vehicles was
about 50% lower than in 1984 models and 8% lower than in 2008
models, reflecting the benefit of such design changes (Farmer &
Lund, 2015). Furthermore, technologies like ESC and other crash
avoidance systems can enhance driver safety by preventing or mit-
igating crashes, thus reducing motor-vehicle injuries (Benson et al.,
2018; Cicchino, 2017; Farmer, 2010).

The impact that individual aspects of improved crashworthi-
ness and the equipment of safety technologies or features have
had on fatality outcomes among the general driving population
are indisputable. The Insurance Institute for Highway Safety (IIHS)
evaluates vehicle crashworthiness through crash testing, and each
year the proportion of vehicles earning the top rating of good
improves (HLDI, 2020b). Studies evaluating the real-world effects
of the IIHS side and moderate overlap frontal crash tests found
clear correlations between ratings and fatality outcomes of side
and head-on collisions, respectively, with the degree of protection
highest among vehicles rated good (Farmer, 2005; Teoh & Lund,
2011). ESC is particularly effective at reducing the risk of single-
vehicle fatal crash involvement, and side airbags with head protec-
tion greatly reduce a driver’s fatality risk in driver-side crashes
(Farmer, 2010; McCartt & Kyrychenko, 2007). Although the
changes that reduce fatalities have been incorporated across the
fleet, larger, heavier vehicles offer more protection to their occu-
pants than smaller, lighter vehicles, especially when struck by a
heavier partner vehicle (Monfort & Nolan, 2019; Ossiander et al.,
2014). It is clear how these advancements reduce fatalities among
the general population, but less is known about how many of these
advancements may benefit older drivers specifically. Regardless, it
is troubling that older drivers tend to drive older vehicles absent of
many of the features and characteristics shown to reduce motor-
vehicle fatalities.

One aim of this study was to expand on Metzger et al. (2020) by
using the unique vehicle information databases maintained by IIHS
and HLDI to explore how the vehicle characteristics of curb weight
and crash test ratings, in addition to ESC, side airbag type, vehicle
type, and vehicle age, might also vary by driver age. Using the
foundation that features associated with reduced fatality outcomes
are less prevalent in vehicles driven by older drivers than in vehi-
cles driven by middle-aged drivers, we explored how those differ-
ences might expressly contribute to excess fatality among older
drivers at a population level. Since older adults experience the
highest crash fatality rates of any driver population, encouraging
older drivers to drive the safest vehicles attainable is a promising
approach to offsetting the other effects of age-related fragility
and the resulting crash-related fatalities and injuries in play, even
if these effects cannot be eliminated (Cox & Cicchino, 2021;
Metzger et al., 2020). We believe that this study will improve
awareness of what those vehicles are and how much difference
they could make.

2. Methods

2.1. Data sources

We obtained the files for police-reported motor-vehicle crashes
for the years 2014–2018 from the Florida Department of Highway
Safety and Motor Vehicles. We selected Florida out of convenience
due to the considerable size of the state’s older adult population.
We decoded valid Vehicle Identification Numbers (VINs) to obtain
vehicle make, series, and model year using VINDICATOR, a propri-
etary VIN-decoding software maintained by HLDI, an affiliate of
IIHS. Information on the availability of side airbags and ESC, pas-
senger vehicle type (car, SUV, minivan, pickup trucks) and size,
and curb weight were obtained from a database on vehicle features
maintained by HLDI. Another data set housed IIHS vehicle ratings
in the IIHS moderate overlap frontal and side crash tests (good,
acceptable, marginal, and poor). These data sets were merged with
the crash data by make, series, and model year.

Side airbag availability was categorized as follows: (1) standard
head protection including side airbags that protect the head, avail-
able as standard equipment regardless of torso protection; (2)
standard torso protection including side airbags that protect the
torso, available as standard equipment, with head-protecting air-
bags either optional or not available; (3) optional protection of
the head, the torso, or both the head and torso, available as
optional equipment (not available as standard equipment); and
(4) not available. Most side airbags that protect the head also pro-
tect the torso. We used HLDI’s vehicle size classifications for each
vehicle type, which are determined based on a combination of
vehicle shadow (overall length times width) and curb weight
(HLDI, 2020a).

2.2. Analyses

A total of 1,521,128 drivers ages 35–54 and 70 and older and
their crash-involved vehicles were included in the study. We lim-
ited analyses to drivers and excluded other occupants as not every
crash-involved vehicle will have a passenger and because inconsis-
tencies in passenger placement within a vehicle creates complexity
in analyzing injury outcomes given the crash configuration. Vehi-
cles analyzed were passenger vehicles regardless of driver fault
status. We excluded drivers with nontraffic-related injuries and
vehicles older than model year 1981 because VINDICATOR’s cannot
decode VINs before that model year. Analyses of rated vehicles in
the side crash test excluded series with multiple ratings that varied
based on optional equipment, and both analyses of crash test rat-

A.E. Cox, J.B. Cicchino and E.R. Teoh Journal of Safety Research 83 (2022) 357–363

358



ings excluded vehicle series that were unrated in the respective
crash test.

We examined the frequency of vehicle characteristics of vehicle
age, type and size combination, curb weight, availability of side air-
bags and ESC, and ratings in the IIHS moderate overlap frontal and
side crash tests of crash-involved vehicles by age group. Drivers 70
and older were stratified into subgroups of drivers ages 70–74, 75–
79, and 80 and older. We calculated rate ratios for categorical vari-
ables (relative proportion, computed as the frequency of vehicle
feature among older driver subgroup divided by the frequency of
vehicle feature among middle-aged drivers) to make comparisons
across age groups. Confidence intervals (CI) for the rate ratios
(RR) were computed using a normal distribution approximation
given by the following equation:

95%CI ¼ elnðRRÞ�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a� 1

aþbþ1
c� 1

cþd

p

where a, b, c, and d are the frequencies in a 2 by 2 contingency table
(Morris & Gardner, 1988). Differences in means of continuous vari-
ables across age groups were tested with two-sample t tests.

To estimate how differences in the vehicles driven by middle-
aged and older drivers might contribute to excess fatality among
older drivers, we developed a total of four logistic regression mod-
els, two each for drivers ages 70 and older and 80 and older. Logis-
tic regression takes the form ln(p/(1-p)) = b0 + b1x1 + b2x2 + . . .

bkxk, where p is the probability of driver death, and bi is the param-
eter estimate for the xi covariate. The first set of models estimated
declines in older driver fatalities in all crashes. Older drivers are
overinvolved in side-impact crashes in which their vehicle is struck
and have an especially elevated risk of dying in these crashes rela-
tive to middle-aged drivers (Cicchino, 2015; Li et al., 2003); so, the
second set of regression models estimated reductions in driver-
side crashes to focus on this vulnerable crash type. Given the high
degree of multicollinearity of many of the vehicle-characteristic
variables (e.g., vehicle size classifications are derived from curb
weight, safety features are more common in newer vehicles), and
because of the large proportion of crash test ratings that were
either missing or a rating of good, the final model estimating the
odds of driver fatality in all crashes included (1) ESC availability,
(2) vehicle type and size combination, and (3) side airbag availabil-
ity. The second model estimating the odds of older driver fatality in
driver side-impact crashes was limited to (1) vehicle type and size
combination and (2) side airbag equipment, because these features
are most relevant to survivability in this crash configuration.

Two estimates of death risk for drivers ages 70 and older were
calculated for all crashes—one based on the vehicles they drove,
and the other based on vehicles driven by 35- to 54-year-olds.
Using the adjusted model equation for drivers 70 and older, two
sets of estimated logits were computed by multiplying parameter
estimates and the population proportions of vehicle characteristics
for nonreference categories and summing (i.e., the model estimate
using average values for covariates); this was done once using the
proportions of vehicle characteristics among 35- to 54-year-olds in
all crashes and once using proportions among drivers 70 and older.
These estimated logit values were transformed into risk estimates
using the inverse logit function exp(logit)/(1 + exp(logit)). Then,
the estimated risk for drivers 70 and older (had they driven vehi-
cles similar to those driven by 35- to 54-year-olds) was taken as
the estimated risk based on the vehicles of drivers 35- to 54-
year-old divided by the estimated risk based on the vehicles of dri-
vers 70 and older. We repeated this process to estimate risk for dri-
vers 80 and older compared with 35- to 54-year-olds in all crashes,
using the corresponding model equation and proportions of vehicle
characteristics for nonreference categories. We then applied this
process twice more for each older driver group compared with
35- to 54-year-olds for driver-side crashes only, using the resulting

model equations and population proportions of vehicle character-
istics for nonreference categories among those involved in driver-
side crashes. This resulted in four estimates of fatality reduction
potential, two each for drivers ages 70 and older and 80 and older
for all crashes and for driver-side crashes. SAS 9.4 was used for all
analyses.

3. Results

Table 1 displays the distribution of characteristics of all crash-
involved vehicles by driver age, and rate ratios comparing frequen-
cies for categorical variables or t tests comparing means of contin-
uous variables among each older driver subgroup with middle-
aged drivers. Drivers 70 and older were significantly more likely
to be driving the oldest vehicles (16 years old and older) than
middle-aged drivers (11.5–13.4% vs 10.4%) and were significantly
less likely to be in the newest (<3 years old) vehicles (21.6–25.3%
vs 25.9%). As driver age increased, vehicles were significantly less
likely to be equipped with ESC as a standard feature (older:
51.1–58.5%; middle-aged: 59.4%). There was minimal variation in
the availability of side airbags with standard head protection
among drivers ages 35–54 and 70–74 (64.0–64.3%), but significant
declines began at age 75 (63.1%) and fell to 61.1% among drivers 80
and older.

The prevalence of passenger cars rose significantly with driver
age, from 51.3% among middle-aged to 68.5% among drivers 80
and older (Table 1). This pattern held for small and large cars,
and the proportion of older drivers in midsize passenger cars rose
beginning at age 80 and older. Similarly, the proportion of drivers
in SUVs declined with age, from 28.9% among middle-aged to
19.3% among age 80 and older. While older drivers were similarly
or more likely to be in small SUVs than their middle-aged counter-
parts, the proportion of drivers in midsize SUVs began to decline at
age 75 (75+: 9.7–13.2%; middle-aged and 70–74: 14.7%) and older
drivers were much less likely than middle-aged drivers to be in
large SUVs (1.8–3.9% vs 6.5%). Average curb weight steadily and
significantly declined with driver age, from a mean of 3,730
pounds amongmiddle-aged drivers to 3,470 pounds among drivers
80 and older.

Table 2 displays the frequencies and rate ratios of moderate
overlap frontal and side crash ratings across driver age, among
vehicle models tested by IIHS. Crash-involved drivers 75 and older
were significantly less likely to be in vehicles rated good on either
test than middle-aged drivers. Drivers 75 and older were also sig-
nificantly more likely to be in vehicles with a poor rating in the
side crash test (ranging from 9.0–11%) compared with drivers ages
35–54 and 70–74 (8.0–8.1%).

Table 3 presents results from the two adjusted logistic regres-
sion equations modeling odds of driver fatality for drivers 70 and
older and 80 and older in all crashes. Relative to large SUVs, all
other vehicle type and size combinations were associated with
increased odds of older driver fatality, with small passenger cars
and pickup trucks statistically significant for drivers 70 and older.
Vehicles lacking standard ESC were significantly associated with
37% higher odds of older driver fatality for drivers 70 and older
and 32% higher odds for drivers 80 and older, relative to when
ESC was standard.

Table 4 displays the results from the two adjusted logistic
regression equations modeling odds of driver fatality among dri-
vers 70 and older and 80 and older in driver-side crashes. Drivers
in vehicles without standard head-protecting side airbags had over
double the odds of fatality than those with (70 and older: 103%
higher odds, 80 and older: 107% higher odds), and these were sta-
tistically significant for both age groups.
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If the distribution of vehicles driven by crash-involved older dri-
vers was the same as middle-aged drivers in terms of vehicle type
and size and the availability of standard ESC and side airbags that
protect the head, we estimated 3.3% and 4.8% fewer fatalities for
drivers 70 and older and 80 and older, respectively, in all crashes
(not shown in tables). If the distribution of vehicles driven by older
drivers involved in driver-side crashes was the same as middle-
aged drivers in terms of vehicle type and size and the availability
of standard side airbags protecting the head, we estimated there

would have been 4.7% fewer deaths for drivers 70 and older and
7.5% fewer deaths for drivers 80 and older (not shown in tables).

4. Discussion

This study strengthened Metzger et al. (2020) by supporting
their findings that older drivers are more likely to drive older pas-
senger vehicles that are cars and without ESC and side airbags than
middle-aged drivers. We also expanded on their study by demon-

Table 1
Distribution of characteristics of crash-involved vehicles in Florida from 2014–2018 by driver age, listed as percent or mean (SD) and comparison of features between older driver
subgroups and drivers ages 35–54.

Characteristic Ages 35–54
n = 1,238,443

Ages 70–74
n = 115,534

Ages 75–79
n = 78,421

Ages 80 and older
n = 88,730

Percent Percent RR (95% CI) Percent RR (95% CI) Percent RR (95% CI)

Vehicle age (years)
<3 25.9 25.3 0.98 (0.97, 0.99)* 24.1 0.93 (0.92, 0.94)* 21.6 0.83 (0.82, 0.84)*
3 to 5 18.4 18.1 0.98 (0.97, 1.00) 17.6 0.96 (0.94, 0.97)* 16.5 0.90 (0.89, 0.91)*
6 to 10 24.9 24.5 0.99 (0.95, 1.00) 24.5 0.99 (0.97, 1.00) 25.5 1.02 (1.01, 1.03)*
11 to 15 20.4 20.6 1.01 (1.00, 1.02) 21.4 1.05 (1.03, 1.06)* 23.1 1.13 (1.11, 1.14)*
16 and older 10.4 11.5 1.10 (1.08, 1.12)* 12.4 1.19 (1.17, 1.21)* 13.4 1.29 (1.26, 1.31)*

Vehicle type and size
Passenger car 51.3 53.4 1.04 (1.04, 1.05)* 57.7 1.12 (1.12, 1.13)* 68.5 1.34 (1.33, 1.34)*
Small 18.5 19.8 1.07 (1.06, 1.09)* 20.4 1.10 (1.08, 1.12)* 21.4 1.16 (1.14, 1.17)*
Midsize 23.8 22.1 0.93 (0.92, 0.94)* 23.4 0.98 (0.97, 1.00) 27.5 1.15 (1.14, 1.17)*
Large 9.0 11.5 1.28 (1.26, 1.30)* 14.0 1.55 (1.52, 1.58)* 19.6 2.18 (2.15, 2.21)*

SUV 28.9 28.8 1.00 (0.98, 1.01) 26.4 0.91 (0.90, 0.92)* 19.3 0.67 (0.66, 0.68)*
Small 7.6 10.3 1.34 (1.32, 1.37)* 10.0 1.31 (1.28, 1.34)* 7.8 1.020 (1.00, 1.04)
Midsize 14.7 14.7 1.00 (0.98, 1.01) 13.2 0.90 (0.88, 0.91)* 9.7 0.66 (0.64, 0.67)*
Large 6.5 3.9 0.59 (0.57, 0.61)* 3.1 0.48 (0.46, 0.50)* 1.8 0.28 (0.27, 0.30)*

Pickup truck 14.6 11.90 0.81 (0.80, 0.83)* 10.0 0.68 (0.67, 0.69)* 6.6 0.45 (0.44, 0.46)*
Small 3.3 3.71 1.13 (1.10, 1.17)* 3.4 1.03 (0.99, 1.07) 2.6 0.79 (0.76, 0.82)*
Large 11.4 8.2 0.72 (0.71, 0.74)* 6.7 0.58 (0.56, 0.59)* 4.0 0.35 (0.34, 0.36)*

Minivan 5.1 5.8 1.14 (1.12, 1.17)* 5.9 1.16 (1.13, 1.19)* 5.6 1.09 (1.06, 1.12)*
Curb weight, Mean (SD)� 3,730 (887.5) 3,616 (781.2) p value < 0.0001 3,561 (735.6) p value < 0.0001 3,470 (659.3) p value < 0.0001
ESC
Standard 59.4 58.5 0.98 (0.98, 0.99)* 56.1 0.94 (0.94, 0.95)* 51.1 0.86 (0.86, 0.87)*
Optional 10.1 10.8 1.07 (1.05, 1.08)* 11.8 1.17 (1.15, 1.19)* 14.2 1.41 (1.38, 1.43)*
Not available 30.5 30.8 1.01 (1.00, 1.02) 32.1 1.05 (1.04, 1.06)* 34.7 1.14 (1.13, 1.15)*

Side airbagy

Standard head protection 64.0 64.3 1.00 (1.00, 1.01) 63.1 0.98 (0.98, 0.99)* 61.1 0.95 (0.95, 0.96)*
Standard torso protection 2.2 2.5 1.15 (1.11, 1.19)* 2.7 1.22 (1.17, 1.27)* 3.1 1.42 (1.36, 1.47)*
Any optional 18.5 18.0 0.97 (0.96, 0.99)* 18.8 1.02 (1.00, 1.03) 20.9 1.13 (1.11, 1.14)*
Not available 15.3 15.2 0.99 (0.98, 1.01) 15.4 1.01 (0.99, 1.03) 14.9 0.97 (0.96, 0.99)*
Missing < 0.01 < 0.01 < 0.01 < 0.01

Note: CI = confidence interval. RR = rate ratio. SD = standard deviation.
Percentages do not always sum to 100% due to rounding.
y Standard head protection includes airbags that protect the head and may offer torso protection. Torso protection offers no head protection.

* Denotes statistical significance at a = 0.05.
� Results of mean comparisons presented as p value from t test.

Table 2
Distribution (percent) of moderate overlap frontal and side test crash ratings of crash-involved vehicles in Florida from 2014–2018 by driver age, comparison between older
driver subgroup and drivers ages 35–54.

Ages 35–54 Ages 70–74 Ages 75–79 Ages 80 and older

Crash test rating Percent Percent RR (95% CI) Percent RR (95% CI) Percent RR (95% CI)

Moderate overlap frontal n = 904,475 n = 87,727 n = 59,898 n = 67,917
Good 85.0 84.5 0.99 (0.99, 1.00) 84.0 0.99 (0.98, 0.99)* 83.0 0.98 (0.97, 0.98)*
Acceptable 9.0 9.7 1.08 (1.05, 1.10)* 10.2 1.14 (1.11, 1.17)* 11.6 1.29 (1.26, 1.32)*
Marginal 3.4 3.3 0.98 (0.94, 1.02) 3.2 0.95 (0.91, 0.99)* 2.8 0.82 (0.79, 0.86)*
Poor 2.7 2.6 0.97 (0.93, 1.02) 2.6 0.96 (0.92, 1.02) 2.6 0.99 (0.94, 1.03)

Side n = 714,195 n = 68,709 n = 46,529 n = 52,121
Good 82.0 82.1 1.00 (1.00, 1.00) 81.1 0.99 (0.98, 0.99)* 77.4 0.94 (0.94, 0.95)*
Acceptable 4.9 5.7 1.16 (1.12, 1.20)* 6.0 1.24 (1.19, 1.29)* 7.6 1.56 (1.51, 1.61)*
Marginal 5.1 4.2 0.82 (0.79, 0.85)* 3.9 0.76 (0.73, 0.80)* 4.0 0.78 (0.75, 0.82)*
Poor 8.0 8.1 1.01 (0.98, 1.03) 9.0 1.13 (1.09, 1.16)* 11.0 1.38 (1.34, 1.41)*

Note: CI = confidence interval. RR = rate ratio.
Percentages do not always sum to 100% due to rounding.

* Denotes statistical significance at a = 0.05.
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strating that older drivers are more likely to drive lighter vehicles
and less likely to drive vehicles with good ratings in the side and
moderate overlap frontal crash tests. The features that are least
prevalent in vehicles driven by older drivers, the driving popula-
tion most vulnerable to frailty, have been associated with lower
fatality risk in studies of the general population (Farmer, 2005,
2010; McCartt & Kyrychenko, 2007; Ossiander et al., 2014; Teoh
& Lund, 2011). We established that this risk reduction extends to
drivers 70 and older for ESC and bolstered previous research
demonstrating that head-protecting side airbags decrease older
driver death risk in driver-side crashes (McCartt & Kyrychenko,
2007). This builds on the work of Fausto and Tefft (2018), who
found an association between vehicle age and fatality outcomes
among older drivers by identifying how the absence of vehicle
safety characteristics and features associated with newer vehicle
age contribute to this relationship.

Encouraging older drivers to buy newer and different vehicles
can be a useful strategy to further encourage fatality declines
among this demographic. We have seen considerable reductions
over the years in older driver crash involvement, which con-
tributed to most of the decline in fatal crash involvement rates in

the past decades for drivers 75 and older (Cicchino, 2015). How-
ever, progress in increasing crash survivability has not been as
large for the oldest drivers; from the study periods of 2008–2009
and 2016–2017, drivers 80 and older experienced a reduction in
their police-reported crash rate per mile traveled but no change
in their risk of death when involved in a crash (Cox & Cicchino,
2021). We estimate that if older adults were driving vehicles of
similar type and size and with similar safety features as the vehi-
cles driven by middle-aged drivers, driver deaths could be reduced
by approximately 3% for drivers 70 and older and by 5% for drivers
80 and older, which would translate to 93 lives saved when applied
to fatally injured U.S. passenger vehicle drivers ages 70 and older in
2019. These reductions could be larger still if older drivers were in
the safest vehicles rather than the vehicles driven by older people
today. While the safest vehicles available cannot eliminate an older
driver’s risk of dying in a crash, these results suggest the strategy
can achieve further reductions.

Older drivers are overrepresented in side-impact crashes at
intersections, and their risk of dying in a crash is especially ele-
vated in this configuration. For example, Cicchino (2015) reported
that drivers 75 and older were about eight times as likely to die

Table 3
Logistic regression analyses of driver fatality in all crashes in Florida from 2014–2018, ages 70 and older and 80 and older.

Parameter Ages 70 and older Ages 80 and older

Estimate (SE) Odds ratio (95% CI) Estimate (SE) Odds ratio (95% CI)

Intercept �6.3439 (0.2383) �5.7514 (0.4117)
Electronic stability control (ESC)
Standard (ref) 1.00 (ref) 1.00 (ref)
Not available/optional 0.3170 (0.1026) 1.37 (1.12, 1.68)* 0.2807 (0.1419) 1.32 (1.01, 1.75)*

Vehicle type and size
Sport utility vehicle
Large (ref) 1.00 (ref) 1.00 (ref)
Midsize 0.2467 (0.2579) 1.28 (0.77, 2.12) 0.1373 (0.4428) 1.15 (0.48, 2.73)
Small 0.3722 (0.2628) 1.45 (0.87, 2.43) 0.3210 (0.4451) 1.38 (0.58, 3.30)
Passenger car
Large 0.4507 (0.2510) 1.57 (0.96, 2.57) 0.3185 (0.4233) 1.38 (0.60, 3.15)
Midsize 0.3382 (0.2470) 1.40 (0.86, 2.28) 0.2432 (0.4204) 1.28 (0.56, 2.91)
Small 0.7027 (0.2451) 2.02 (1.25, 3.26)* 0.5682 (0.4196) 1.77 (0.78, 4.02)

Minivan 0.3778 (0.2724) 1.46 (0.86, 2.49) 0.3547 (0.4514) 1.43 (0.59, 3.45)
Pickup truck (small and large) 0.5206 (0.2551) 1.68 (1.02, 2.78)* 0.3807 (0.4435) 1.46 (0.61, 3.49)

Side airbagy

Standard head (ref) 1.00 (ref) 1.00 (ref)
None/optional/chest 0.1593 (0.1014) 1.17 (0.96, 1.43) 0.0985 (0.1390) 1.10 (0.84, 1.45)

* Denotes statistical significance at a = 0.05.
y Standard head protection includes airbags that protect the head and may offer torso protection. Torso protection offers no head protection.

Table 4
Logistic regression analyses of driver fatality in driver-side crashes in Florida from 2014–2018, ages 70 and older and 80 and older.

Parameter Ages 70 and older Ages 80 and older

Estimate (SE) Odds ratio (95% CI) Estimate (SE) Odds ratio (95% CI)

Intercept �5.7743 (0.5055) �4.8817 (0.7176)
Vehicle type and size
Sport utility vehicle
Large (ref) 1.00 (ref) 1.00 (ref)
Midsize 0.0714 (0.5515) 1.07 (0.36, 3.17) �0.2687 (0.7954) 0.76 (0.16, 3.63)
Small 0.3472 (0.5577) 1.42 (0.47, 4.22) 0.3831 (0.7746) 1.47 (0.32, 6.69)

Passenger car
Large 0.6322 (0.5226) 1.88 (0.68, 5.24) 0.1215 (0.7356) 1.13 (0.27, 4.78)
Midsize 0.5470 (0.5165) 1.73 (0.63, 4.78) 0.2164 (0.7287) 1.24 (0.30, 5.18)
Small 0.6584 (0.5160) 1.93 (0.70, 5.31) 0.2145 (0.7314) 1.24 (0.30, 5.20)

Minivan 0.5966 (0.5547) 1.82 (0.61, 5.39) 0.3234 (0.7741) 1.38 (0.30, 6.30)
Pickup truck (small and large) 0.3177 (0.5447) 1.37 (0.47, 4.00) �0.2600 (0.8083) 0.77 (0.16, 3.63)

Side airbagy

Standard head (ref) 1.00 (ref) 1.00 (ref)
None/optional/chest 0.7082 (0.1292) 2.03 (1.58, 2.62)* 0.7270 (0.1736) 2.07 (1.47, 2.91)*

* Denotes statistical significance at a = 0.05.
y Standard head protection includes airbags that protect the head and may offer torso protection. Torso protection offers no head protection.
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when involved in a side-impact crash relative to middle-aged dri-
vers during 2005–2008 and about 4.5 times as likely in a frontal
impact. Features that are protective in side impacts, such as side
airbags with head protection and good side crash test ratings, are
thus especially important to this demographic. Kahane (2013)
found that side airbags reduce fatal injuries of front-seat occupants
ages 70 and older significantly more than among younger occu-
pants. Yet, drivers 70 and older are less likely to report having
requested side or curtain airbags when purchasing their vehicles
than middle-aged drivers (Cox & Cicchino, 2022). The lighter vehi-
cles driven by older adults offer less occupant protection than
other characteristically heavier vehicle types, especially when
struck by a heavier crash partner (Monfort & Nolan, 2019;
Ossiander et al., 2014). Our findings indicate that older people
would see the largest reduction in fatality risk in side impacts
when driving safer cars, especially drivers 80 and older, who would
experience an estimated 8% fewer driver-side crash fatalities if
they were in vehicles similar to those driven by middle-aged
drivers.

There are several explanations for why older adults drive older
and therefore less safe vehicles, none of which are mutually exclu-
sive. Lower income and driving frequency are associated with older
vehicle age, and since many older adults are on a fixed income and
drive far less than they did in their working years, long vehicle
retention is more common (Budd et al., 2012; Cox & Cicchino,
2022; Metzger et al., 2020). Some older adults also take a ‘‘retire-
ment vehicle” approach, in which they purchase a vehicle upon
retiring with the intent to keep it until they stop driving (Budd
et al., 2012). We can expect fatality outcomes to improve with time
as today’s larger and safer new vehicles reach the older driver pop-
ulation, and we are beginning to see that unfold as differences in
vehicles driven by middle-aged drivers and those aged 70–74 were
minimal in this study. A U.S. federal mandate required ESC on all
passenger vehicles beginning in September 2011, and side airbags
are now standard equipment on nearly all new passenger vehicles
due to changes in the federal side-impact protection regulations
that took effect in 2010; so when an older adult buys a new ‘‘retire-
ment vehicle” it will be equipped with both of these safety features
(HLDI, 2020c; NHTSA, 2010). SUVs may provide better occupant
protection than passenger cars due to their larger size and curb
weight, are more likely to be driven by older drivers with higher
income, and now account for the greatest proportion of the newest
(<3 years old) vehicle types purchased by older drivers as they
become more prevalent in the new vehicle fleet overall (Cox &
Cicchino, 2022; Monfort & Nolan, 2019; Ossiander et al., 2014).
In Florida, 2019 household income was about $20,000 less among
householders ages 65 and older than those ages 45–64 and about
$14,000 less than householders ages 25–44 (United States Census
Bureau, n.d.), possibly contributing to the type and age of vehicles
driven by older drivers in this study. However, it is also worth not-
ing that SUVs, particularly large SUVs, might be impractical vehicle
options for some older drivers because of age-related physical
changes and subsequent difficulty with features characteristic of
large SUVs like high entry height (Shaw et al., 2010) and their per-
ceptions that essential driving tasks like parking and maneuvering
are easier in passenger cars than SUVs (Cox & Cicchino, 2022).

Encouraging a change in purchasing patterns so that older
adults do not stick with a single ‘‘retirement vehicle” throughout
their remaining driving years may also be advantageous. When
today’s younger cohort of older drivers purchase new vehicles that
they keep into old age, their vehicles’ safety capabilities will even-
tually become inferior to those available in the new vehicles of the
time. This means that the gap in safe vehicle ownership between
age groups will persist if drivers hold onto these vehicles, and that
the oldest drivers who could benefit from the safest vehicles the
most because of their heightened fragility will continually be at a

disadvantage. This is the case currently, as we saw that drivers
80 and older were driving vehicles most dissimilar from those dri-
ven by middle-aged drivers.

Limitations are worth noting. Driver or crash characteristics not
accounted for in our analyses could have contributed to some of
the increased fatality risk associated with vehicle characteristics
or prevalence of features among crash-involved drivers by age
group. There may be changes in how, when, and where vehicles
are driven as they age (Blows et al., 2003; Poindexter, 2003); for
example, older drivers who drive the least frequently are the most
likely to drive older vehicles (Cox & Cicchino, 2022), and low-
mileage drivers have a higher crash risk per mile traveled (Antin
et al., 2017; Hakamies-Blomqvist et al., 2002; Janke, 1991). Pickup
trucks were associated with an increased risk of dying in a crash
despite their large size. Factors contributing to this effect could
be that pickups are more likely to be driven in rural areas, where
speeds are higher and crashes tend to be more severe (Zwerling
et al., 2005), and that pickup drivers are less likely than drivers
of other vehicle types to be belted (Goetzke & Islam, 2015). While
our analyses of the risk of dying in a crash were limited to exam-
ining vehicle type and size and the availability of ESC and side air-
bags, additional vehicle safety characteristics introduced in recent
years contribute to reduced motor-vehicle fatalities, so it is proba-
ble that improvements beyond ESC and side airbags that became
more prevalent contemporaneously with these features con-
tributed to the effects associated with them. Even with these lim-
itations, this study provides evidence to support recommending
that older drivers choose vehicles with safety features that have
been proven to reduce fatality risk.

5. Conclusions

We hope that our findings promote an enhanced comprehen-
sion of and appreciation for the value that the safety features asso-
ciated with newer vehicle age affords older drivers, encouraging
their selection of the safest vehicles available and attainable. Max-
imizing the mobility of older drivers while protecting their safety is
a continuing challenge, and this study highlighted the importance
of informed vehicle selection among the most vulnerable vehicle
occupants. Although crash rates of older adults have been consis-
tently declining since the mid-1990s, driver fatality rates remain
the highest in this demographic (Cox & Cicchino, 2021). Our results
add to the growing body of evidence that suggests the benefit of
newer vehicles by showing how improvements in crash outcomes
can be achieved when older drivers choose vehicles with modern
safety features.

6. Practical Applications

Older adults should embrace the vehicle safety features and
technologies that have been proven to reduce occupant fatalities,
and if possible, strive to purchase new vehicles equipped with
the most up-to-date safety features available. For those whom
the newest vehicles are unattainable, we encourage the safest
vehicle affordable.
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Introduction: Traumatic brain injury (TBI) affects how the brain functions and remains a prominent cause
of death in the United States. Although preventable, anyone can experience a TBI and epidemiological
research suggests some groups have worse health outcomes following the injury. Methods: We analyzed
2020 multiple-cause-of-death data from the National Vital Statistics System to describe TBI mortality by
geography, sociodemographic characteristics, mechanism of injury (MOI), and injury intent. Deaths were
included if they listed an injury International Classification of Diseases, Tenth Revision (ICD-10) underly-
ing cause of death code and a TBI-related ICD-10 code in one of the multiple-cause-of-death fields.
Results: During 2020, 64,362 TBI-related deaths occurred and age-adjusted rates, per 100,000 population,
were highest among persons residing in the South (20.2). Older adults (�75) displayed the highest num-
ber and rate of TBI-related deaths compared with other age groups and unintentional falls and suicide
were the leading external causes among this older age group. The age-adjusted rate of TBI-related deaths
in males was more than three times the rate of females (28.3 versus 8.4, respectively); further, males dis-
played higher numbers and age-adjusted rates compared with females for all the principal MOIs that con-
tributed to a TBI-related death. American Indian or Alaska Native, Non-Hispanic (AI/AN) persons had the
highest age-adjusted rate (29.0) of TBI-related deaths when compared with other racial and ethnic
groups. Suicide was the leading external cause of injury contributing to a TBI-related death among AI/
AN persons. Practical application: Prevention efforts targeting older adult falls and suicide are warranted
to reduce disparities in TBI mortality among older adults and AI/AN persons. Effective strategies are
described in CDC’s Stopping Elderly Accidents, Deaths, & Injuries (STEADI) initiative to reduce older adult
falls and CDC’s Preventing Suicide: A Technical Package of Policy, Programs, and Practices for the best
available evidence in suicide prevention.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Although preventable, traumatic brain injury (TBI) has con-
tributed to the deaths of more than one million Americans during
the last 20 years (Daugherty, Waltzman, Sarmiento, & Xu, 2019).
TBI is caused by a bump, blow, or jolt to the head or penetrating
head injury and results in the disruption of normal brain function

(Centers for Disease Control and Prevention [CDC], 2022). A TBI can
be unintentional, self-inflicted, or result from an assault. Anyone is
at risk for sustaining a TBI; however, epidemiological research sug-
gests that not all persons who sustain one are affected equally and
that some groups experience worse outcomes, such as death, fol-
lowing the injury (Daugherty et al., 2019; CDC, 2022; CDC, 2021;
CDC, 2019). Age and sex differences in TBI-related deaths are well
documented in the United States, with older adults aged � 75 -
years having the highest rates when compared with all other age
groups. In addition, males have higher age-adjusted TBI death rates
than females (CDC, 2022; CDC, 2019; Daugherty et al., 2019). Dif-
ferences in fatal outcomes of TBI by U.S. geographic location are
also well described, with people residing in rural areas displaying
higher rates compared to those living in urban areas (Daugherty,
Sarmiento, Waltzman, & Xu, 2022; Daugherty, Zhou, Sarmiento,
& Waltzman, 2021). An examination of TBI-related deaths by race
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and ethnicity revealed higher annual age-adjusted rates among
American Indian/Alaska Native (AI/AN), non-Hispanic persons
when compared to other racial and ethnic groups over an 18-
year study period (2000–2017; Daugherty et al., 2019). In order
to reduce disparities in TBI-related deaths among population sub-
groups (e.g., age, sex, race and ethnicity, geographical location) it is
important to examine epidemiological data describing differences
in injury intent and mechanisms of injury (MOI) and to incorporate
this information into the development of culturally-responsive
prevention strategies.

The leading causes of TBI-related deaths vary by population
subgroup. In the United States, TBI-related deaths are most fre-
quently caused by suicide (primarily driven by the underlying
MOI of firearms), unintentional falls, and motor vehicle crashes
(CDC, 2022; CDC, 2021; Daugherty et al., 2019). However, the lead-
ing MOIs of TBI-related deaths differ when epidemiological studies
are stratified by age or race and ethnicity. During 2018 and 2019,
the leading MOI of TBI-related deaths was unintentional falls
among older U.S. adults aged � 75 while motor vehicle crashes
and homicide contributed to most TBI-related deaths among chil-
dren aged birth to 17 years (CDC, 2022). A recent CDC analysis of
death data from the National Vital Statistics System (NVSS)
revealed that intentional injuries (i.e., suicide and homicide) con-
tributed to higher rates of TBI-related deaths among White, non-
Hispanic persons and Black, non-Hispanic persons, while uninten-
tional injuries (e.g., motor vehicle crashes, falls) contributed to
higher rates of TBI-related deaths among AI/AN, non-Hispanic per-
sons and Hispanic persons during 2015 to 2017 (Daugherty et al.,
2019). Understanding differences in the leading MOIs contributing
to TBI-related deaths is paramount for developing prevention
activities that target those at greatest risk of sustaining this injury.
This epidemiological report describes health disparities in TBI-
related deaths by geography, sociodemographic characteristics,
MOI, and injury intent utilizing the most recent NVSS data avail-
able. We analyzed 2020 multiple-cause-of-death data from the
NVSS. Public health officials may use the findings from this analy-
sis to identify priority areas, such as suicide and unintentional falls,
for TBI prevention programs aimed at populations disproportion-
ately affected.

2. Methods

We examined TBI-related deaths using the 2020 NVSS multiple-
cause-of-death files. NVSS is a partnership between the National
Center for Health Statistics (NCHS) and state and local jurisdictions
that results in the compilation of records of all deaths in the United
States (NCHS, 2016a). Deaths were included if they had an under-
lying cause of death code of an injury (ICD-10 codes: V01–Y36,
Y85–Y87, Y89, U01–U03, World Health Organization, 2022), and
a TBI-related ICD-10 code in one of the 20 multiple-cause-of-
death fields. The following TBI-related ICD–10 codes correspond
to the established TBI death surveillance definition (CDC, 2019):
S01, S02.0, S02.1, S02.3, S02.7-S02.9, S04.0, S06, S07.0, S07.1,
S07.8, S07.9, S09.7-S09.9, T90.1, T90.2, T90.4, T90.5, T90.8, T90.9.
For this analysis, the injury mechanism/intent categories of inter-
est were motor vehicle traffic crashes, unintentional falls, uninten-
tionally struck by or against an object, other or unspecified
unintentional injury, all mechanisms of suicide (e.g., firearm,
drowning, poisoning), all mechanisms of homicide, and other,
which includes TBIs of undetermined intent and those caused by
legal intervention or war. To identify the cause of injury, codes
listed in Appendix A were searched for in the underlying cause of
death field. These codes are consistent with the ICD-10 external
cause of injury matrix (NCHS, 2021a). The public use multiple-
cause-of-death file was used for most of this study (NCHS,

2022a). For the analysis stratified by region of decedents’ resi-
dence, deaths were obtained from the multiple-cause-of-death
files available through CDC WONDER (NCHS, 2022b). Regions
include the Northeast, Midwest, South, and West as defined by
the U.S. Census (United States Census Bureau, 2021).

Suicides among children < 10 years were not presented because
it is unclear whether children < 10 are able to form suicidal intent
(Crepeau-Hobson, 2010). Rates for suicides were age-adjusted to
the 10 years and older population. Any suicides in the 0 to 9 years
age group were moved to the ‘‘other” cause category so that the
sum of causes equaled the total number of TBI-related deaths.

Rates were calculated using bridged race population estimates
obtained from NCHS as the denominator (NCHS, 2021b). Age-
adjusted rates were calculated by the direct method of age adjust-
ing using the 2000 standard U.S. population (Klein & Schoenborn,
2001). While deaths are a complete census of all occurrences, con-
fidence intervals were presented to account for random variation
(Kochanek, Murphy, Xu, & Arias, 2019).

3. Results

During 2020, TBI contributed to 64,362 deaths, equating to
approximately 176 TBI-related deaths each day in the United
States (Table 1).

Among TBI-related deaths with known age, children from birth
to 17 years accounted for 4.3 % (data not shown) of decedents.
Older U.S. adults aged � 75 years (76.8 per 100,000 population),
65–74 years (23.7), and those aged 55–64 years (19.3) had the
highest rates of TBI-related deaths per 100,000 population. Males
displayed an age-adjusted rate of TBI-related deaths that was more
than three times that of females (28.3 versus 8.4 per 100,000 pop-
ulation, respectively). When compared to other racial and ethnic
groups, AI/AN, non-Hispanic persons had the highest age-
adjusted rate (29.0 per 100,000 population) while Asian/Pacific
Islander, non-Hispanic persons had the lowest rates (7.7) of TBI-
related deaths. Age-adjusted rates of TBI-related deaths were high-
est among persons residing in the South (20.2 per 100,000 popula-
tion), followed by persons residing in the Midwest (19.2), West
(17.0), and Northeast (12.7).

During 2020, more than half of TBI-related deaths (54 %,
N = 34,715) were categorized as unintentional injuries (i.e., motor
vehicle crashes, falls, struck by or against an object, other uninten-
tional injury with mechanism unspecified), while 45 % (N = 28,649)
were categorized as intentional injuries (i.e., all mechanisms of
homicide and suicide). Suicide, unintentional falls, and motor vehi-
cle crashes contributed to the highest age-adjusted rates of TBI-
related deaths (7.3 per 100,000 population, 4.8 and 3.2, respec-
tively) (Table 2).

The data show variation by age group when stratifying TBI-
related deaths by injury intent and MOI. Motor vehicle crashes
and homicides contributed to the highest rates of TBI-related
deaths among children (analyzed separately) aged birth to 17 years
(1.1 and 1.1 per 100,000 population, respectively; data not shown).
Among older adults aged � 75 years, unintentional TBIs, combined
across MOI, contributed to rates of TBI-related deaths that were
more than four times higher than those due to intentional injuries
(63.3 and 13.3, respectively). This difference is particularly driven
by the rate of unintentional falls (55.1) among older adults. Rates
of TBI-related deaths attributable to motor vehicle crashes were
the greatest cause of TBI among those aged 15–24 years (4.8) and
25–34 years (4.7).

Intentional injuries contributed to a higher age-adjusted rate of
TBI-related deaths among males than unintentional injuries (14.5
per 100,000 compared with 13.4) (Table 3). This difference is par-
ticularly driven by males’ rate of suicide (13.1). In contrast, among
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females, unintentional TBIs contributed to a higher age-adjusted
rate of TBI-related deaths than intentional injuries (5.6 per
100,000 compared with 2.7). This difference is particularly driven
by the rate of unintentional falls (3.4) among females. Males had
higher total numbers and age-adjusted rates of all the examined
causes that contributed to TBI-related deaths (e.g., motor vehicle
crashes, falls, being struck by or against an object, suicide, homi-
cide) compared with females (Table 3).

The leading cause of TBI-related death, with respect to intent
and MOI, varied by race and ethnicity (Table 4). Among Black,
non-Hispanic persons, intentional injuries contributed to a higher
age-adjusted rate of TBI-related deaths than unintentional injuries,
(11.4 compared with 8.4 per 100,000 population); this difference
was driven by the age-adjusted rate of homicide (7.6). In contrast,
unintentional injuries contributed to a higher age-adjusted rate of
TBI-related deaths than intentional injuries among White, non-
Hispanic (9.8 compared with 9.1 per 100,000 population), Hispanic
all races (7.4 compared with 4.5), and Asian/Pacific Islander, non-
Hispanic (5.3 compared with 2.2) persons. However, suicide was
the leading cause of TBI-related deaths among White, non-
Hispanic persons. Unintentional falls were the leading MOI of
TBI-related deaths among Hispanic (3.7 per 100,000 population,

age-adjusted rate) and Asian/Pacific Islander, non-Hispanic (3.7)
persons. AI/AN, non-Hispanic persons had age-adjusted rates with
overlapping confidence intervals for unintentional TBIs and inten-
tional TBIs (14.4 and 13.1, respectively). Suicide was the leading
cause of TBI-related deaths among this group.

4. Discussion

More than 64,000 TBI-related deaths occurred in the U.S. popu-
lation in 2020, with rates varying by age group, sex, and race and
ethnicity. The age-adjusted rate of TBI-related deaths per 100,000
population in 2020 (18.0 per 100,000, age-adjusted) represents a
6.5% increase from 2019 (16.9 age-adjusted rate; CDC, 2022). The
highest rates occurred among older adults aged � 75 years, males,
and among AI/AN, non-Hispanic persons which is consistent with
previous CDC surveillance reports (CDC, 2022; CDC, 2021) and epi-
demiological research (Daugherty et al., 2019). Children aged birth
to 17 years accounted for less than 5% of all TBI-related deaths with
known age, a finding consistent with previous CDC surveillance
reports (CDC, 2022; CDC, 2021). Suicide and unintentional falls
were the most common causes of TBI-related death in 2020. Fur-
ther examination of TBI-related deaths by injury intent and within

Table 1
Number and rate* of traumatic brain injury-related deathsy by selected sociodemographic characteristics — National Vital Statistics System, United States, 2020.

Socio-demographic characteristics Number Rate* (95% CI)

Age (years)
Birth-17 2,774 3.8 (3.7–4.0)
Birth-4 612 3.2 (2.9–3.4)
5–9 282 1.4 (1.2–1.6)
10–14 621 3.0 (2.8–3.2)
15–24 7,389 17.4 (17.0–17.8)
25–34 8,301 18.0 (17.6–18.4)
35–44 6,761 16.0 (15.7–16.4)
45–54 6,716 16.6 (16.2–17.0)
55–64 8,199 19.3 (18.9–19.8)
65–74 7,725 23.7 (23.2–24.3)
75+ 17,755 76.8 (75.7–78.0)

Sex
Male Crude§ 47,668 29.4 (29.1–29.6)

Adjusted– 47,667 28.3 (28.0–28.6)
Female Crude§ 16,694 10.0 (9.8–10.1)

Adjusted– 16,694 8.4 (8.3–8.6)
Race/ethnicity**

White, non-Hispanic persons Crude§ 46,281 23.1 (22.9–23.3)
Adjusted– 46,281 19.2 (19.0–19.4)

Black, non-Hispanic persons Crude§ 8,852 20.3 (19.9–20.7)
Adjusted– 8,852 20.2 (19.8–20.7)

Hispanic persons Crude§ 6,683 10.9 (10.6–11.2)
Adjusted– 6,683 12.2 (11.9–12.5)

American Indian/Alaskan Native non-Hispanic persons Crude§ 785 28.4 (26.4–30.4)
Adjusted– 785 29.0 (26.9–31.0)

Asian/Pacific Islander, non-Hispanic persons Crude§ 1,626 7.6 (7.3–8.0)
Adjusted– 1,626 7.7 (7.3–8.0)

U.S census region of decedent’s residence
Northeast Crude§ 8,264 14.8 (14.5–15.1)

Adjusted– 8,264 12.7 (12.5–13.0)
Midwest Crude§ 14,413 21.1 (20.8–21.4)

Adjusted– 14,413 19.2 (18.9–19.5)
South Crude§ 27,317 21.6 (21.3–21.8)

Adjusted– 27,316 20.2 (20.0–20.5)
West Crude§ 14,368 18.3 (18.0–18.6)

Adjusted– 14,368 17.0 (16.7–17.3)
Total Crude§ 64,362 19.5 (19.4–19.7)

Adjusted– 64,361 18.0 (17.8–18.1)

Abbreviations: CI = confidence interval.
* Per 100,000 population.
y Record-Axis Condition codes were used (usually includes conditions listed in both Part I and Part II of the death certificate).
§ Deaths with missing age were included.
– Deaths with missing age were excluded. Rates were age-adjusted to the 2000 U.S. Census population using 12 age groups: 0–4, 5–9, 10–14, 15–19, 20–24, 25–34, 35–44,
45–54, 55–64, 65–74, 74–84, and � 85 years.
** Deaths with unknown Hispanic ethnicity were excluded (135 deaths).
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Table 2
Number and rate* of traumatic brain injury-related deathsy by intent, mechanism of injury, and age group—National Vital Statistics System, United States, 2020.

Age group (years)

0–4 5–9 10–14 15–24 25–34 35–44 45–54 55–64 65–74 75+ Total (all ages)

Intent and
Mechanism of
Injury

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Rate
(95%
CI)

Count Age-
Adjusted
Rate (95%
CI) §§

Total
unintentional
TBI-related
deaths

292 1.5
(1.3–
1.7)

181 0.9
(0.8–
1.0)

250 1.2
(1.1–
1.4)

2,449 5.8
(5.5–
6.0)

2,746 6.0
(5.7–
6.2)

2,473 5.9
(5.6–
6.1)

2,801 6.9
(6.7–
7.2)

4,176 9.8
(9.5–
10.1)

4,720 14.5
(14.1–
14.9)

14,627 63.3
(62.3–
64.3)

34,715 9.2 (9.1–
9.3)

Unintentional
motor vehicle
crashes

162 0.8
(0.7–
1.0)

120 0.6
(0.5–
0.7)

170 0.8
(0.7–
0.9)

2,053 4.8
(4.6–
5.0)

2,158 4.7
(4.5–
4.9)

1,614 3.8
(3.6–
4.0)

1,408 3.5
(3.3–
3.7)

1,415 3.3
(3.2–
3.5)

874 2.7
(2.5–
2.9)

713 3.1
(2.9–
3.3)

10,687 3.2 (3.1–
3.3)

Unintentional
falls§

14 – – – – – 71 0.2
(0.1–
0.2)

209 0.5
(0.4–
0.5)

421 1.0
(0.9–
1.1)

845 2.1
(2.0–
2.2)

1,956 4.6
(4.4–
4.8)

3,194 9.8
(9.5–
10.2)

12,728 55.1
(54.1–
56.0)

19,454 4.8 (4.7–
4.8)

Unintentionally
struck by or
against an
object

– – – – – – 20 0.0
(0.0–
0.1)

41 0.1
(0.1–
0.1)

43 0.1
(0.1–
0.1)

57 0.1
(0.1–
0.2)

69 0.2
(0.1–
0.2)

56 0.2
(0.1–
0.2)

58 0.3
(0.2–
0.3)

365 0.1 (0.1–
0.1)

Other
unintentional
injury,
mechanism
unspecified–

106 0.5
(0.4–
0.7)

49 0.2
(0.2–
0.3)

65 0.3
(0.2–
0.4)

305 0.7
(0.6–
0.8)

338 0.7
(0.7–
0.8)

395 0.9
(0.8–
1.0)

491 1.2
(1.1–
1.3)

736 1.7
(1.6–
1.9)

596 1.8
(1.7–
2.0)

1,128 4.9
(4.6–
5.2)

4,209 1.2 (1.1–
1.2)

Total intentional
TBI-related
deaths

277 1.4
(1.3–
1.6)

88 0.4
(0.3–
0.5)

351 1.7
(1.5–
1.9)

4,814 11.3
(11.0–
11.6)

5,397 11.7
(11.4–
12.0)

4,105 9.7
(9.4–
10.0)

3,765 9.3
(9.0–
9.6)

3,871 9.1
(8.8–
9.4)

2,918 9.0
(8.6–
9.3)

3,063 13.3
(12.8–
13.7)

28,649 8.4 (8.3–
8.5)

Suicide (includes
all
mechanisms)

** ** ** ** 212 1.0
(0.9–
1.2)

3,046 7.2
(6.9–
7.4)

3,682 8.0
(7.7–
8.3)

2,990 7.1
(6.8–
7.4)

3,033 7.5
(7.2–
7.8)

3,307 7.8
(7.5–
8.1)

2,614 8.0
(7.7–
8.3)

2,855 12.4
(11.9–
12.8)

21,739 7.3 (7.2–
7.4)

Homicide
(includes all
mechanisms)

277 1.4
(1.3–
1.6)

88 0.4
(0.3–
0.5)

139 0.7
(0.6–
0.8)

1,768 4.2
(4.0–
4.3)

1,715 3.7
(3.5–
3.9)

1,115 2.6
(2.5–
2.8)

732 1.8
(1.7–
1.9)

564 1.3
(1.2–
1.4)

304 0.9
(0.8–
1.0)

208 0.9
(0.8–
1.0)

6,910 2.2 (2.1–
2.2)

Otheryy 43 0.2
(0.2–
0.3)

13 0.1
(0.0–
0.1)

20 0.1
(0.1–
0.1)

126 0.3
(0.2–
0.3)

158 0.3
(0.3–
0.4)

183 0.4
(0.4–
0.5)

150 0.4
(0.3–
0.4)

152 0.4
(0.3–
0.4)

87 0.3
(0.2–
0.3)

65 0.3
(0.2–
0.4)

997 0.3 (0.3–
0.3)

Abbreviations: CI = confidence interval.
* Per 100,000 population.
y Record-Axis Condition codes were used (usually includes conditions listed in both Part I and Part II of the death certificate).
§ Falls of undetermined intent were not included.
–Suppressed for deaths <=10 and rates based on < 20 deaths.
– External cause of injury codes specify that the injury was unintentional but do not specify the actual mechanism of injury.
** Age < 10 years were excluded because determining intent in younger children can be difficult. Rates for TBI-related deaths due to suicide were age-adjusted to the population 10 years and older.
yy Includes TBIs of undetermined intent and those caused by legal intervention or war.
§§ Deaths with missing age were excluded. Rates were age-adjusted to the 2000 U.S. Census population using 12 age groups: 0–4, 5–9, 10–14, 15–19, 20–24, 25–34, 35–44, 45–54, 55–64, 65–74, 74–84, and � 85 years.
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each MOI also revealed differences by age group, sex, and race and
ethnicity.

Older age is a known risk factor for TBI (Thompson, McCormick,
& Kagan, 2006) and U.S. trauma centers are seeing a greater pro-
portion of elderly patients with more comorbid diseases as the
population ages (Dutton et al., 2010). Pre-existing comorbidities
(e.g., diabetes mellitus, hypertension, coronary heart disease) at
the time of the TBI are associated with reduced functional indepen-
dence 2 to 4 years post-injury (Lecours, Sirois, Ouellet, Boivin, &
Simard, 2012) and increased 1-year mortality (Selassie,
McCarthy, Ferguson, Tian, & Langlois, 2005) among this older age
group (Gardner, Dams-O’Connor, Morrissey, & Manley, 2018). Fur-
ther, anticoagulant therapies (e.g., non-vitamin K oral anticoagu-
lants, warfarin [Coumadin]) and aspirin are often routinely used
to manage chronic conditions among older adults. In this older
population, anticoagulant use can result in an increased likelihood
of intracranial hemorrhage (Maegele et al., 2017) and further com-
plications from TBIs. Unintentional falls were the most common
MOI for TBI-related deaths among those aged � 75 years. This
MOI is most common among older adults due to functional decli-
nes including vision, muscle strength, and balance. This is consis-
tent with older age being a known major risk factor for falls
(Moreland, Kakara, and Henry, 2020; Jin, 2018; Ambrose, Cruz, &
Paul, 2015). CDC’s Stopping Elderly Accidents, Deaths, & Injuries
(STEADI) can help health care providers incorporate fall prevention
for older patients into their routine clinical practice. The STEADI
initiative has three core components of screening older patients
for fall risk, assessing modifiable risk factors, and intervening to
reduce risk using effective clinical and community strategies
(National Center for Injury Prevention and Control (NCIPC, 2019).
Effective clinical and community strategies include reviewing
and managing patient medications, physical therapy, and exercises
that improve gait, balance, and strength (e.g., tai chi) (Stevens &
Lee, 2018). The public can actively prevent falls by screening them-

selves or their loved ones for fall risk using the Falls Free Checkup1;
talking to their health care provider about their, or their loved one’s,
fall risk; having an annual eye exam; performing balance and
strength exercises; and working with an occupational therapist to
modify the home to increase safety (e.g., remove tripping hazards).

Our study is congruent with previous epidemiological data that
has consistently found higher counts and age-adjusted rates of TBI-
related deaths among males compared with females for overall
incidence and across all intentional and unintentional MOI. TBI
research suggests males are more likely than females in the general
adult population to sustain (Faul & Coronado, 2015) and die from a
TBI (Hong et al., 2022). Systematic reviews of epidemiological
research report an increased propensity to sustain more severe
TBIs among males when compared with females (Chang,
Guerriero, & Colantonio, 2015; Toccalino, Colantonio, & Chan,
2021), which may contribute to the higher age-adjusted rates of
TBI-related deaths across all intentional and unintentional MOI
examined in this study. For example, the higher age-adjusted rate
of TBI-related deaths due to unintentional falls among males might
be related to circumstances of the fall, such as a larger proportion
of males falling from heights (e.g., ladders) (Timsina et al., 2017),
which increases the likelihood of moderate to severe injuries,
including TBI.

In the United States, racial and ethnic differences persist with
respect to injury intent and MOI of TBI-related deaths, and our
findings corroborate a recent epidemiological analysis of TBI-
related deaths over an 18-year (2000 to 2017) study period
(Daugherty et al., 2019). Intentional TBIs attributed to homicide
disproportionately affected Black, non-Hispanic persons compared
with all other racial/ethnic groups. The underlying reasons for this
disparity are complex and likely include the person’s opportunities
for education and their economic and household stability, as well
as physical characteristics of their built environment (Schleimer
et al., 2022). Further, structural racism and longstanding systemic
inequities among various and racial and ethnic groups, have
resulted in limited economic, educational, and housing opportuni-
ties associated with inequities in risk for violence (Bailey, Krieger,
Agenor, Graves, Linos, & Basset, 2017). Implementing evidence-
based strategies for preventing violence before it begins can help
decrease rates of TBI-related homicides. CDC’s NCIPC has created
resources2 that outline the best available evidence-based strategies
to be used in combination with a multilevel, multisector effort to
prevent multiple types of violence (i.e., adverse childhood experi-

Table 3
Number and age-adjusted rate* of traumatic brain injury-related deathsy by intent, mechanism of injury, and sex—National Vital Statistics System, United States, 2020.

Sex

Male Female

Intent and Mechanism of Injury Number Rate (95% CI) Number Rate (95% CI)

Total unintentional TBI-related deaths 22,764 13.4 (13.2–13.6) 11,951 5.6 (5.5–5.7)
Unintentional motor vehicle crashes 7,957 4.8 (4.7–4.9) 2,730 1.6 (1.6–1.7)
Unintentional falls§ 11,463 6.6 (6.5–6.7) 7,991 3.4 (3.3–3.4)
Unintentionally struck by or against an object 311 0.2 (0.2–0.2) 54 0.0 (0.0–0.0)
Other unintentional injury, mechanism unspecified– 3,033 1.8 (1.7–1.8) 1,176 0.6 (0.6–0.6)
Total intentional TBI-related deaths 24,144 14.5 (14.3–14.7) 4,505 2.7 (2.6–2.8)
Suicide** (includes all mechanisms) 19,058 13.1 (13.0–13.3) 2,681 1.8 (1.7–1.9)
Homicide (includes all mechanisms) 5,086 3.2 (3.1–3.3) 1,824 1.1 (1.1–1.2)
Otheryy 759 0.5 (0.4–0.5) 238 0.1 (0.1–0.2)
Total 47,667 28.3 (28.0–28.6) 16,694 8.4 (8.3–8.6)

Abbreviation: CI = confidence interval.
* Per 100,000 population, age-adjusted to the 2000 U.S. standard population using 12 age groups: 0–4, 5–9, 10–14, 15–19, 20–24, 25–34, 35–44, 45–54, 55–64, 65–74, 74–84,
and � 85 years.
y Record-axis condition codes were used (usually includes conditions listed in both Part I and Part II of the death certificate).
§ Falls of undetermined intent were not included.
– External cause of injury codes specify that the injury was unintentional but do not specify the actual mechanism of injury.
** Age < 10 years were excluded because determining intent in younger children can be difficult. Rates for TBI-related deaths due to suicide were age-adjusted to the
population 10 years and older.
yy Includes TBIs of undetermined intent and those caused by legal intervention or war.

1 Available here: Falls Free CheckUp (https://www.ncoa.org).

2 Technical packages for violence prevention are available from: Technical Packages
for Violence Prevention |Violence Prevention|Injury Center|CDC.
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ences, child abuse and neglect, youth violence, intimate partner vio-
lence and sexual violence).

Among White, non-Hispanic and AI/AN, non-Hispanic persons,
suicide contributed to the highest age-adjusted rates of TBI-
related death and is consistent with previous data documenting
its increasing prevalence among these populations when compared
with other racial/ethnic groups (Ivey-Stephenson, Crosby, Jack,
Haileyesus, Kresnow-Sedacca, 2017). The underlying reasons for
this disparity are complex and can include alcohol and/or sub-
stance use dependence, mental and physical health problems, pov-
erty, and taboos around seeking mental health support (systematic
review by Odafe, Talavera, Soumia, Hong, & Walker, 2016). CDC
encourages using the best available evidence-based strategies,
such as identifying and supporting persons at risk of suicide, creat-
ing protective environments (e.g., reducing access to lethal means),
teaching coping and problem-solving skills, and strengthening
access and delivery of suicide care (Stone et al., 2017). CDC is cur-
rently working with funded partners, Southern Plains Tribal Health
Board and Wabanaki Public Health and Wellness, to increase
capacity to adapt, implement, and evaluate ongoing suicide pre-
vention programs with the best available evidence (Stone et al.,
2017). Understanding racial and ethnic differences in injury intent
and MOI in TBI mortality is a first step in developing targeted pre-
vention strategies for groups at high risk for this injury. Further,
health care workers should recognize that racial and ethnic dispar-
ities persist within the full spectrum of the TBI experience starting
with social and environmental factors and conditions leading to
the injury, acute diagnosis and care, and rehabilitation through
long-term health outcomes (Saadi, Bannon, Watson, &
Vranceanu, 2022) and across health care more generally (NCHS,
2016b).

This study is subject to several limitations. First, in cases of mul-
tiple injuries, non-TBI diagnoses might have contributed to the
deaths included in this analysis. Second, incomplete reporting or
misclassification of the cause of death field on the death certificate
could lead to underestimation or overestimation of TBI-related
deaths. Third, the specificity of conclusions drawn regarding the
leading contributors of TBI-related deaths is limited due to the
broad categorization of the principal MOI. Fourth, race and His-
panic origin on death certificates can be misclassified, particularly
for AI/AN, Asian/PI, and Hispanic populations (Arias, Heron, &
Hakes, 2016; Arias, Xu, Curtin, Bastian, & Tejada, 2021). This can
lead to an underestimation of TBI-related deaths among these
groups.

Understanding the leading intentional and unintentional MOI of
TBI-related deaths and identifying groups at increased risk is
important in targeted prevention of this injury. Health care provi-
ders can play a critical role by assessing patients at increased risk
(e.g., persons at risk for suicide or unintentional falls) and by pro-
viding evidence-based and culturally-responsive interventions or
referrals when warranted.

Disclaimer

The findings and conclusions in this manuscript are those of the
authors and do not necessarily represent the official position of the
Centers for Disease Control and Prevention.

IRB Statement

The Centers for Disease Control and Prevention (CDC) reviewed
this activity which was deemed not to be research; it was con-
ducted consistent with applicable federal law and CDC policy
(i.e., 45 C.F.R. part 46.102(l)(2), 21 C.F.R. part 56; 42 U.S.C. Sect.
241(d); 5 U.S.C. Sect. 552a; 44 U.S.C. Sect. 3501 et seq.).Ta
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Appendix A

Category of ICD-10 codes for mechanism of injury and/or injury
intent.

Mechanism and/or intent ICD-10 codes

Unintentional motor vehicle
crashes

[V02–V04](0.1,0.9), V09.2,
[V12–V14](0.3–0.9), V19
(0.4–0.6), [V20–V28](0.3–0.9
), [V29–V79](0.4–0.9), V80
(0.3–0.5), V81.1, V82.1,
[V83–V86](0.0–0.3), V87
(0.0–0.8), V89.2

Unintentional falls W00–W19
Unintentionally struck by/

against
W20–W22, W50–W52

Unintentional, other All other codes in the V01–
X59, Y85–Y86 ranges

Suicide U03, X60–X84, Y87.0
Homicide U01–U02, X85–Y09, Y87.1
Other (undetermined intent or

due to legal intervention or
war)

Y10–Y34, Y87.2, Y89.9, Y35–
Y36, Y89(0.0,0.1)
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a b s t r a c t

Introduction: Using crew scheduling and injury incident data from a Fortune 500 manufacturing com-
pany, this study analyzed the effect of consecutive shifts and shifts near holidays on near misses and inci-
dents. Methods: Logistic regressions were conducted with consecutive workdays, days near holidays, and
time of shift as predictors of incident and near miss outcomes. Results: The logistic regression analysis
indicated that working consecutive day shifts increases the probability of an incident occurring, with
the fourth consecutive shift resulting in the most risk. The consecutive shift pattern did not replicate
to employees working the night shift. However, the first and second shifts when transferring to a night
schedule appear to have a greater chance of incident. Shifts near holidays did not have a significantly
higher risk than other shifts. Practical application: The current research suggests that organizations can
use similar analytic techniques to determine if shift scheduling might be related to increased risk and
allocate resources to mitigate hazards during those peak probability shifts.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

In 2019, there were 2.8 million workplace injuries and illnesses,
with 888,220 lost-time injuries (Bureau of Labor Statistics [BLS],
2020a). Additionally, there were 5,333 fatalities in the private sec-
tor (Bureau of Labor Statistics [BLS], 2020b). Each injury or fatality
brings costs to the employee and their families (Schulte, 2005).
Weil (2001) found that workplace injury costs are highly underes-
timated when the social costs (e.g., work disability, earning losses)
are omitted from the calculations. Reviews of the social costs
resulting from injuries indicate negative relationships with earn-
ings and household family activities (Boden, 2005). Workers who
experienced serious injuries were more susceptible to psychologi-
cal issues, substance abuse, and marital problems (Texas Workers’
Compensation Research Center, 2005). These findings illustrate the
impact that workplace safety incidents have on employees, their
families, and organizations. As such, organizations across many
industries, particularly those whose employees are exposed to haz-
ardous conditions, are turning to data analytics to help identify and
mitigate risk factors associated with incidents.

One specific risk factor associated with workplace incidents is
fatigue and labor scheduling practices, as previous literature has
shown that scheduling can have profound effects on the safety
and well-being of employees (Dembe, Erickson, Delbos, & Banks,
2005; Lombardi, Folkard, Willetts, & Smith, 2010; Nakata, 2011;
Olds & Clarke, 2010). In the present study, we investigated the
impact of consecutive days worked, day or night shifts, and holiday
scheduling on injuries and near misses (i.e., an unplanned event
that did not result in injury, illness, or damage – but had the poten-
tial to do so; National Safety Council, 2013). Data from worker
crews at a large Fortune 500 chemical manufacturer in the south-
eastern United States were analyzed. Crews were selected as the
level of analysis to protect animosity of employee identities.

1.1. Employee work schedules

1.1.1. Work hours and scheduling
Physical and psychological demands of a job and the workplace

are related to employee fatigue (Li, Jiang, Yao, & Li, 2013). Employ-
ees with less than 11 hours of rest a day have been shown to have
higher levels of psychological distress (Tsuchiya, Takahashi, Miki,
Kubo, & Izawa, 2017) and increased fatigue (Vedaa et al., 2016).
Work schedules can sometimes restrict the amount of rest
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between shifts to under 11 hours and can be considered both phys-
ically and psychologically demanding. This can result in acute neg-
ative health outcomes, such as lack of sleep and fatigue (Vedaa
et al., 2016). Other research suggests that daily rest periods under
13 hours do not allow employees to adequately recover from fati-
gue (Ikeda et al., 2017).

Because of their associations with employee health and fatigue,
work hours and scheduling have been shown to have direct rela-
tionships with employee safety outcomes. Dembe et al. (2005)
found that jobs with overtime schedules, shifts of 12 or more
hours, or workweeks of 60 or more hours have significantly higher
self-reports of injuries than jobs without these characteristics.
Across various industries, including both the commercial driving
and medical industries, increased work hours are predictive of
adverse safety outcomes (Dembe et al., 2005; Soccolich et al.,
2013). These findings are supported by Yamauchi et al. (2019),
who found that near miss likelihood was significantly higher for
employees working over 41 hours a week compared to those work-
ing 35–40 hours a week. Further, incident likelihood was signifi-
cantly higher for employees working over 51 hours a week
compared to those working 35–40 hours a week.

There is some evidence that working multiple days in a row
exacerbates inadequate rest between shifts, contributing to further
fatigue and injuries. Thompson (2019) investigated how fatigue
accumulates across three consecutive 12-hour shifts in healthcare.
Reaction time, attention, and muscle function all depreciated over
those consecutive shifts. Rotating night-shift schedules, such as the
Dupont schedule, during which workers alternate weeks between
working consecutive night shifts consecutive day shifts, have been
shown to conflict with employees’ circadian rhythms, resulting in
sleepiness and worse job performance (Akerstedt, 1990). Industrial
employees with rotating shift schedules tend to get less sleep in
the initial days of a series of consecutive shifts (Budnick, Lerman,
Baker, Jones, & Czeisler, 1994). Variance in employee well-being
created by shift scheduling could result in an increased chance of
injury.

A meta-analysis by Folkard and Lombardi (2006) modeled the
compounding effects that longer shifts, non-daytime shifts, and
consecutive shifts have on incident risk. First, they examined these
factors in isolation, finding that night shifts were riskier than after-
noon shifts, which were riskier than day shifts. Similarly, 12-hours
shifts were riskier than 10-hour shifts, which were riskier than 8-
hour shifts. Incident risk also increased for each consecutive shift
worked. When examining these factors in tandem, they found that
the safest way for an employee to work a 48-hour week was to
work six consecutive 8-hour day shifts. This option was 20% safer
than working four consecutive 12-hour day shifts, 40% safer than
working six consecutive 8-hour night shifts, and 50% safer than
working four consecutive 12-hour night shifts. A similar pattern
was observed when modeling a 60-hour workweek. Folkard and
Lombardi (2006) summarized two general findings from their
results. First, working more but shorter shifts is safer than fewer
but longer shifts. Second, day shifts tend to be safer than night
shifts. Based on the previous studies, we expect to find that the
more consecutive shifts a crew has worked, the higher the chance
of an incident or near miss.

Hypothesis 1. The more consecutive days a crew works, the higher
their risk of experiencing (a) an incident or (b) a near miss.

1.1.2. Employee work around holidays
In the United States, the average manufacturing employee

receives nine paid holiday days per year (Bureau of Labor
Statistics, 2019). Employees also average eight paid vacation days
within their first year on the job and 12 days after five years of
job tenure. Some employees may wish to use their vacation days

around the holiday to extend time off. For manufacturing organiza-
tions operating 365 days a year, days around holidays can result in
personnel changes that deviate from normal scheduling. When
employees work around the holidays, their tasks and workload
may change due to these personnel changes. Those changes may
result in increased stress. Nawijn, de Bloom, and Geurts (2013)
reported that prior to holidays, increased workload demands pre-
dicted decreases in self-reported health and well-being leading
up to a vacation. Syrek, Weigelt, Kühnel, and de Bloom (2018)
found that employees with a larger amount of unfinished work
prior to the holiday were more likely to return to work with lower
levels of positive affect. Therefore, work schedules prior to and
post-holiday can be stressful for employees.

Workplace stressors are related to occupational injuries. For
example, Haruyama et al. (2014) provided evidence for associa-
tions between job demands, physical and psychological stress,
and reported cuts and burns in kitchen staff. A study of dam con-
struction workers found a positive relationship between job stress
and occupational injuries (Hussen, Dagne, & Yenealem, 2020). Self-
reported time pressure, increased workload, excessive work, and
working multiple job roles were related to occupational injuries
among firefighters (Kim, Ahn, Kim, Yoon, & Roh, 2016). Similar
relationships have also been found in the manufacturing industry
(Kim, Min, Min, & Park, 2009; Nakata et al., 2006).

Based on this research, it is hypothesized that crews will be
more likely to experience an incident or near miss on shifts near
a holiday.

Hypothesis 2. Crews will be more likely to experience an incident or
near miss while working shifts two days prior and following a com-
pany holiday.

1.2. Exploratory variable

1.2.1. Day or night shift
Across many jobs and industries, non-standard shifts (i.e., those

that deviate from the conventional nine-to-five workday) are asso-
ciated with a higher risk of injuries and illnesses (Dembe et al.,
2005). For example, laborers who work past midnight have been
shown to have poorer mental health (Sato, Kuroda, & Owan,
2020). There is some evidence that employees who switch from a
non-night shift to a night shift may have an increased chance of
developing depressive or anxiety disorders (Beltagy, Pentti,
Vahtera, & Kivimäki, 2018). The same study found that when
employees switched from a night to day shift, there was an
increased recovery rate from these disorders. Night shifts have also
been associated with a greater risk of injury than day shifts (Smith,
Folkard, & Poole, 1994). Other studies have found no association
between working night shifts and injuries (Nielsen et al., 2019).
For example, a recent review of over 13,000 occupational injuries
found no differences between day and night shifts and occupa-
tional injuries. Due to mixed findings in the literature, no hypothe-
ses were made regarding day or night shift risk differences prior to
conducting the analyses.

1.3. Overview

To evaluate the hypotheses described above, we conducted
analyses of incident data collected at a chemical manufacturing
plant over a three-year period in conjunction with human
resources data regarding specific days and shifts those employees
worked and holiday schedules. Analyzing organizational data has
several advantages over analyzing self-reported survey data. Sur-
vey measures have limitations in the accuracy of self-reported
information. Kessler et al. (2003) found that employees can overes-
timate their hours worked and underreport their work absen-
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teeism compared to payroll records. Underreported and under-
counted injuries often result in injury estimates much greater than
reported data (Leigh et al., 2004, 2014). Across industries, unre-
ported accidents occur at a greater rate than reported accidents
(Probst & Estrada, 2010). Using self-report measures can poten-
tially lead to misinformed analytic applications because of errors
and inaccuracies in the data.

The objective of the present research is to examine three years
of scheduling data to create prediction models for incident and
near-miss outcomes. Logistic regression models were created to
assess the impact of consecutive days worked and holiday schedul-
ing on injuries and near misses. The hypotheses evaluated were:
H1: The more consecutive days a crew works, the higher their risk
of experiencing (a) an incident or (b) a near miss. H2: Crews will be
more likely to experience an incident or near miss while working shifts
two days prior and following a company holiday. We also explored
the relationship between the type of shift (day or night) and inju-
ries and near misses.

2. Materials and methods

2.1. Participants and setting

Data for the study were made available by a chemical manufac-
turer in the Southeastern United States that specializes in the pro-
duction of various advanced materials, chemicals, and fibers. The
scope of this study was limited to the division that manufactures
advanced fiber materials. At the time of the study, the division con-
tained approximately 350 operations employees. Within the divi-
sion, there were five departments, with each department
containing four crews. Employees did not alternate across crews.
These crews follow a 12-hour shift DuPont schedule where they
work a series of three or four days or nights in a row, followed
by one to seven days off. Work tasks within the departments
included (a) collecting samples of chemical materials, (b) switching
out equipment configuration, (c) emptying excess chemical mate-
rial from the system, and (d) transporting raw material with
forklifts.

2.2. Measurement

Using R software, work scheduling variables were created based
on the chemical company’s crew schedule calendars for 2016–
2018, totaling 2,144 observations. Safety outcome data were
retrieved from the company’s safety data tracking system and fil-
tered to only include the participating departments’ incident and
near miss data. These outcomes were then linked to the specific
crew that was impacted. All data were aggregated to the crew level
across all five departments because multiple crews worked the
same schedule across the different departments. Additionally,
information on individual employees involved in incidents or near
misses was excluded to protect the identity of those individuals.
Therefore, each observation included a crew number, the crew’s
current shift in their work schedule, and the number of incidents
and near misses for that crew.

2.2.1. Consecutive work days
A variable, ranging from one to four, was calculated based on

the crews’ shift calendar to indicate how many consecutive days
a crew had worked prior to and including the current shift.

2.2.2. Near holiday
A binary variable was coded based on the crews’ shift calendar

to indicate whether a shift occurred two days before or after a
company holiday. Company holidays include the following U.S.

holidays: New Year’s Day, Good Friday, Memorial Day, Indepen-
dence Day, Labor Day, Thanksgiving Day, and Christmas Day. Addi-
tional holiday leave was also granted the day following
Independence Day, Thanksgiving Day, and proceeding Christmas
Day.

2.2.3. Time of shift
A binary variable was created based on the crews’ shift calendar

to indicate whether a shift occurred during the day or the night.

2.2.4. Incidents and near misses
Two binary safety outcome variables were created to indicate

whether an incident or near miss occurred during a given shift.
The chemical manufacturer classifies an event as an incident when
it results in employee injuries (both recordable incidents and first
aid events that were reported), fatality, property damage, or unin-
tended chemical release. Events are classified as near misses when
hazardous energy (e.g., electrical, gravitational, hydraulic, pneu-
matic, mechanical) is released or modified, and an incident result-
ing in personal harm nearly occurs. Binary variables for each of
these were deemed more appropriate than continuous counts
due to the low base rate of these events (i.e., there were only four
days in which two near misses occurred and three days in which
two incidents occurred).

2.3. Analytic approach

To examine the effect of the number of consecutive days on
incidents and near misses, we used a binary logistic regression
model. The odds ratios associated with the consecutive days
worked were examined in predicting the probability of an incident
or near miss. The specific probabilities that an incident or near
miss would occur for each level of consecutive days worked vari-
able were also obtained. A chi-square analysis was used to exam-
ine the possible effect of holidays on incident and near miss
occurrence by tabulating the type of shift with the binary incident
and near miss variables separately. These binary variables were
tabulated against whether a day was within two days of a holiday.
The same methodology was applied to test associations between
day versus night shift and the probability of an incident or near
miss occurring. Lastly, to examine the combined effect of consecu-
tive days worked and proximity to holiday, a binary logistic regres-
sion model was created in which these three variables were
entered as covariates, and incident and near miss occurrence were
entered as the dependent variable, separately.

3. Results

The means, standard deviations, and correlations among the
variables used in the study are presented in Table 1. The mean
value for the incident binary variable, which indicates whether or
not there was an incident on a day, was 0.02 (SD = 0.16), indicating
that 2% of the days in our dataset had an incident occurring. Sim-
ilarly, 5% of the days had a near miss occurrence, and 8% of the days
were considered to be near a holiday. The mean values for consec-
utive day and night shift variables indicate that, on average, the
crews in the dataset worked 1.12 consecutive days and 1.13 con-
secutive nights, indicating that it was not common to work multi-
ple back-to-back shifts.

The first hypothesis suggested that as the number of consecu-
tive days worked increased, there would be a higher probability
of (a) an incident and (b) a near miss occurring. To test this, a bin-
ary logistic regression analysis was performed. The number of con-
secutive days was entered as the predictor, and the binary incident
and near miss variables were entered as the dependent variables in
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separate analyses. Table 2 summarizes the results of the logistic
regression analyses. Only one of the analyses resulted in a signifi-
cant finding. Specifically, for employees working consecutive day
shifts, the probability of an incident occurring significantly
increased with a higher number of consecutive days worked, such
that an increase of one day resulted in a 41.4% increase in the odds
of an incident (95%CI = 2.7�94.7%). As further evidence, the corre-
lation between consecutive days and incident variables was signif-
icant and positive (see Table 1), indicating that the probability of
an incident significantly increased with each consecutive day shift.
However, the relationship between consecutive days worked and
near misses was not significant. Overall, Hypothesis 1 was partially
supported. Table 3 summarizes the probabilities of incident or near
miss occurring associated with each additional consecutive day
employees worked. For example, if a crew was working their
fourth consecutive day shift, they faced a 5.84% probability of an
incident and a 4.93% probability of a near miss occurring during
their shift.

The second hypothesis, which suggested that there would be a
higher occurrence of incidents and near misses in days close to hol-
idays, was tested using a Chi-square test of independence in which
we tabulated the binary holiday variable with the binary incident
variable indicating whether an incident or near miss had occurred
during that shift. The relationship between these variables and
incidents was not significant, X2(1, N = 2144) = 2.17, p =.141. Simi-
larly, we observed non-significant results in predicting near
misses, X2(1, N = 2144) = 2.64, p =.104.

In an exploratory analysis, we examined whether night shifts
would have a higher likelihood of an incident occurring compared
to day shifts. This was tested using a Chi-square test of indepen-
dence in which we tabulated the shift variable (day vs night) with
the binary incident variable indicating whether an incident had
occurred during that shift. We found that the relationship between
these variables was significant, X2(1, N = 2144) = 8.53, p <.01. How-
ever, the direction of the effect was the opposite of previous find-
ings from the literature, whereby day shifts had a higher likelihood
of an incident than night shifts. The same pattern of results was
observed for near misses, suggesting that day shifts may have a
higher likelihood of those events, X2(1, N = 2144) = 4.67, p <.05.

Table 4 shows the raw numbers of day and night shifts with
incidents and near misses, grouped by consecutive day/night shifts.
The first night shift session has the second highest probability of an
incident occurring and the highest near miss occurring among con-

secutive night shifts. To further explore this pattern of findings and
complement the analysis in Hypothesis 1, we also tested whether
the probability of an incident or near miss occurring significantly
increased or decreased with each additional night shift by running
logistic regression analyses, which yielded non-significant results.
However, as seen in Table 1, the correlations between consecutive
nights and both incident and near miss variables were significantly
negative, indicating that the risk for an incident or near miss
decreased with each consecutive night shift. More research is
needed to explore this nuanced relationship between consecutive
day and night shifts and the probability of an incident or near miss
occurring.

4. Discussion

The current study examined the effect of scheduling on safety
outcomes, specifically on the likelihood of an incident or near miss
occurring in each shift. The predictors examined were the number
of consecutive days worked by employees, whether the shift was
shortly before or after a holiday, and in an exploratory manner,
whether it was a day shift or a night shift. The results indicate that
the probability of an incident significantly increased as employees
worked consecutive day shifts. With night shifts, a reverse pattern
was observed such that the first and second nights seemed to have
a higher risk of incident or near miss compared to shifts occurring
after the second consecutive night. There were more incidents and
near misses occurring on day shifts compared to night shifts.
Finally, the proximity of shift work to an upcoming holiday break
was not associated with increases in incidents or near misses.
The null finding for incidents and near misses around holidays

Table 1
Descriptive statistics and correlations between the variables examined in the study.

Incident Binary Near Miss Binary Near Holiday Consecutive Days Consecutive Nights

Incident Binary –
Near miss Binary �0.02 –
Near Holiday 0.03 0.04 –
Consecutive Days 0.08*** 0.03 �0.04 –
Consecutive Nights �0.05* �0.05* �0.04 �0.71*** –
Mean 0.02 0.05 0.08 1.12 1.13
SD 0.16 0.21 0.27 1.22 1.34

* p <.05.
*** p <.001.

Table 2
Logistic regressions predicting incident and near miss occurrence.

IV/DV B Wald X2 p Odds Ratio (OR) OR 95% CI

Consecutive Day Shifts/Incidents 0.35 4.51 0.034 1.41 1.03–1.95
Consecutive Day Shifts/Near Misses �0.08 0.33 0.569 0.93 0.72–1.20
Consecutive Night Shifts/Incidents 0.06 0.06 0.811 1.06 0.66–1.71
Consecutive Night Shifts/Near Misses �0.23 1.96 0.162 0.79 0.57–1.10

Note. Each line in the table represents a separate logistic regression analysis.

Table 3
Predicted probabilities of an incident or near miss occurring in each consecutive day/
night.

Incident Near Miss

Day 1 2.14% 6.09%
Day 2 3.01% 5.68%
Day 3 4.20% 5.29%
Day 4 5.84% 4.93%
Night 1 1.39% 4.69%
Night 2 1.47% 3.76%
Night 3 1.56% 3.00%
Night 4 1.65% 2.39%
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may be due to other variables that are affected by the holiday, such
as planned decreases in production requirements, fewer employ-
ees working, and some employees taking extended vacation days.

One potential explanation for the difference between consecu-
tive days worked versus consecutive nights worked concerns the
possible effect of circadian rhythms. The crews involved in this
study worked alternating weeks of day and night shifts. After
working their consecutive days on the day shift for one week, the
crewwas shifted to the night shift. Therefore, the entire crew expe-
rienced the shift from day to night. It is possible that the dramatic
shift in sleep schedule creates the most fatigue the first night shift
after having worked the day shift for a week, as it may take some
time for the employees’ circadian rhythms to adjust (Violanti et al.,
2012). Employees may be less attentive at work on their first night
shift (Budnick et al., 1994), leading to an increase in incidents. Note
that for night shifts, this would contradict our first hypothesis,
which suggested that each consecutive shift may increase the
probability of an incident occurring. The crews in our dataset were
rotating shifts every week, meaning that the first night shift was
always their first shift after working day shifts.

There was not a significant increase in near miss probability
with each consecutive day worked during either day or night shifts.
Since near misses are considered leading indicators of incidents
(Occupational Safety and Health Administration, 2019), we would
expect to see a similar increase in the probability of near misses
with more consecutive day shifts. One possible explanation is that
while reporting an incident is mandatory, reporting a near miss is
optional. It may be possible for the near miss metrics to be influ-
enced by idiosyncratic reporting behaviors, which likely vary
across employees and situations, introducing a larger amount of
error variance in near miss measures.

4.1. Practical Applications

When the potential for an incident is identified, an organization
should direct resources (e.g., additional staffing) and safety initia-
tives to address that risk (e.g., increased observations/audits).
Based on the results of the present study, adjustments in staffing,
increases in break time, and additional safety initiatives (e.g.,
observations, audits, coaching) on the fourth consecutive day shifts
and first night shifts after transitioning from day to night may be
considered to mitigate the risk. If logistically possible, risk might
be reduced by modifying shift schedules such that consecutive
12-hour shifts are limited to three consecutive days. In addition,
given the finding that the first night shift appeared to have
increased risk, crews may stay on day/night shifts for a longer
amount of time instead of alternating every week.

4.2. Recommendations for future research

The current study examined the effect of consecutive workdays
across day and night shifts on incidents and near misses with lim-
ited data containing relatively low base rates of both incidents and
near misses. Regardless, we were able to tentatively identify
increased incident and near miss probability after a number of con-

secutive days worked. Future research should use larger datasets to
replicate and extend our findings to provide organizations with
more specific guidelines regarding work scheduling.

Another area needing more extensive data analysis is the differ-
ence in the probability of an injury between night shifts and day
shifts, as the findings in this area are mixed (Folkard & Lombardi,
2006; Fransen et al., 2006; Nielsen et al., 2019). While our analyses
found that, on average, night shifts had a smaller number of inci-
dents compared to day shifts, we were not able to control for the
number of employees at work during those times. This may explain
the difference in frequency of incidents (i.e., fewer workers equals
fewer opportunities for injury). In addition, while the current study
identified an increased risk on the first night shift worked after
consecutive day shifts, this finding may only be a trend because
of the low base rate of incidents in our data. However, this finding
supports previous research showing that rotating shift schedules
are associated with a greater risk of injury (Bagheri Hosseinabadi
et al., 2019; Dembe et al., 2005; Wong, McLeod, & Demers,
2011). Finally, the organization providing the data for the current
study utilized a DuPont work schedule, thus making it impossible
to compare this schedule to other work schedule arrangements
(Folkard & Lombardi, 2006). Future research could compare differ-
ent work schedules in terms of safety outcomes such as incidents
and near misses.

4.3. Limitations

This study has several limitations. First, data only included
crews working in an advanced fibers manufacturing division
within a chemical manufacturing company. Findings must be repli-
cated in other settings and industries to support their generaliz-
ability. Second, data on day/night and consecutive shift
scheduling were created using crew scheduling. This was later
combined with a separate dataset indicating dates of incidents
for employees within the crews. Consequently, when an incident
occurred on a given date and time, we associated it with the crew
assigned to work that day based on their day/night shift schedule.
This meant we could not control for certain employee-level vari-
ables in our analyses, such as employee experience or tenure. In
addition, while unlikely, there is a possibility that the employee
might have worked a modified schedule for that week different
from their crew. The third limitation involves the number of
employees working in each shift. The number of labor hours
directly influences the number of hours employees are exposed
to hazards and risks. It is also plausible that when there is more
activity on the shop floor (i.e., more employees working in the
area), there will be a higher likelihood of an incident or near miss.
Because the dataset did not include this information, we could not
control the number of employees in each shift for our analyses.

5. Summary

Results from the current study provide evidence that an
employee’s work schedule is predictive of the probability of a
safety incident. Logistic regression analysis indicated that working

Table 4
Raw Numbers of 1st, 2nd, 3rd, and 4th Day & Night Shifts with an Incident or Near Miss.

Day Shift Night Shift

Incident Near Miss Incident Near Miss

1st 5/322 (1.6%) 22/322 (6.8%) 6/317 (1.9%) 15/317 (4.7%)
2nd 14/311 (4.5%) 16/311 (5.1%) 4/311 (1.3%) 13/311 (4.2%)
3rd 9/299 (3%) 12/299 (4%) 1/301 (0%) 6/301 (2%)
4th 9/140 (6.4%) 10/140 (7.1%) 5/143(3.5%) 5/143 (3.5%)

Note. The numerator indicates the number of shifts with a reported incident/near miss. The denominator indicates the total shifts in the dataset.
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consecutive day shifts increases the probability of an incident
occurring, with the fourth consecutive shift resulting in the highest
probability. The consecutive shift pattern did not replicate to the
night shift. However, after transferring to a night schedule, the first
and second shifts appear to have a greater chance of incident than
later night shifts. The current research suggests that industrial
organizations can use similar analytic techniques to determine if
shift scheduling might be related to increased risk and allocate
resources to mitigate hazards during peak probability shifts.
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a b s t r a c t

Objective: Multiple heavy truck driver injury studies exist, but there is a paucity of research on light and
medium truck driver injuries. The objective of this study was to use first report of injury (FROI) data to:
(a) compare demographic and injury characteristics; (b) assess workers’ compensation (WC) claim dispo-
sition and lost work time status; and (c) describe injury scenarios by vehicle type for heavy truck and
light/medium truck driver local crashes. Method: Kentucky Department of Workers’ Claims FROI quanti-
tative and free text data were analyzed for years 2010–2019. Of 800 total FROIs, 451 involved heavy
trucks and 349 involved light or medium trucks. Results: There was a higher light/medium truck driver
crash FROI rate compared to the heavy truck driver crash FROI rate. There was a higher proportion of
younger light/medium truck driver crash FROIs compared to younger heavy truck driver crash FROIs.
The retail trade industry made up the largest percentage of light/medium truck local crash FROIs
(47%); the transportation and warehousing industry was most frequently cited in heavy truck FROIs
(46%). The heavy truck types most frequently identified in FROIs were semi-trucks (13%) and dump trucks
(11%). The most common light/medium truck type identified was delivery trucks (30%). Most commonly,
heavy truck crash FROIs involved rollovers, driving off/overcorrecting on narrow roadways, and driving
downhill/unable to downshift. Light/medium truck crash FROIs most frequently involved being rear-
ended, running red lights, and turning in front of other vehicles. Conclusions: The utilization of WC
FROI data highlighted top injury scenarios and specific vehicle types for targeting driver safety training
among truck drivers, particularly light/medium truck drivers. Road safety policies regarding driver train-
ing, crash reviews, and in-vehicle monitoring systems are needed for truck drivers with previous crash
injuries, especially for light and medium truck drivers. Practical applications: Enhanced safety training
on speeding on narrow roadways, on nearing intersections, and on downshifting on hills is needed for
semi-truck, dump truck, and coal truck drivers with previous crash injuries. Rear-end crash prevention
training (e.g., gradual stopping and checking mirrors) is needed for drivers of furniture, automotive parts
and accessories, and groceries and soft drink delivery trucks with previous crash injuries.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In 2019, the Bureau of Labor Statistics (BLS) Census of Fatal
Occupational Injuries (CFOI) counted 2,122 commercial trans-
portation incident deaths, of which 471 were in truck transporta-
tion, 83 were in wholesale trade, and 59 were in retail trade
(Bureau of Labor Statistics, 2021). Within the truck transportation
industry, the fatality rate was 27.2 worker deaths per 100,000 full-
time equivalent workers, compared to the U.S. overall worker fatal-

ity rate of 3.5/100,000. The nonfatal injury incidence rate of 3.6
injuries and illnesses per 100 full-time workers in the truck trans-
portation industry is 20% higher than the U.S. overall rate of
3.0/100 (Bureau of Labor Statistics, 2020). These high numbers
and rates have served as the justification for multiple research
studies on injuries in heavy vehicles such as semi-trucks in truck
transportation (Bunn, Slavova, & Robertson, 2013; Bunn, Slavova,
& Rock, 2019; Combs, Heaton, Raju, Vance, & Sieber, 2018;
McKnight & Bahouth, 2009; Zheng, Lu, & Lantz, 2018).

Relatively few studies have been published on injuries to light
and medium vehicle drivers. A study by Karaca-Mandic and Lee
(2014) on car and light truck crashes using linked crash and hospi-
tal discharge data found that light truck drivers had reduced odds
for hospitalizations and fatalities compared to passenger car dri-
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vers. Pratt and Bell (2019) showed that age, gender, and job tenure
were significant driver collision risk factors in a light vehicle
healthcare industry fleet. Lack of seat belt use and high speed have
also been shown to be associated with light vehicle serious crash
injuries (Doecke, Baldock, Kloeden, & Dutschke, 2020; Pipkorn,
Iraeus, Lindkvist, Puthan, & Bunketorp, 2020; Stuckey, Glass,
LaMontagne, Wolfe, & Sim, 2010). In a follow-up study by
Stuckey, LaMontagne, Glass, and Sim (2010) using linked vehicle
registration and crash data, the authors estimated light vehicle
fatality rates to be much higher than those reported using workers’
compensation (WC) data alone.

Using an in situ driving data set, Hanowski, Hickman, Wierwille,
and Keisler (2007) found that most vehicle crashes, near crashes,
and crash-related conflicts involving both light and heavy vehicles
were initiated by the light vehicle driver, with aggressive driving
being the primary contributing factor, whereas the heavy vehicle
driver-initiated events involved poor driving habits. Chen,
Amandus, and Wu (2014) analyzed U.S. CFOI data and determined
that of the total driver/sales worker and truck driver occupational
fatalities, 85% were among heavy truck and tractor-trailer drivers
and 9.5% were among light truck drivers. The authors acknowl-
edged that their study was limited by a lack of appropriate
employment data on driver occupation by industry and of worker
characteristics for the occupational subcategories. They recom-
mended that ‘‘data on circumstances and scenarios leading to a
fatal truck crash are needed to better understand risk factors asso-
ciated with highway fatalities in the group of truck drivers and dri-
ver/sales workers.”.

WC data may not be the optimum data source for calculation of
injury rates since its lack of information on self-employed workers
and calculated injury rates would lead to an underestimation
(Stuckey, LaMontagne, & et al., 2010). The primary advantage of
analyzing WC data is that it contains free-text injury narratives
that can provide additional information on the circumstances of
a crash and specific driving actions performed by the drivers prior
to the crash that other data sources (such as electronic crash data
with no free-text narratives) cannot provide (Chandler, Bunn, &
Slavova, 2017). The objectives of this study were to use WC first
report of injury (FROI) data to: (a) compare demographic and
injury characteristics between heavy truck driver, and light and
medium truck driver local crash FROIs; (b) assess WC disposition
and lost work time status associated with local heavy, medium,
and light truck crash FROIs; and (c) describe injury scenarios by
specific vehicle type to obtain additional information on the crash
injury circumstances. Results from this study can be used to target
new and enhance current light, medium, and heavy truck driver
injury prevention strategies.

2. Methods

2.1. Data source

De-identified Kentucky WC FROIs for years 2010–2019 were
obtained from the Kentucky Department of Workers’ Claims
(KDWC); information regarding reimbursement for medical
expenses related to injuries was not available. The WC data set
does not include FROIs on self-employed worker injuries. Accord-
ing to the KDWC, the following are acceptance criteria for FROIs:

1. All worker injuries that require at least one day off fromwork or
result in a disability that extends beyond 60 days are required
to be reported;

2. When a worker has lost at least seven days of work due to an
injury or has a permanent partial disability with no missed
work days due to an injury, the worker is eligible for indemnity

and/or lump sum payments. Indemnity payments associated
with FROIs or claims (litigated FROIs) are defined as paid
income benefits to compensate for lost wages, functional
impairment, or death; and.

3. When a worker has lost at least two weeks of work due to an
injury, the worker is eligible for lost wage compensation
retroactive to the first day of work lost.

The FROIs reflect the number of crash injuries (in reports sub-
mitted to KDWC) and do not reflect individual drivers involved
in crashes.

2.2. Study selection and inclusion criteria

Inclusion criteria for heavy, medium, and light truck driver col-
lision FROIs were based on a WC standard cause of injury code of
(45) collision or sideswipe, (46) collision with a fixed object, (48)
vehicle upset or rollover, or (50) motor vehicle ‘‘not otherwise clas-
sified.” FROI standard cause of injury code 50 includes injuries due
to sudden start or stop, being thrown against the interior of the
vehicle, and vehicle contents being thrown against the occupant.
Additional study inclusion criteria for FROIs included: (a) all
accepted FROIs, including open and closed FROIs; (b) FROIs includ-
ing all ages and those with unknown ages; and (c) FROIs regardless
of the injury location (in-state and out-of-state FROIs). Based on
these criteria, 11,790 FROIs were selected for inclusion.

2.3. Identification of industry, truck type, and local transportation

North American Industry Classification System (NAICS) super
sectors were identified based on BLS classification (https://www.
bls.gov/sae/additional-resources/naics-supersectors-for-ces-pro-
gram.htm). NAICS codes were poorly populated in the final data set
(3,017 of the 11,390 total had no or incomplete codes), and Stan-
dard Occupational Classification (SOC) codes were not available
in the dataset, though an occupation description was included.
To identify industry and occupation codes (SOC codes), the data
set was processed using the National Institute for Occupational
Safety and Health’s (NIOSH’s) auto-coding program (the NIOSH
Industry and Occupation Computerized Coding System, or NIOCCS,
https://csams.cdc.gov/nioccs/), a reasonably effective data set
auto-coder for industry and occupation (Buckner-Petty, Dale, &
Evanoff, 2019; Schmitz & Forst, 2016). Seventy-four percent
(n = 8,373) of the total FROIs (n = 11,390) were coded with NIOCCS
for industry and occupation. The selected FROIs were then nar-
rowed to those coded with a heavy truck driver occupation SOC
code of 53-3032 or a light (and medium) truck driver occupation
53-3033 SOC code and manually reviewed to exclude long-
distance driver FROIs (n = 146 [145 heavy truck and one light/med-
ium truck driver]) and passenger FROIs (n = 54); 800 final FROIs
remained, and 32 of the 800 (4%) required additional manual
review by three reviewers to assign codes. The final data set con-
tained 800 total local crash FROIs: 451 heavy truck driver and
349 light or medium truck driver crash FROIs.

Analysis of the heavy, medium, and light truck FROI free-text
narratives and industry and occupation codes was performed to
identify the specific truck type involved in the crash and to better
understand the precipitating factors that led to the driver injury.
Truck classifications conformed to the Federal Highway Adminis-
tration’s (FHWA’s) vehicle and weight class definitions (https://
afdc.energy.gov/data/10380):
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1. Heavy vehicle (26,001 lbs. and over): furniture truck, high-
profile semi, home fuel truck, medium semi-tractor, refuse
(solid waste) vehicle, tow truck, cement mixer, dump truck, fire
truck, fuel truck, heavy semi-tractor, refrigerated van, and semi
sleeper;

2. Medium vehicle (10,001 lbs. to 26,000 lbs.): beverage truck,
rack truck, single axle van, stake body truck, bucket truck, city
delivery truck, large walk-in vehicle, conventional van, land-
scape utility vehicle, and medium walk-in vehicle; and.

3. Light vehicle (0 to 10,000 lbs.): Utility van-type trucks.

Light and medium truck FROIs were combined for the analysis,
as SOC codes are not specific for light and medium truck drivers in
the FROIs and the NIOCCS needed to be used to code truck driver
occupation. Only two SOC codes delineate truck type: heavy truck
driver and light truck driver. SOC defines light truck drivers as
those who ‘‘Drive a light vehicle, such as a truck or van, with a
capacity of less than 26,001 pounds Gross Vehicle Weight (GVW),
primarily to pick up merchandise or packages from a distribution
center and deliver. May load and unload vehicle.” Both medium
trucks (10,001 to 26,000 pounds) and light trucks (0 to 10,000
pounds) fall within the SOC light truck driver code, so they could
not be separated.

FROIs do not have a ‘‘vehicle type” data variable as crash data
does, so the NIOCCS code was the only code available to us to iden-
tify truck type. To supplement the NIOCCS code, the injury narra-
tives were searched for specific truck type; however, only 42% of
the FROI narratives mentioned the general vehicle type. Mentions
of solid waste trucks, concrete mixers, tow trucks, coal trucks,
semi-trucks, and dump trucks in the FROI narrative were included
in the heavy truck category, and mentions of delivery trucks, large
vans, and other vehicles such as box trucks in the FROI narrative
were included in the light and medium truck category.

Local transportation was identified through National Council on
Compensation Insurance (NCCI) class codes (used to categorize and
classify businesses to underwrite workers’ compensation insur-
ance); NAICS codes; and manual review of the industry field in
the FROIs. Codes used to identify local transportation were: (a)
NCCI class code 7228, Trucking: Local Hauling Only—All Employees
and Drivers; (b) NAICS 48422, Specialized Freight (except Used
Goods) Trucking, Local (‘‘Local trucking establishments provide
trucking within a metropolitan area that may cross state lines.
Generally, the trips are same-day return”); (c) NAICS 484110, Gen-
eral Freight Trucking, Local (‘‘Local general freight trucking estab-
lishments usually provide trucking within a metropolitan area
which may cross state lines”); and (d) driver residence and crash
location county. Specific distances were not available in the FROIs,
but crashes were identified as local when the residence county was
in Kentucky and the crash location county occurred in Kentucky or
in a border state. Free-text industry names in the industry data
field were also determined by the study authors to be local trans-
portation (see definition above for NAICS codes) if the listed indus-
tries were florists, furniture stores, automotive parts and
accessories stores, and other industries highly likely to only serve
a local area. Long-distance transportation FROIs identified through
NAICS code 48412, General freight trucking, long-distance, and key
words in the free text (long-haul, over-the-road, etc.) were
excluded from the study. Two reviewers reviewed the truck type
and local transportation coding by the first reviewer and inter-
reliability checks were performed.

Driver residence and crash location counties were determined
through analysis of county names. Appalachian county designation
was used as the proxy to identify rural versus urban area truck
crashes. The counties identified as Appalachian in this study were
derived from the Appalachian Regional Commission (https://www.
arc.gov/appalachian-counties-served-by-arc/).

The institutional review board approved the study; because the
study involved the analysis of secondary data with no personal
identifiers, informed consent was neither required nor obtained.

2.4. Groupings of injured body parts, nature of Injury, and lost time

Injured body part and nature of injury codes are defined by the
KDWC using the International Association of Industrial Accident
Boards and Commissions’ coding framework (https://www.wcio.
org/Document%20Library/InjuryDescriptionTablePage.aspx).
Injured body parts coded in FROIs were collapsed into five cate-
gories: (1) head, face, and neck; (2) back, torso, chest, abdomen,
and groin; (3) upper extremities including shoulder; (4) lower
extremities including pelvis; and (5) multiple body systems, whole
body, or other. Nature of injury codes were collapsed into five cat-
egories: (1) concussion; (2) contusion/laceration; (3) fracture/dis-
location; (4) strain/sprain; and (5) other. The ‘‘other” categories
for both Nature of Injury and Body Part included FROIs where
the individuals required medical attention but the record did not
list a traditional injury (e.g., pregnancy concerns, elevated blood
pressure).

Extent of lost time was grouped into three distinct categories
(no lost time, lost time [defined as greater than one day of lost
time], and fatality [first report of injury was a fatal injury]) and
grouped by days of lost time (0–1 day, 2–6 days, 7–29 days, and
30+ days of lost time). Job tenure and days of lost time due to
injury were calculated using dates in the dataset. Job tenure was
defined as the number of days between the reported hire date
and date of injury. Number of days of lost time due to injury was
defined as the number of days between the date of injury and
the return to work date. Completion of the return to work date
field is optional in the FROI, so the days of lost time due to injury
was poorly populated (59% missing data).

2.5. Injury scenarios

Free-text narratives were analyzed using keyword searches and
manual review of each FROI to identify the specific truck types by
the leading industries. Two reviewers reviewed the narrative cod-
ing of the truck type by the first reviewer and inter-reliability
checks were performed. The top injury activity scenarios were
described for each major truck group type that was identified.

2.6. Statistical analysis

This study incorporated a cross-sectional design. Frequencies
were determined for demographics, industry, injury outcomes
(e.g., injured body part, lost time, and cause and nature of injury),
and award disposition variables. Chi-square tests were performed
to assess the significant differences between the heavy truck, and
medium and light truck local crash FROI groups on the above vari-
ables. All statistical analysis was performed using SAS Enterprise
8.2.

Denominator numbers by age and gender were not available to
calculate age-adjusted local crash FROI rates; instead, Kentucky
crude FROI rates for the heavy truck driver (SOC code 53-3032)
and for the light/medium truck driver (53-3033 SOC code) occupa-
tional categories were calculated for years 2010–2019. Long dis-
tance could not be separated from local distance for the
denominator, so two numerator types were utilized to develop
FROI rates: (1) the final 451 heavy truck driver and 349 light or

medium truck driver local crash FROIs based on all exclusion and
inclusion study criteria and (2) the 596 heavy truck driver and

350 light/medium truck driver local and long distance crash FROIs
based on all exclusion and inclusion criteria with the exception
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of local versus long distance. The denominator data used for both
numerator types were Kentucky heavy and light/medium truck
driver occupational employment data (local plus long distance)
obtained from BLS Occupational Employment and Wage Statistics
(https://www.bls.gov/oes/tables.htm).

3. Results

3.1. Demographic characteristics

While the majority of all local light, medium, and heavy truck
driver crash FROIs involved males, there was a higher percentage
of female light and medium truck driver local crash FROIs (14%)
compared to female heavy truck crash FROIs (4%) (Table 1).

The highest proportion of local heavy truck crash FROIs was for
the 45–65 year age driver group (50%), while the 24–44 year age
driver group represented the highest proportion of local light and
medium truck crash FROIs (40%). The youngest (less than 25 years)
age group was represented at a higher proportion in local light and
medium truck crash FROIs compared to the same age group in the
heavy truck crash FROIs (12% of young local light and medium
truck driver FROIs vs 4% of younger heavy truck driver FROIs).
There was no difference between the light and medium truck dri-
ver and heavy truck driver FROIs in regards to job tenure. About
one-half of the heavy truck and light and medium truck FROIs were
for workers with less than one year of job tenure, and between 25%
and 30% were for workers with one to four years of job tenure.

There was a higher percentage of heavy truck driver crash FROIs
in the transportation and warehousing industry (46%), and profes-
sional and business services industries (14%) compared to the

light/medium truck driver FROIs that had the highest percentage
of FROIs in the retail (47%) and wholesale trade (21%) industries.
A higher percentage of the heavy truck driver local crash FROIs
occurred in the rural Appalachian region compared to local light
and medium vehicle driver crash FROIs (38% among heavy vehicle
drivers vs 21% among light and medium vehicle drivers). In con-
trast, a higher percentage of local light and medium truck crash
FROIs occurred in urban non-Appalachian regions (73%) compared
to heavy truck crash FROIs (55%).

3.2. Driver injury characteristics

Collision or sideswipe with another vehicle was the primary
cause of injury in the light and medium truck local crash FROIs
(46%) and the second highest cause of injury in the heavy truck
local crash FROIs (32%). A higher percentage of heavy truck driver
crash injuries was due to vehicle upset, rollover, or jackknife (27%)
compared to the light and medium truck local crash FROIs (9%).
Crashes not otherwise classified, including sudden start or stop,
represented 37% of both heavy and light/medium vehicle FROIs
(Table 2).

Sprains and strains accounted for the highest percentage of
light and medium truck driver crash FROIs (39%), whereas ‘‘Other”
was the primary injury type listed for local heavy truck driver
crash FROIs (43%), followed by sprains and strains (24%). When
body part injured was examined, ‘‘multiple injuries” accounted
for similar percentages of the light and medium truck driver crash
FROIs (41%) compared to local heavy truck driver crash FROIs
(45%). Multiple parts was the most frequent body part injured for
both truck size FROIs. Head and neck injuries were more common

Table 1
Demographic characteristics of heavy vs light and medium truck driver local crash first reports of injuries, 2010–2019.1

Demographic Characteristic All First Reports of Injuries
n = 800

Light/Medium Truck First Reports of Injuries
n = 349 (%)

Heavy Truck First Reports of Injuries
n = 451 (%)

Sex n = 798 n = 348 n = 450
Male 732 300 (86%) 432 (96%)
Female 66 48 (14%) 18 (4%)

Age (Years) n = 800 n = 349 n = 451
<25 60 42 (12%) 18 (4%)
25–44 321 140 (40%) 181 (40%)
45–65 360 134 (38%) 226 (50%)
>65 59 33 (9%) 26 (6%)

Job Tenure n = 735 n = 323 n = 412
Less than 1 year 366 152 (47%) 214 (52%)
1–4 years 200 96 (30%) 104 (25)
5–10 years 91 40 (12%) 51 (12%)
Over 10 years 78 35 (11%) 43 (10%)

NAICS Industry1 n = 800 n = 349 n = 451
Natural Resources & Mining 18 <5 17 (4%)
Construction 37 10 (3%) 27 (6%)
Manufacturing 60 23 (7%) 37 (8%)
Trade, Transportation, & Utilities 518 245 (70%) 273 (61%)
Wholesale Trade 105 72 (21%) 33 (7%)
Retail Trade 187 164 (47%) 23 (5%)
Transportation & Warehousing 215 9 (3%) 206 (46%)
Utilities 11 0 (0%) 11 (2%)

Information <5 <5 0 (0%)
Financial Activities 6 <5 <5
Professional & Business Services 80 18 (5%) 62 (14%)
Education & Health Services <5 0 (0%) <5
Leisure & Hospitality 30 19 (5%) 11 (2%)
Other Services 42 25 (7%) 17 (4%)
Government 6 <5 <5
County of Injury Region n = 800 n = 349 n = 451
Appalachia 246 74 (21%) 172 (38%)
Non-Appalachia 504 254 (73%) 250 (55%)
Out of State 50 21 (6%) 29 (6%)

1 Numbers less than five are suppressed in accordance with state data management policy.
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among light and medium truck driver crash FROIs (16%) compared
to heavy truck driver FROIs (11%).

3.3. Disposition status and lost work time

Approximately-three-quarters of the FROIs for both groups did
not result in a workers’ compensation award, a proxy for injury
severity since there was no settlement benefit for disability,
impairment, or death; medical benefits could have been paid out
on the FROI, but medical benefit data were not available, as KDWC
does not maintain the medical data set. There was a significantly
higher percentage of light and medium truck driver local crash
FROIs with lost time due to injuries compared to heavy truck driver
FROIs (93% of light and medium truck driver FROIs vs 86% of heavy
truck driver FROIs) (Table 3).

While there was no significant difference between the two
groups for the number of days of lost time, there was an indication
that the drivers in heavy vehicle local crash FROIs had a higher per-

centage of 30 days or more of lost work time (37%) compared to
drivers in light and medium vehicle FROIs (26%).

3.4. Driver injuries by truck type

Through free-text narrative analysis, the primary truck types
identified in the heavy truck crash FROIs were semi-trucks (13%),
dump trucks (11%), and solid waste trucks, tow trucks, and coal
trucks (6% each of the total) (Table 4).

This is an undercount of the identification of the specific truck
types since 54% of all heavy truck crash FROIs did not contain
enough information in the free-text to identify the specific vehicle
involved in the crash injury report. Not surprisingly, general freight
trucking (local) and local trucking industries were listed most fre-
quently for the semi-truck crashes and dump truck crash FROIs.
Solid waste collection and refuse systems were the industries most
frequently listed for the solid waste truck crash FROIs. Surprisingly,
general freight trucking (local) was the industry listed for almost

Table 2
Driver injury characteristics in heavy vs light and medium truck local crash first reports of injuries, 2010–2019.

Injury Characteristic Light and Medium Truck
First Reports of Injury n = 349 (%)

Heavy Truck
First Reports of Injury
n = 451 (%)

Chi-Square
p-value

Cause of Injury n = 349 n = 451 <0.0001
Collision or sideswipe with another vehicle 162 (46%) 145 (32%)
Collision with fixed object 24 (7%) 19 (4%)
Vehicle upset, rollover, or jackknife 33 (9%) 122 (27%)
Not Otherwise Classified, including sudden start or stop 130 (37%) 165 (37%)
Nature of Injury n = 349 n = 451 <0.001
Concussion 8 (2%) 7 (2%)
Contusion/laceration 52 (15%) 92 (20%)
Fracture/dislocation 29 (8%) 50 (11%)
Sprain/strain 135 (39%) 108 (24%)
Other 125 (36%) 194 (43%)
Body Part Injured n = 324 n = 437 0.410
Head, face, and neck 51 (16%) 50 (11%)
Back, torso, chest, abdomen, and groin 71 (22%) 88 (20%)
Upper extremities, including shoulder 45 (14%) 64 (15%)
Lower extremities, including pelvis 25 (8%) 37 (8%)
Multiple parts, whole body, or other 132 (41%) 198 (45%)

Table 3
Disposition status and lost work time in heavy vs light and medium truck local crash first reports of injury, 2010–2019.1

Disposition and Lost Time Status Light/Medium Truck
First Reports of Injury
n = 349 (%)

Heavy Truck
First Reports of Injury
n = 451 (%)

Chi-Square
p-value

First Report of Injury Resulted in Workers’ Compensation Award2 n = 349 n = 451 0.644
No 263 (77%) 324 (76%)
Yes 78 (23%) 104 (24%)
Extent of Lost Time due to Injury n = 349 n = 451 <0.01
No lost time 23 (7%) 46 (10%)
Lost time 323 (93%) 389 (86%)
Fatality <5 16 (4%)
Days of Lost Time due to Injury3 n = 349 n = 451 0.064
0–1 day 16 (13%) 38 (19%)
2–6 days 45 (37%) 56 (27%)
7–29 days 28 (23%) 36 (18%)
30+ days 32 (26%) 75 (37%)
Missing Return- to-Work Date4 228 246

1 Numbers less than five are suppressed in accordance with state data management policy.
2 FROI resulted in Workers’ Compensation award if disposition was in agreement approved—Administrative Law Judge (ALJ), award—ALJ, lump sum agreement on first

report, agreement approved on first report. FROI resulted in no award if disposition was none, case dismissed—ALJ, consolidated ALJ dismissal, consolidated ALJ no money,
medical dispute dismissed/denied. FROIs under review included assigned to ALJ, held in abeyance, medical dispute closed, ready to set for pre-hearing conference, scheduled
for pre-hearing, set for hearing, submitted for ALJ decision, medical dispute set for proof time, proof time, ALJ opinion, medical dispute program.

3 The days off work after injury field, being not required, is poorly populated, with 59% of 800 observations missing.
4 Excluded from statistical analysis.
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half of the tow truck crash FROIs (42%); only 23% listed automotive
services and general automotive repair as the associated industry.

For light and medium truck FROIs, the specific vehicle types
identified were delivery trucks (30%), other vehicles such as box
trucks (4%), and vans (3%). These percentages are again an under-
count of the identification of the specific truck types since 64% of
all light and medium truck FROIs were unidentified in the free-
text narrative. The industries most frequently listed for delivery
truck FROIs were the furniture industry (19%), automotive parts
and accessories (13%), and groceries and soft drinks (9%).

3.5. Injury scenarios

The top injury scenarios associated with each identified truck
type were extracted from the free-text narratives (Table 5).

For semi-truck FROIs, the top injury scenarios involved rollovers
(41%) in situations such as the inability to stop in time when a
vehicle was stopped or slowed in front of them. For dump truck
FROIs, top injury scenarios involved rollovers (50%) and incidents
where the dump truck ran off the road (20%) in incidents such as
driving off the lanes of narrow roadways and overcorrecting while
trying to bring the vehicle back onto the pavement, as well as the
inability to stop in time for red lights, indicating that the truck may
have been going too fast while approaching the intersection. Coal
trucks running off the roadway (48%) in situations such as driving
downhill and not being able to downshift was the most common
scenario, as was jumping from the vehicle while it was in motion.

In the light and medium truck local crash FROI group, top injury
scenarios for the furniture industry FROIs involved being rear-
ended by other vehicles (35%) while the furniture truck was in
motion or while stopped at red lights. The most common injury
scenarios in the automotive parts and accessories industry FROIs
involved trucks being rear-ended (46%). For the groceries and soft
drinks industry FROIs, being rear-ended (67%) while in motion or
while stopped were the most common injury scenarios.

Fig. 1 shows the heavy and medium/light trucker driver FROI
rates by occupational category (SOC codes). The heavy truck driver
occupation (local and local distance) comprised 1.5% of all Ken-
tucky employment occupations, whereas the medium/light truck
driver occupation comprised only 0.7% of all Kentucky employ-
ment occupations (data not shown). Using our study exclusion
and inclusion criteria for the numerator (local distance only), the
light/medium truck driver FROI rate was 64% higher than the heavy
truck driver occupation FROI rate. When we examined the rate
before our final long distance exclusion criterion was applied, the
light/medium truck driver FROI rate (number of local + long dis-
tance FROIs/number of local + long distance truck drivers
employed) was still 24% higher than the heavy truck driver FROI
rate, indicating that, regardless of distance driven, light/medium
truck drivers had higher FROI rates than heavy truck driver crash
FROI rates.

4. Discussion

Our study results show that there were higher percentages of
collision or sideswipe with another vehicle crash, lost time, and
rear end crash FROIs involving light and medium truck drivers
compared to FROIs involving heavy truck driver. Almost one-half
of the light and medium truck driver local crash FROIs occurred
in the retail trade industry, and approximately-three-quarters
occurred in urban areas (non-Appalachia). The 2018 National
Occupational Research Agenda (NORA) for the Wholesale and
Retail Trade industries recommends additional motor- vehicle
crash research on wholesale and retail trade drivers by vehicle
type, driver abilities, and the need for refresher training (NORA,
2018). NORA also recommends identification of risk factors for
the observed elevated transportation incidence rates in the follow-
ing industry sectors: automotive parts and accessories, grocery and
related product wholesalers, motor vehicles and parts wholesalers,
and druggist goods and merchant wholesalers. The industries des-

Table 4
Driver injuries in heavy vs light and medium truck local crash first reports of injury by vehicle type and leading primary industry, 2010–2019.

Heavy Truck Type n = 451 (%) Leading Primary Industries n (%)

Semi-Truck 59 (13%)
General Freight Trucking (Local), Local Trucking 17 (29%)
Recyclable Material Merchant Wholesalers 7 (12%)

Dump Truck 50 (11%)
General Freight Trucking (Local) 18 (37%)
Site Preparation Contractors 6 (12%)

Solid Waste Truck 27 (6%)
Solid Waste Collection 14 (52%)
Refuse Systems 11 (41%)

Tow Truck 26 (6%)
General Freight Trucking (Local) 11 (42%)
Automotive Services, General Automotive Repair 8 (31%)

Coal Truck 25 (6%)
General Freight Trucking (Local) 17 (68%)
Bituminous Coal Underground Mining, Support Activities for Coal Mining 8 (32%)

Concrete Mixer 20 (4%)
Ready-Mix Concrete Manufacturing, Ready-Mixed Concrete, Concrete Work 16 (80%)

Unidentified Truck 244 (54%)

Light and Medium Truck Type n = 349 (%) Primary Industries n (%)

‘‘Delivery Truck” 104 (30%) Furniture 20 (19%)
Automotive Parts and Accessories 13 (13%)
Groceries and Soft Drinks 9 (9%)
Florist 7 (7%)
Motor Vehicle Supplies and New Parts Merchant Wholesalers 8 (8%)
Tire Dealers and Manufacturing 6 (6%)
Pharmacies and Drug Stores 6 (6%)

Van 9 (3%)
Other Truck Types 14 (4%)
Unidentified Trucks 222 (64%)
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ignated by NORA to need motor-vehicle crash research correspond
to the industries and nature of the trucks identified in this study in
the free-text narratives.

The NIOSH Center for Motor Vehicle Safety Strategic Plan iden-
tified the transportation and retail trade industries as priority
industries for moto- vehicle safety research (NIOSH, 2020), partic-
ularly regarding the need for motor-vehicle safety programs in the
wholesale and retail trade industries. There was a high percentage
of FROIs for younger drivers of light/medium trucks who were
employed in the retail trade industry (48%). Enhanced refresher
driver safety training for younger drivers who have been in previ-
ous crashes with injuries is needed in the retail trade industry and
especially in the furniture, automotive parts and accessories, and
grocery subsectors identified in this study. Vivoda, Pratt, &
Gillies, 2019, identified safety practices and policies such as road
safety program duration and timely updating, company safety
commitment, driver training, crash review and scorecard, and fati-
gue risk management as ‘necessary ingredients’ for improving dri-
ver safety on the roads.

Overall, light and medium truck driver FROIs involved more lost
time due to injuries (higher percentages of crashes with another
vehicle [rear-end crashes], sprains and strains, as well as head
and neck-related and back and torso-related injuries) compared
to heavy truck driver FROId. Due to the high frequency of light
and medium truck rear-end collision FROIs described in the free-

Table 5
Top driver injury scenarios in heavy vs light and medium truck local crash first reports of injury, 2010–2019.1

Heavy Truck
Type

Primary Industry Incident type Top Injury Scenarios

Semi-Truck
(n = 59)

General Freight
Trucking (Local), Local
Trucking

Rollover (n = 24; 41%)
Rear-end (n = 10; 17%)
Ran off roadway (n = 6; 10%)
Other (Sideswipe/backing up/Head-
on/Pothole/Struck object) (n = 10;
17%)
Not enough information (n = 9; 15%)

‘‘Driver was driving the tractor/trailer on a haul road when he went into a curve
and turned the tractor/trailer over.”
‘‘He was driving a semi-truck. A car stopped in front of him to avoid an accident.
He could not get stopped in time to avoid impact.”
‘‘While employee was driving tractor/trailer unit he encountered a motorcycle in
his lane. He swerved to avoid hitting motorcycle and the unit overturned.”

Dump Truck
(n = 50)

General Freight
Trucking (Local)

Rollover (n = 25; 50%)
Ran off roadway
(n = 10; 20%)
Rear-end (n = 8; 16%)
Sideswipe/Not enough information
(n = 7; 14%)

‘‘Operating a dump truck dropped off roadway and overcorrected turning the
truck on its side.”
‘‘Driving dump truck on narrow road, overcorrected and turned truck over.”
‘‘While driving a dump truck the worker applied the brakes and crossed an
intersection and turned over.”
‘‘Hauling dirt in dump truck. Worker approached a yellow light and couldn’t stop
the truck. Turned left to avoid oncoming car and tipped the truck.”
‘‘Driver was loaded delivering rock when shoulder broke off the road and truck
overturned.”

Coal Truck
(n = 25)

General Freight
Trucking (Local)

Ran off roadway
(n = 12; 48%)
Rollover (n = 7; 28%)
Head-on/Rear-end/Sideswipe/Not
enough information (n = 6; 24%)

‘‘Transporting driver was shifting gears going downhill and could not get truck in
gear.”
‘‘On way to pick up coal traveling on a haul road. Going downhill lost control and
turned over.”
‘‘Driving truck transporting coal; couldn’t change gears and truck wouldn’t stop
so had to jump out of moving truck.”
‘‘Worker was transporting coal when jumped from a moving vehicle.”

Light and
Medium
Truck Type

Primary Industry Injury Scenarios

‘‘Delivery
Truck”

Furniture (n = 20) Rear-end (n = 7; 35%)
Ran off roadway/Rollover/Sideswipe/
Struck object (n = 8; 40%)
Not enough information (n = 5; 25%)

‘‘Employee was in delivery truck; motor vehicle struck truck in rear.”
‘‘Employee was heading to customer’s house for delivery in company truck when
struck from behind by another vehicle.”
‘‘Stopped in company vehicle at stop light when he was hit in the rear.”
‘‘Rear-ended by another vehicle (passenger).”

Automotive Parts and
Accessories (n = 13)

Rear-end (n = 6; 46%)
Struck by/struck object/Not enough
information (n = 7; 54%)

‘‘Driver was rear ended & has head injury.”
‘‘Lost control of vehicle, ran into median and hit a tree. This was the first day of
work for employee.”
‘‘Employee was stopped at red light and was rear-ended.”
‘‘Driver alleges he was blinded by the sun and did not see the red light. Allegedly
ran the red light into the path of other vehicle.”
‘‘Vehicle allegedly turned left in front of other vehicle and was struck.”

Groceries and Soft
Drinks
(n = 9)

Rear-end (n = 6; 67%)
Not enough information (n = 3; 33%)

‘‘Associate was rear-ended by a passenger vehicle.”
‘‘Associate was involved in a motor vehicle accident. Struck from behind while
stopped.”
‘‘Employee was making a delivery and was rear-ended.”
‘‘Employee was involved in a rear-end collision and sustained injuries.”

1 Numbers less than five are suppressed in accordance with state data management policy so incident types are collapsed into broader categories with the exception of the
‘‘Not enough information” category in Groceries and Soft Drinks.

Fig. 1. Heavy and light/medium truck driver occupational first report of injury
rates, 2010–2019.
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text injury scenarios, light and medium truck employers should
consider the inclusion of targeted curricula for light and medium
truck drivers with previous crash FROIs that addresses distracted
driving and emphasizing the prevention of rear-end crashes.

Our top injury scenarios for semi-truck rollover FROIs correlate
with previous findings by McKnight and Bahouth (2009), where
the authors found that one-half of the rollovers were due to high
speed, unsafe brakes, and intersections. This study shows that local
dump truck driver and coal truck driver FROIs also had a high fre-
quency of rollovers due to tires dropping off the shoulder of the
road and to losing control from being unable to downshift while
driving downhill. States should consider implementing refresher
heavy truck driver safety training, particularly for drivers with pre-
vious crash FROIs, that includes driving on narrow roads and road-
way departure prevention and shifting gears on hills, in addition to
speeding, unsafe brakes, and intersections, as highlighted by
McKnight and Bahouth (2009).

4.1. Limitations

This study was limited in the ability to identify the specific
truck types in the FROIs. Vehicle type is not a mandatory data field
within KDWC; therefore, we needed to rely on the mention of the
specific truck type in the free-text narrative. Approximately 60% of
all local truck FROIs did not contain enough information in the free
text to identify the specific vehicle types involved in the crash;
therefore, the results may not be generalizable to all local-
distance light, medium, and heavy truck crash FROIs.

Also, a study limitation was that this is a database of first
reports of injuries and not a database of available truck drivers,
therefore, conclusions are limited to those who were involved in
a crash with a first report of injury. This is a first study to compre-
hensively describe injuries of light and medium truck drivers
involved in local crashes compared to heavy truck drivers.

Last, another limitation was the inability to calculate age-
adjusted FROI rates to accurately measure younger truck driver
exposures. In the absence of Kentucky light, medium, and heavy
truck driver occupation employment data by age and/or distance
driven, we were only able to calculate crude FROI rates by heavy
truck and light/medium truck occupation employment. Using this
denominator, we show that, overall, FROI rates for light and med-
ium truck drivers had higher crash rates compared to FROIs for dri-
vers of heavy trucks.

5. Conclusions and practical applications

The utilization of WC data highlighted top injury scenarios and
specific vehicle types for targeting driver safety training among
truck drivers, particularly light/medium truck drivers. Road safety
policies regarding driver training, crash reviews, and in-vehicle
monitoring systems are needed for truck drivers, especially light
and medium truck drivers. Implementation of entry-level (less
than one year of employment) and refresher driver training for
light/medium truck drivers should be considered to reduce truck
driver crashes, similar to Federal Motor Carrier Safety
Administration-mandated heavy truck entry-level driver training.
In addition, in-vehicle monitoring systems have promising effec-
tiveness in increasing driver safety (Furlan et al., 2020), particu-
larly when monitoring includes both supervisory review and
discussion as well as in-cab warning lights (Bell, Taylor, Chen,
Kirk, & Leatherman, 2017).

Enhanced driver safety training on speeding on narrow road-
ways, nearing intersections, and downshifting on hills is needed
for drivers of heavy trucks, particularly drivers of semi-trucks,
dump trucks, and coal trucks. Driver safety training on the preven-

tion of rear-end crashes (e.g., gradual stopping and checking mir-
rors) is needed for light and medium truck drivers of furniture
trucks, automotive parts and accessories trucks, and groceries
and soft drink trucks.

Future studies using WC data linked with crash data are needed
to comprehensively identify the specific industries, vehicle types,
and circumstances surrounding light and medium truck crashes.
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a b s t r a c t

Introduction: Young novice drivers have higher rates of engagement in road crashes worldwide, often
owing to unfavorable attitudes toward road safety or lack of knowledge, experience, and risk conscious-
ness. However, the implementation of graduated driver licensing (GDL) systems has proven effective in
reducing the high incidence of young drivers involved in crashes. Method: The purpose of this study was
to compare the change in driving outcomes (e.g., attitudes toward traffic safety, behavior patterns while
driving, risk assessment in traffic, assessment of personal driving skills, and involvement in traffic
crashes) of young drivers prior to and following the implementation of a GDL law. Respondents
(n = 642) completed a battery of questions, including a driver attitudes questionnaire (Behaviour of
Young Novice Drivers Scale), a self-assessed driving ability questionnaire, and a risk perception question-
naire. Of the total sample size, 324 drivers passed the old system of training driver’s license candidates,
and 318 drivers passed the new GDL system. Results: The results showed that drivers licensed with GDL
reported safer attitudes toward traffic rule violations and speed, and higher levels of safety orientation
with regard to their driving abilities. They also reported much higher levels of risk perception and lower
exposure to risky situations (risky driving exposure). There were no differences between GDL drivers and
non-GDL drivers in terms of self-reported crashes or transient or fixed violations. In addition, GDL was
not related to the number of traffic crashes, the number of fatalities, or serious and slight injuries in
crashes involving young drivers in crashes obtained from official records. Conclusions: The results suggest
that GDL contributed to the improvement of drivers’ attitudes and understanding of risk but did not con-
tribute to significant changes in the behavior of young drivers and traffic crashes. In addition, the GDL
program in Serbia only ranks fair on the Insurance Institute for Highway Safety (IIHS) scale.
Strengthening the GDL program in Serbia with additional components in line with GDL programs rated
as good by the IIHS scale could improve the safety of young and novice drivers in traffic.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Road traffic crashes have been the leading cause of death and
serious injury among young adults in the last decade. Based on
data provided by the World Health Organization (WHO, 2018),
road traffic crashes are a leading cause of death globally, and young
drivers aged 16–25 are significantly overrepresented among those
killed and seriously injured.

Research has shown that young drivers commonly engage in
risky driving behaviors, including exceeding the speed limit

(ECMT, 2006; Scott-Parker et al., 2013), driving under the influence
of alcohol (ECMT, 2006; NHTSA, 2018), dangerous overtaking
(Fernandes et al., 2010), and distracted driving (Korpinen &
Pääkönen, 2012; Lipovac et al., 2017). Using Serbia state year data
on fatal crashes during 2016–2019, it has been found that among
young drivers aged 18–24, 22 % and 8 % of all fatal traffic accidents
involved inappropriate speed in relation to traffic and road condi-
tions and alcohol-impaired driving (RTSA, 2021), respectively.

The main factors related to young driver traffic crashes are inex-
perience, sex, and age (ECMT, 2006). Studies that included the fac-
tors of inexperience and age have shown that these two factors are
the critical predictors of crashes among young drivers (Chapman
et al., 2014; McCartt et al., 2003; Twisk & Stacey, 2007). McCartt
et al. (2009) reviewed 11 studies that attempted to separate the
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crash effects of age and experience, represented by the length of
licensure. The results showed that age and experience have impor-
tant, independent effects on crash risk, even after differences in
driving mileage are accounted for. Meanwhile, studies on sex have
demonstrated that male drivers are prevalent in traffic crashes
involving young drivers. In Australia, for example, the death rate
in 2017 was three times higher for males than for females in the
17–25 age category (BITRE, 2018). Further, studies have reported
that drivers’ attitudes, sensation-seeking, and personality traits
could predict poor driving outcomes and high-risk driving behav-
ior in young individuals (e.g., Hassan & Abdel-Aty; 2013; Khan
et al., 2020; Preece et al., 2018; Ulleberg & Rundmo, 2003).

To reduce risks to young drivers, a range of countermeasures
needs to be applied. Such countermeasures should include
improvements in the areas of training, education, testing, commu-
nication, enforcement, and technology (ECMT, 2006; Molloy et al.,
2019; Scott-Parker et al., 2015; Twisk & Stacey, 2007). A reasonable
assumption is that education and training can correct attitudes
toward traffic safety and establish safe behavioral patterns in
young drivers. Driver training refers to teaching people driving
skills to control and operate a vehicle to obtain a license, whereas
driver education is a broader term that implies not only driver
training but also general road safety concepts, road laws, behav-
iors, and awareness as well (Barua et al., 2014). Research findings
on the effects of driver education in terms of fewer traffic viola-
tions and crashes have been mixed: Some studies show no signif-
icant effects of education on crashes or violations (Bates et al.,
2020; Lonero & Mayhew, 2010); others show reductions in crashes
or violations for those receiving driver education (Shell et al., 2015;
Vanlaar et al., 2009).

Various licensing systems are used worldwide. Generally, the
following categories of licensing systems can be distinguished:
(1) traditional licensing systems and two-phase systems and (2)
graduated driver licensing (GDL) systems. Two-phase systems rep-
resent a variation in probationary licensing systems, in which can-
didates must go through two phases of driving theory and training
before becoming a fully licensed driver. After completing the first
phase of the licensing process, candidates obtain a provisional or
probationary license that allows them to drive solo under given
conditions; a full license is issued after completion of the second
phase of theory and training, without further testing (ECMT,
2006). Similar to other related systems, such as two-phase systems
or systems that include a probationary license, GDL aims to
address certain specifics of the ‘‘young driver problems.” GDL sys-
tems include an extension of the learning period, supervised driv-
ing, and after obtaining the initial license, restrictions on driving
with peer passengers and nighttime driving. In essence, GDL pro-
grams focus on inexperienced drivers and are tasked with ensuring
that they are exposed only to driving conditions appropriate to
their skills while they are in the process of developing additional
skills and experience (Foss, 2007). GDL systems have proven highly
effective in reducing the risk of crashes among young drivers
(Bates et al., 2018; Shope, 2007). In October 2012, a GDL system
was introduced in Serbia, comprising educational training and
the GDL component proper. The educational training component
consists of several phases. The first phase includes 40 hours of edu-
cation (acquisition of theoretical knowledge for safe participation
in traffic). The second phase includes mastering driving skills,
and the training includes practical driving (on the street) after
obtaining the certificate for the completion of the theoretical test.
The third phase includes a first-aid examination. First-aid training
and examination are organized by the Red Cross of Serbia. When all
of these phases are completed, the driving test proper is conducted.
The new GDL system component in Serbia implies first obtaining a
probationary driver’s license with restrictions on speed, night driv-
ing, cell phone use, and alcohol use, and with required supervised

driving. A full license is obtained after one year of driving with a
probationary license. Supervised driving is required for holders of
a probationary driver’s license obtained at the age of 17 and lasts
one year, that is, until the expiration of the probationary license.
Supervised driving is not required for drivers who obtain a proba-
tionary license after the age of 18. All other restrictions affect all
holders of a probationary driver’s license. The police are responsi-
ble for enforcing restrictions on young drivers. They can readily
identify drivers subject to restrictions based on a ‘‘P” sticker placed
on drivers’ vehicle and check whether young drivers adhere to the
legally defined restrictions. Further, for the enforcement of restric-
tions on holders of a probationary driver’s license obtained at the
age of 17, the person who supervises the driver (who should hold
a license valid for at least five years) is responsible.

In the traditional training system that was in place in Serbia
before the GDL system, the novice driver was fully licensed after
passing the driving test, and no special conditions were placed.
Novice drivers had 40 hours of driving training (polygon and street
driving), and after completing the training, a driving exam was
conducted, which was composed of two parts: theoretical and
practical. After passing the driving test, candidates instantly
obtained a full license. A more detailed presentation of the new
GDL system and its comparison with the traditional training sys-
tem are presented in Table 1.

Evaluation of the effects of driver education on intermediate
outcome criteria should include examinations of changes in behav-
ior, attitudes, knowledge, and exposure to risk (Lonero & Mayhew,
2010). In their literature review, Thomas et al. (2012) found little
solid evidence that driver education affects teen crashes or other
outcomes. However, recent studies have revealed that education
and training within GDL programs are linked to a smaller number
of crashes and traffic violations (Mayhew et al. 2014; Shell et al.,
2015). Based on the reviewed literature, we hypothesized that: dri-
vers licensed with GDL have more favorable attitudes toward traf-
fic safety (H1); drivers licensed with GDL have safer behavior
patterns while driving (H2); drivers licensed with GDL have better
risk assessment in traffic (H3); drivers licensed with GDL have bet-
ter assessment of personal driving skills (H4); and drivers licensed
with GDL have fewer crash involvements (H5).

2. Methods

2.1. Participants and procedure

The data in this study were collected by mail. The names and
addresses of 1,000 individuals (young drivers aged 17–26 years
with driving experience of up to three years) with valid driver’s
licenses were obtained from a registry of motor-vehicle owners.
Participants were instructed to thoroughly read all the questions
in the study questionnaire and honestly provide their answers,
which would be treated as anonymous. Participants were also
assured that their data would be treated as confidential and would
only be used for the purpose of the study. To reduce the possibility
of participants giving socially desirable answers, participants were
not asked to provide their names in the questionnaire. Question-
naires were collected on two occasions. At the end of 2012, 500
questionnaires were distributed to young drivers who had passed
the old system of training driver’s license candidates (pre-GDL).
At the end of 2016, another 500 questionnaires were distributed
to young drivers who passed the new system of training driver’s
license candidates (GDL). In both cases, a reminder was sent to
non-respondents. A total of 642 participants completed and
returned the distributed questionnaires: 265 were female and
377 were male. Based on data obtained from the questionnaires,
a comparison of young drivers licensed pre-GDL and those licensed
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with GDL was conducted using various measures, including atti-
tudes, risky behavior, self-assessed driving ability, risk perception,
and the number of self-reported crashes.

The demographic characteristics of the overall sample are pre-
sented in Table 2.

To obtain a more complete picture of the effects of GDL, a com-
parison of the rates of crashes with causalities, fatalities, serious
injuries, and slight injuries per 100,000 licensed drivers (aged
18–26) before and after the implementation of GDL was per-
formed. Data on traffic crashes and the number of young drivers
were obtained from official records (Road Traffic Safety Agency
and Ministry of Interior). The time coverage was the period from
2002 to 2020, and the rates of traffic crashes with causalities, fatal-
ities, serious injuries, and slight injuries in the period from 2002 to
2012 (before the implementation of GDL) were compared with the
period from 2013 to 2020 (after the implementation of GDL).

2.2. Measures

2.2.1. Drivers’ attitudes
Drivers’ attitudes were measured using a questionnaire that

comprised 23 items. The responses were marked on a 5-point Lik-
ert scale (1 = strongly disagree to 5 = strongly agree). We used this
questionnaire to test the following attitudes: the attitude toward
the violation of traffic regulations (8 items; e.g., ‘There are many
traffic rules which cannot be obeyed to keep up the traffic flow,’
or ‘Sometimes it is necessary to bend the rules to keep traffic
going’); the attitude toward speed (7 items; e.g. ‘If you have good
skills, speeding is OK,’ or ‘Driving 5 or 10 miles above the speed
limit is OK because every-one does it’); the attitude toward drink-
ing and driving (5 items; e.g., ‘People can drive safely even if they
are under the influence of alcohol,’ or ‘People should be allowed to
decide themselves how much they can drink and drive after that’);
and the attitude toward joyriding (6 items; e.g., ‘Adolescents have
a need for fun and excitement in traffic,’ or ‘Speeding and excite-
ment belong together when you are driving’). The attitude scales
were based on questionnaires developed by Ulleberg and
Rundmo (2003) and Iversen and Rundmo (2004).

2.2.2. Behaviour of young novice drivers scale
The Behaviour of Young Novice Drivers Scale (BYNDS, Scott-

Parker et al., 2010) was used to measure the risky behavior of
young novice drivers. The BYNDS contains five subscales that are
added to obtain a composite risky driving score. Transient viola-
tions (13 items) measure risky driving behaviors that can change
throughout the journey, such as driving speed and speaking on a
mobile phone. Fixed violations (10 items) explore risky driving
behaviors that are unlikely to change throughout the journey, such
as alcohol and/or drug intoxication, and the wearing of seatbelts.
Misjudgment (9 items) captures the novice driving errors that

Table 1
Comparison of the content of the traditional training system with the GDL system in Serbia.

Pre-GDL GDL

Learner’s entry age 18 16
Minimum age for

obtaining a license
18 17

Full license Immediately after passing the driving exam After one-year of driving with a probationary license
Learner’s holding period about 1 month About 3 months
Theoretical education No theoretical education 40 hours of theoretical education (acquisition of theoretical knowledge for safe

participation in traffic)
Driving training 40 hours of driving (driving training is not

conditioned by taking the theoretical test)
40 hours of driving (prior to driving training, passing the theoretical test is
obligatory)

First-aid training Was not applicable 8 hours of training followed by the examination
Probationary driver’s license Did not exist Probationary driver’s license with one-year validity. For the holders of a

probationary driver’s license who obtain a license at the age of 17, the restrictions
are as follow:

(a) Supervised driving with a person who holds a license with a validity of at
least 5 years

(b) Not allowed to drive at a speed of over 110 km/h on a highway, 90 km/h
on a motorway, and 90 % of the speed allowed on the part of the road on
which driving takes place (other roads)

(c) Night driving restriction from 11:00p.m. to 5:00 a.m.
(d) The driver may not use a cell phone while driving
(e) Allowed BAC 0.0 g/l
(f) Vehicle must have a ‘‘P” sticker on a visible place on the front and the rear

side of the vehicleFor the holders of a probationary driver’s license who
obtained the license at the age of 18, the same restrictions apply except
under paragraph a).

Price From 250 to 300 Euros (280 to 330 USD) From 500 to 550 Euros (550 to 600 USD)
Video surveillance Did not exist Obligatory when taking tests and during the lectures

Table 2
Participants’ demographic characteristics.

pre-GDL GDL P value

Response rate 64.8 % 63.6 %
Sex
Male (%) 195 (60.2) 182 (57.2) 0.447
Female (%) 129 (39.8) 136 (42.8)

Age
Mean (S.D.) 20.21

(2.17)
21.12
(2.43)

<0.001

Range 18–26 18–26
Distribution of ages
17–18 (%) 91 (28.1) 64 (20.1) <0.001
19–20 (%) 106 (32.7) 80 (25.2)
21–22 (%) 76 (23.5) 76 (23.9)
23–24 (%) 33 (10.2) 58 (18.2)
25–26 (%) 18 (5.6) 40 (12.6)

Duration of driving experience in moths
Mean (S.D.) 21.07 15.14 <0.001
Range 0–84 0–42

Month mileage in km
Mean (S.D.) - Total sample 516 (1059) 272 (604) <0.001
Mean (S.D.) - Males 705 (1261) 336 (643)
Mean (S.D.) - Females 230 (527) 185 (537)

Education
College degree or more (%) 63 (19.4) 102 (32.1) <0.001
Less than college degree (%) 261 (80.6) 216 (67.9)

Number of self-reported crashes from the obtaining the license
Range 0–6 0–6 0.427
Mean (S.D.) 0.40 (0.89) 0.35 (0.88)

P. Stanojević, T. Lajunen, D. Jakšić et al. Journal of Safety Research 83 (2022) 339–348

341



place the young driver at an increased risk of crash, such as under-
estimating the distance required to stop and misjudging the gap
when overtaking or turning across traffic. Risky exposures (9
items) gauge the risky circumstances of the young novices’ driving,
including driving at night and with their friends as their passen-
gers. Driver moods (3 items) demonstrate the extent to which
the young novices are driving in response to their emotions,
including anger and frustration (Scott-Parker & Proffitt, 2015).

Respondents were asked to indicate how often they have
engaged in the following behaviors. Responses were recorded on
a 5-point Likert scales that ranged from 1 to 5 (1 = never to 5 = al-
most all the time).

2.2.3. Self-assessed driving ability questionnaire
The measurement instrument applied to examine self-assessed

driving ability comprised 22 indicators (Tronsmoen, 2008). The
indicators fell into four dimensions. The first dimension related
to self-assessment of general driving ability (8 items) included
skills such as speeding, anticipating, driving in slippery conditions,
and driving in the dark. The second dimension, safety orientation
(6 items), referred to the driver’s perception of his/her own ability
to identify risk, danger and his/her perception of their ability to
drive with satisfactory safety margins. The third dimension was
the body dimension (5 items), which measured the feeling of unity
with and control of the car. The fourth dimension was specific task
skills (8 items) and items under this dimension consisted of judg-
ment of the ability for precise and effective parallel parking, revers-
ing into a garage, as well as reversing using the rear-view mirrors.
The subjects were asked how well the statements fit the way they
manage and perceive driving a car. The responses were marked on
a 5-point scale (1 = does not fit me at all to 5 = fits me perfectly).

2.2.4. Risk perception questionnaire
The risk perception questionnaire (Harbeck & Glendon, 2013)

comprised 10 items. The respondents were asked to estimate
how risky the given actions were in traffic (e.g., driving under influ-
ence of alcohol, driving over the 20 km/h speed limit). The
responses were recorded on a 5-point Likert-type scale (from
1 = not risky to 5 = extremely risky).

2.2.5. Demographic variables
Respondents answered questions about their age, sex, educa-

tion, and crash involvement during the previous three years (num-
ber of self-reported crashes [crashes with fatalities + crashes with
material damage]), and were also asked to estimate their monthly
mileage.

2.2.6. Data from official records
Data on traffic crashes of young drivers age 18–26 (data on the

total number of crashes with casualties, killed and injured young
drivers can be found in Appendix A Table A1) are extracted from
the integrated database of characteristics of traffic safety RTSA
(RTSA, 2021).

The number of licensed young drivers aged 18–26 was obtained
from the Ministry of Interior of the Republic of Serbia. This was
used for the calculation of rates pertaining to crashes, fatalities,
serious injuries, and slight injuries per 100,000 licensed drivers
(aged 18–26) for each year of investigation.

2.3. Statistical analyses

Instruments used in this study had not yet been validated on a
Serbian sample. Because some cultural, social, and economic fac-
tors could result in a different factor structure, we decided to ana-
lyze all scales using factor analysis. Considering the
recommendations that confirmatory factor analysis (CFA) should

be used when the underlying structure has been established based
on prior empirical and theoretical grounds, the factor structure of
all the instruments used in the study was initially examined using
CFA. However, if the model on some scale produced a poor fit to the
data, principal component analysis was run to examine the factor
structure of the given instrument. Reliability for finalized measures
and established scales was assessed using internal consistency
(Cronbach’s alpha). The values for asymmetry and kurtosis
between �2 and + 2 are considered acceptable in order to prove
normal univariate distribution (George & Mallery, 2010). A one-
way between groups analysis of covariance (ANCOVA) was used
to identify differences between young drivers licensed pre-GDL
with those licensed with a GDL, after controlling for sex and mile-
age. As the self-reported yearly accident rate did not follow normal
distribution, Poisson or negative binomial regression analyses (see
Lord, Washington, & Ivan, 2005) were performed to test the rela-
tionship between GDL program and traffic crashes. In this analysis,
the dependent variable was traffic crashes and independent vari-
ables were mileage, GDL program and their interactions
(GDL �mileage). Interaction between GDL program and mileage
was included in the model because there is a statistically signifi-
cant difference between young drivers licensed pre-GDL and those
licensed with a GDL (see Table 2). Therefore, there is a possibility
that GDL is associated with the reduction of mileage at young dri-
vers that further leads to the reduction of the number of traffic
crashes. Finally, a comparison of traffic crashes (obtained from
the official records) of young drivers before and after the imple-
mentation of GDL was performed. The time coverage of the
research is the period 2002–2020.

3. Results

3.1. Factor analysis of the scales for examining attitudes, behaviors,
self-assessed driving ability, and risk perception of young drivers

Confirmatory factor analysis (CFA) was used to test the internal
structure of the driver attitudes questionnaire, Behaviour of Young
Novice Drivers Scale (BYNDS), self-assessed driving ability question-
naire, and risk perception questionnaire used in this study. Model
fit was evaluated using the v2/degree of freedom ratio, root mean
square error of approximation (RMSEA), goodness-of-fit index
(GFI), comparative fit index (CFI), and standardized root mean
square residual (SRMR). In general, a good model fit should have
a 2:1 or 5:1 v2/degree of freedom ratio and GFI > 0.90, CFI > 0.90
(preferably > 0.95), RMSEA < 0.08 or 0.10 (preferably < 0.06), and
SRMR < 0.08 (preferably < 0.05) indices (Hu & Bentler, 1999;
Russell, 2002). All scales except the BYNDS model showed a good
fit for the data (the results of the CFA can be found in Appendix
A, Table A2).

Methodologically, CFA and exploratory factor analysis (EFA)
models cannot be applied to the same data. Therefore, the initial
group of 642 participants was randomly divided into two sub-
groups. The first subgroup (Sample 1) was used to perform the
CFA and consisted of 317 drivers (179 males and 138 females).
Given that the application of CFA provided a poor fit for the BYNDS
(the results are given in Appendix A Table A2), the data were re-
examined within an EFA framework. An EFA was conducted with
the second subgroup (Sample 2, 325 drivers, out of which 198 were
male and 127 were female) with principal components by using an
oblique promax rotation with Kaiser normalization. Initially, 44
items of the BYNDS translated into the Serbian language were
used. However, the final solution included only 35 items because
four items (TR3, TR11, TR12, FI10, and MS9) had a factor loading
below 0.4, and four items (TR7, TR8, FI3, and EX7) had a high load-
ing (>0.4) on two factors. The Kaiser–Meyer–Olkin measure of
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sampling adequacy was acceptable at 0.893, and Bartlett’s test of
sphericity was significant at p < 0.001. The EFA of the remaining
36 items revealed a structure of five factors, explaining 55.93 %
of the variance in risky young driving behavior (the results of the
EFA can be found in Appendix A Table A3).

3.2. Scale statistics

The items within each factor were summed and comprised four
subscales of ‘‘attitudes toward traffic,” five subscales of ‘‘Serbian
BYNDS,” four subscales of ‘‘self-assessed driving ability,” and one
scale of ‘‘driving risk perception” (the range [min–max], means,
standard deviations, skewness, kurtosis, and Cronbach’s alpha for
all subscales can be found in Appendix A Table A4). The skewness
and kurtosis values indicated that the distributions of the subscales
did not deviate substantially from normality (skewness < 2; kurto-
sis < 2 in all cases). All subscales had good internal consistency
coefficients, with Cronbach’s alpha ranging from 0.73 to 0.90.

3.3. Results of analysis of covariance (ANCOVA)

ANCOVA was conducted to test whether the mean differences
in the dependent variables (attitudes toward traffic, Serbian
BYNDS, self-assessed driving ability, and risk perception) between
groups (pre-GDL versus GDL) would be significant after removing
the effects of covariates (sex and mileage). For this purpose, 14
ANCOVAs were performed. In each ANCOVA, driver licensing sys-
tems (pre-GDL vs GDL) were the independent variables, and the
sex and mileage variables were treated as covariates. Table 3
shows that after adjusting for sex and mileage, there were signifi-
cant differences between young drivers licensed pre-GDL and
those licensed with GDL with regard to attitude toward violation
of traffic regulations, attitude toward speed, risky driving expo-
sure, safety orientation, and driving risk perception. Drivers
licensed with GDL reported safer attitudes toward traffic rule vio-
lations and speed and higher levels of safety orientation, which
refers to a driver’s perception of his or her ability to identify risks
and dangers and the driver’s perception of his or her ability to drive
with satisfactory safety margins. They also reported higher levels
of risk perception and less exposure to risky situations (i.e., risky
driving exposure).

3.4. Results of the regression analyses

The distribution of crashes did not follow a normal distribution.
Thus, Poisson or negative binomial regression analyses were per-
formed. In this analysis, the dependent variable was self-reported
traffic crashes, and the independent variables were mileage, the
GDL program, and their interactions (GDL �mileage). We used
goodness-of-fit statistics to test the appropriateness of the regres-
sion models based on Poisson distribution. These statistics indi-
cated a misfit of the Poisson distribution for self-reported yearly
accident involvement, v2 (638) = 1187.21, p < 0.001, therefore,
models based on negative binomial distribution were constructed.
As shown in Table 4, mileage (Z = �1.07, p = 0.283), the GDL pro-
gram (Z = �0.33, p = 0.740), and GDL �mileage (Z = 1.63,
p = 0.103) were not significantly related to the number of traffic
crashes.

The stepwise regression analysis was used to explain the vari-
ance in the direct road safety outcome measures reported by the
police (see Table 1 in Appendix A). The results showed that the
change in calendar years explained significant amount of variabil-
ity in the number of crashes with casualties (R2 = 0.293; p = 0.017),
the number of fatalities (R2 = 0.703; p = 0.000), and the number of
serious injuries (R2 = 0.688; p = 0.000) in crashes involving young
drivers (18–26). However, calendar years did not predict a signifi-
cant amount of variance in the number of slight injuries
(R2 = 0.077; p = 0.249). The inclusion of the pre/post GDL variable
did not predict a significant level of variance in the road safety
outcomes.

4. Discussion

In Serbia, young drivers are more frequently involved in car
crashes than any other age group. The aim of this study was to
determine the effects of adopting GDL on various important factors
directly related to the safety of young drivers. A comparison
between young drivers licensed pre-GDL and those licensed with
GDL was conducted using various measures, including attitudes,
risky behavior, self-assessed driving ability, risk perception, and
the number of self-reported crashes and crashes obtained from
official records.

Responses for two of the four dimensions measuring attitudes
showed a tendency to report attitudes indicative of greater safety
among drivers licensed with GDL compared with drivers licensed

Table 3
Differences between young drivers licensed pre-GDL and licensed with a GDL.

pre-GDL GDL F(1,737) Eta2

Mean SE Mean SE

Attitudes towards traffic
Attitude towards violation of traffic regulations 18.20 0.34 16.80 0.34 8.49** 0.013
Attitude towards speed 18.22 0.36 16.05 0.36 17.99** 0.027
Attitude towards drinking and driving 8.51 0.22 7.98 0.22 2.91 0.005
Attitude towards joyriding 13.89 0.27 13.29 0.27 2.55 0.004
Serbian BYNDS .
Transient rule violations 17.66 0.33 16.99 0.33 2.07 0.003
Fixed rule violations 12.19 0.24 11.66 0.25 2.27 0.004
Misjudgement 14.29 0.27 14.30 0.28 0.01 0.000
Risky driving exposure 28.39 0.39 27.20 0.39 4.55* 0.007
Driver mood and aggressive driving 12.38 0.27 11.89 0.27 1.57 0.002
Self-assessed driving ability .
General driving ability 24.93 0.36 25.57 0.36 1.55 0.002
Safety orientation 21.70 0.26 20.84 0.26 5.49* 0.010
The body dimension 17.36 0.23 17.31 0.23 0.02 0.000
Specific task skills 10.36 0.17 10.39 0.17 0.02 0.000
Driving risk perception 34.34 0.35 36.32 0.35 15.86** 0.024

Note: Attitudes towards traffic: lower totals scores express safer attitudes; Serbian BYNDS: lower total scores indicate the safer behaviour in traffic; Self-assessed driving
ability: lower total scores indicate critical view of their own driving skills; Driving risk perception: lower total scores indicate high perceived risk. The means are adjusted for
sex and mileage. SE = standard error. *p < 0.05; ** p < 0.001.
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pre-GDL. Drivers licensed with GDL reported more favorable atti-
tudes toward traffic regulations and speed. This result was
expected because traffic regulations and speed are commonly rep-
resented in education programs for drivers licensed with GDL.
These results are consistent with those of other studies that have
shown that educational programs can change drivers’ attitudes
(Floreskul et al., 2016; Mann & Lansdown, 2009). However, there
were no significant differences between young drivers licensed
pre-GDL and those licensed with GDL in terms of attitudes toward
drinking and driving and toward joyriding. These results are not
consistent with our hypothesis. There are several potential reasons
for these results. The total score on the attitude toward drinking
and driving scale in both groups was low, which indicates that
young drivers are largely opposed to drinking and driving; thus,
there is not much room to upgrade this attitude.

Other studies using the questionnaire on the attitude toward
drinking and driving that we used in our study also reported low
total scores, that is, in range of our results (Endriulaitienė et al.,
2018; Ulleberg & Rundmo, 2002). Moreover, studies in Serbia con-
ducted in the period relevant to our research (2010 and 2017)
showed that there have been no significant changes in drinking
and driving. For example, in 2010 and 2017, 90.4 % and 89 % of
car drivers respectively reported that they had not driven above
the legal limit the past month (Antov et al., 2012; RTSA, 2019).
Attitude toward joyriding represents a specific attitude, and topics
of the training program do not cover this area.

Further, the differences in participants’ risk perception were
expected. Risk perception is directly related to informing the dri-
ver, and it seems that the content of the theoretical part of the
training has had an effect, that is, the young driver’s better under-
standing of the risks in traffic. This result is consistent with studies
that have shown that training and campaigns can increase the risk
perception of traffic among young drivers (Rosenbloom et al.,
2008; Rundmo & Iversen, 2004). Interestingly, a statistically signif-
icant difference was observed in self-assessed driving ability, in the
sense that drivers licensed pre-GDL had higher scores on the safety
orientation scale than those licensed with GDL. One possible expla-
nation for this result is that GDL education and training contribute
to addressing the problem of overconfidence and may lead young
drivers to adopt a more self-critical view of their driving abilities.
No difference was observed in transient and fixed violations, which
was unexpected, considering the existing differences in risk per-
ception and attitudes toward regulations and speed. Notably, a dif-
ference in the total scores of transient and fixed violations was
observed, but the difference was not statistically significant. Other
studies have provided evidence of small changes in target behavior
when attempting to change attitudes (Elvik et al., 1997; OECD,
1994). Studies have shown that applying a combination of different
measures is critical for determining whether there are significant
effects on behavior (Aarø & Rise, 1996; Delhomme, 1999).

The results show that the application of the GDL is not related
to the number of self-reported crashes. In addition, the GDL is
not related to the total number of crashes with casualties, fatalities,
serious injuries, and slight injuries among young drivers. The data
were obtained from official records. It seems that the application of

GDL did not reduce the number of traffic crashes and their conse-
quences among young drivers. The new Road Traffic Safety Law in
Serbia was implemented in 2010, while the application of GDL was
delayed to 2013. Based on data on the number of total crashes and
killed and injured young drivers, it can be seen that the decline in
the number of killed and injured young drivers started in 2010 (see
Appendix A Table A1) under the influence of the new law, and it
seems that the application of GDL per se did not have expected
effects. These results are unexpected, considering the results of
studies that have shown that the application of GDL significantly
contributes to the reduction of traffic crashes (e.g., Dee et al.,
2005; Males, 2007).

It seems that GDL increased the awareness of young drivers
with regard to traffic risks, but not sufficiently to be evident in
changing behavior and lessening involvement in traffic crashes.
Several studies have reported that the implementation of the
new Road Traffic Safety Law in Serbia has had mild effects on traffic
safety (Antić et al., 2011; Nazif-Munoz & Nikolic, 2018). It seems
that strengthening the GDL program in Serbia with additional com-
ponents is necessary to change drivers’ behavior and reduce young
drivers’ traffic crashes. Strengthening should take into account two
directions. First, education and training of novice drivers should be
adjusted to the GDL framework. It seems that education and train-
ing should include content that would provide risk-prevention and
self-evaluation skills related to the strategic and personal levels of
driving behavior. Although several studies have shown little or no
convincing evidence that driver training reduces crashes or other
outcomes (e.g., Lonero & Mayhew, 2010; Thomas et al., 2012), it
is important to not abandon but improve driver education. Second,
the GDL system in Serbia does not include components such as
driving under the supervision of an adult with driving experience
after the age of 18 and driving without the presence of peers. In
addition, the learner’s license-holding period is quite short (three
months). Studies have reported that supervised driving has multi-
ple advantages and significantly reduces crash risk in young dri-
vers (ECMT, 2006; Masten et al., 2015; Siskind et al., 2019).
Further, passenger restrictions are associated with a substantial
reduction in young drivers’ fatal crash rates (Hirschberg & Lye,
2020; McCartt et al., 2010; Senserrick & Williams, 2015). In addi-
tion, multiple studies have shown that license-holders who spent
a longer time in the learner stage had fewer crashes (Ehsani et al.
2013; Senserrick & Williams, 2015).

5. Limitations and future research

This study has some methodological limitations that should be
considered. First, because this study is based on self-reported data,
it suffers from the usual perceived weaknesses such as social desir-
ability bias. However, because no names were collected, and data
collection was undertaken remotely, the impact of social desirabil-
ity bias is unlikely to have significantly affected the results. Second,
drivers’ attitudes, risk perception, self-assessed driving ability, and
driver behavior could have been influenced by other factors (e.g.,
traffic safety campaigns and traffic enforcement), not only by edu-
cation and training. The Road Traffic Safety Law in Serbia (which
came into force in 2010) has brought many traffic-related novel-
ties, with the most important of these being strategic actions in
traffic safety, a traffic safety financing system, a penalty points sys-
tem, improvement of road infrastructure safety, and traffic safety
campaigns. However, most of these measures have not yet been
implemented in practice. For example, there have been no differ-
ences between the periods before and after the enactment of the
new law in terms of campaign implementation, intensity of traffic
enforcement, and strategic actions in traffic safety. Considering
that there were no significant changes in our other factors, it can

Table 4
Negative binomial regression analyses on crash involvement during the previous
3 years.

Variables Incidence rate
ratios (IRR)

Std.
Err.

Z-value 95 % conf.
interval

Pseudo
R2

GDL program
(1 = pre-GDL,
2 = GDL)

0.793 0.171 �1.07 0.519–1.211 0.023

Mileage 0.999 0.000 �0.33 0.999–1.001
GDL �mileage 1.000 0.000 1.63 0.999–1.001
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be assumed that driver training was the factor that contributed the
most to the differences related to drivers’ attitudes, risk perception,
self-assessed driving ability, and behavior of young drivers.

The results of the present study show that the education of
novice drivers leads to a change in the attitudes and risk percep-
tion of young drivers, but there is no change in behavior. Future
studies should take different approaches in driver education that
would contribute to understanding the importance of appropriate
safety attitudes and behavior to avoid accident involvement in
traffic.

6. Conclusion

The effects of GDL in Serbia have been limited. GDL has con-
tributed to the improvement of drivers’ attitudes and understand-
ing of risk, but it has not contributed to significant changes in the
behavior of young drivers and traffic crashes. The results of this
study suggest that it is necessary to further improve the education
and training of new drivers. The Insurance Institute for Highway
Safety developed a rating system that can be applied to various dri-
ver education programs. The rating system includes components
such as minimum age limit, permit holding periods, required prac-
tice hours, nighttime and passenger restrictions, and durations of
the restrictions. Laws are rated as good, fair, marginal, or poor
(for additional information, see McCartt et al., 2010). Based on its
components, the Serbian GDL program may be rated as fair.

McCartt et al. (2010) provide evidence that a strong graduated
licensing law can serve as an effective countermeasure for reduc-
ing fatal crash involvements of teenage drivers aged 15–17 years.
Laws rated good were associated with a 30 % and 19 % reduction
in the fatal crash rate compared with laws rated poor and fair,
respectively. The GDL program in Serbia, in relation to programs
rated as good, has the following deficiencies: short learner’s hold-
ing period (about three months), restriction on night driving in the
probationary phase starting from 11:00p.m., and passenger restric-
tions not being included in the probationary phase. It seems that
strengthening the GDL program in Serbia with additional compo-
nents would be necessary to change drivers’ behavior and reduce
traffic crashes of young drivers.
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Appendix A

See Tables A1–A4.

Table A1
The total number of crashes with casualties, the number of fatalities, serious and slight injuries in crashes involving young drivers (18–26) and the number of licensed young
drivers (18–26), 2002–2020.

Year Total crashes with casualtiesa (ratesb) Fatalities
(ratesc)

Serious injuries
(ratesd)

Slight injuries
(ratese)

Number of licensed young drivers Licensing systems

2002 4369 (102.54) 72 (1.69) 410 (9.62) 1317 (30.91) 426,065 Pre-GDL
2003 4706 (104.24) 64 (1.42) 453 (10.03) 1455 (32.23) 451,476 Pre-GDL
2004 5090 (111.87) 73 (1.60) 472 (10.37) 1648 (36.22) 455,007 Pre-GDL
2005 5042 (107.87) 73 (1.56) 466 (9.97) 1668 (35.69) 467,412 Pre-GDL
2006 5461 (110.68) 84 (1.70) 547 (11.09) 1887 (38.25) 493,394 Pre-GDL
2007 6531 (131.49) 100 (2.01) 595 (11.98) 2479 (49.91) 496,692 Pre-GDL
2008 6452 (129.68) 89 (1.79) 649 (13.04) 2564 (51.54) 497,518 Pre-GDL
2009 5972 (117.77) 81 (1.60) 576 (11.36) 2401 (47.35) 507,095 Pre-GDL
2010 5234 (101.58) 58 (1.13) 454 (8.81) 2042 (39.63) 515,283 Pre-GDL
2011 4825 (94.51) 69 (1.35) 409 (8.01) 1877 (36.77) 510,515 Pre-GDL
2012 4390 (88.16) 60 (1.20) 376 (7.55) 1691 (33.96) 497,977 Pre-GDL
2013 4375 (92.74) 54 (1.14) 306 (6.49) 1711 (36.27) 471,753 GDL
2014 4135 (96.02) 39 (0.91) 298 (6.92) 1529 (35.51) 430,639 GDL
2015 4313 (109.35) 45 (1.14) 289 (7.33) 1569 (39.78) 394,412 GDL
2016 4622 (124.20) 41 (1.10) 277 (7.44) 1774 (47.67) 372,145 GDL
2017 4755 (132.25) 39 (1.08) 299 (8.32) 1804 (50.18) 359,537 GDL
2018 4498 (128.40) 38 (1.08) 264 (7.54) 1657 (47.30) 350,298 GDL
2019 4615 (129.09) 39 (1.09) 252 (7.05) 1757 (49.15) 357,492 GDL
2020 4238 (117.30) 44 (1.22) 280 (7.75) 1685 (46.64) 361,282 GDL

Note:
a Sum of fatal and injury crashes.
b Rates of crashes with causalities per 10,000 licensed young drivers.
c Rates of fatalities per 10,000 licensed young drivers.
d Rates of serious injuries per 10,000 licensed young drivers.
e Rates of slight injuries per 10,000 licensed young drivers.

Table A2
Fit indexes from confirmatory factor analysis.

Model v2/df RMSEA (95 % CI) GFI CFI SRMR

Attitudes towards traffic 859.8/283 = 3.0 0.06 (0.05 to 0.06) 0.90 0.91 0.05
Self-assessed driving ability 631.3/194 = 3.3 0.06 (0.05 to 0.06) 0.92 0.94 0.04
Behaviour of Young Novice Drivers Scale 2937.4/892 = 3.3 0.09 (0.08 to 0.09) 0.68 0.74 0.09
Driving risk perception

(one factor)
102.3/24 = 4.2 0.07 (0.06 to 0.07) 0.97 0.96 0.05

Note: A good fit of model should, in general, have 2:1 or 5:1 v2/df, GFI > 0.90, CFI > 0.90 (preferably > 0.95), RMSEA < 0.08 or 0.10 (preferably < 0.06), and SRMR < 0.08
(preferably < 0.05) indices.
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Table A3
Serbian version of the Behaviour of Young Novice Drivers Scale.

Factor
1

Factor
2

Factor
3

Factor
4

Factor
5

Risky driving exposure
EX2. You drove in the rain ,868
EX4. You drove at night ,867
EX3. You drove at peak times in the morning ,851
EX5. You drove at dusk or dawn ,812
EX1. You drove on the weekend ,770
EX6. You carried your friends as passengers at night ,627
EX8. Your car was full of your friends as passengers ,521
EX9. You went for a drive with your mates giving you directions to where they wanted to go ,458
Misjudgement
MS3. You misjudged the gap when you were turning left ,882
MS6. You misjudged the gap when you were overtaking another vehicle ,880
MS2. You misjudged the speed of an oncoming vehicle ,756
MS4. You misjudged the stopping distance you needed ,707
MS1. You misjudged the speed when you were exiting a main road ,686
MS7. You missed your exit or turn ,471
MS5. You turned left into the path of another vehicle ,461
MS8. You entered the road in front of another vehicle ,400
Transient violations
TR2. You went 10–20 km/h over the speed limit (e.g. 72 km/h in a 60 km/h zone, 112 km/h in a 100 km/h zone) ,925
TR1. You drove over the speed limit in areas where it was unlikely there was a radar or speed camera ,827
TR5. You went up to 10 km/h over the speed limit (e.g. 65 km/h in a 60 km/h zone, 105 km/h in a 100 km/h zone) ,824
TR6. You drove more than 20 km/h over the speed limit (e.g. 60 km/h in a 40 km/h zone, 120 km/h in a 100 km/h

zone)
,773

TR9. You sped up when the lights went yellow ,678
TR10. You didn’t always indicate when you were changing lanes ,544
TR4. You sped at night on roads that were not well lit ,444
Driver mood and risky driving
FI5. You drove without a valid licence as because you had not applied for one yet or it had been suspended ,810
FI7. If there was no red light camera, you drove through intersections on a red light ,703
DM3. You drove faster if you were in a bad mood ,692
FI2. You drove after taking an illicit drug such as marijuana or ecstasy ,678
DM2. You allowed your driving style to be influenced by your mood ,648
DM1. Your driving was affected by negative emotions such as anger or frustration ,585
FI9. You drove when you thought you may have been over the legal alcohol limit ,508
Fixed violations
FI6. You did not wear a seatbelt if it was only for a short trip ,803
FI4. You did not always wear your seatbelt ,746
FI1. Your passengers did not wear seatbelts ,628
TR13. You spoke on a mobile that you held in your hands ,487
FI8. You carried more passengers than there were seatbelts for in your car ,413

Eigenvalues 9.95 4.57 2.06 1.54 1.46
Variance (%) 28.43 13.07 5.87 4.40 4.16

Extraction method: principal components, rotation method: promax with Kaiser Normalisation.

Table A4
Range, means, standard deviations, skewness, kurtosis, and Cronbach’s alpha for all subscales for total sample.

Scale Min-Max M SD Skewness Kurtosis Cronbach’s alpha

Attitudes towards traffic
Attitude towards violation of traffic regulations 8–40 17.50 6.17 0.31 �0.32 0.79
Attitude towards speed 7–35 17.14 6.58 0.28 �0.61 0.85
Attitude towards drinking and driving 5–23 8.24 3.92 1.51 1.97 0.80
Attitude towards joyriding 6–30 13.59 4.93 0.48 �0.16 0.73
Serbian BYNDS
Transient rule violations 7–35 17.33 6.13 0.26 �0.64 0.88
Fixed rule violations 5–25 11.93 4.52 0.41 �0.41 0.79
Misjudgement 8–36 14.29 4.91 1.11 1.60 0.86
Risky driving exposure 8–40 27.80 7.22 �0.49 �0.16 0.88
Driver mood and risky driving 7–33 12.14 4.99 1.30 1.59 0.83
Self-assessed driving ability
General driving ability 8–40 25.25 6.71 �0.17 �0.15 0.89
Safety orientation 6–30 21.27 4.65 �0.76 0.81 0.80
Body dimension 5–25 17.33 4.30 �0.37 �0.09 0.85
Specific task skills 3–15 10.37 3.07 �0.41 �0.39 0.82
Driving risk perception 11–50 35.32 6.40 �0.17 0.20 0.84
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Dragana Jakšić, Ph.D. is Teaching Assistant at at The Academy of Applied Studies of
Kosovo and Metohija, Serbia. Her research interests are in Traffic Safety Psychology
and Behaviour. She has participated in more than 10 research projects and studies
in Serbia. He is the author and coauthor of a number of publications in journals and
conference proceedings. Her recent publication has appeared in Traffic Injury
Prevention.
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a b s t r a c t

Introduction: Walking and cycling for transportation provide immense benefits (e.g., health, environmen-
tal, social). However, pedestrians and bicyclists are the most vulnerable segment of the traveling public
due to the lack of protective structure and difference in body mass compared with motorized vehicles.
Numerous studies are dedicated to enhancing active transportation modes, but very few studies are
devoted to the safety analysis of the transit stops, which serve as the important modal interface for
pedestrians and bicyclists. Method: This study bridges the gap by developing joint models based on
the multivariate conditional autoregressive (MCAR) priors with distance-oriented neighboring weight
matrix. For this purpose, transit-oriented design (TOD) related data in Los Angeles County were used
for model development. Feature selection relying on both random forest (RF) and correlation analysis
was employed, which leads to different covariates inputs to each of the two joint models, resulting in
increased model flexibility. An integrated nested Laplace approximation (INLA) algorithm was adopted
due to its fast, yet robust, analysis. For a comprehensive comparison of the predictive accuracy of models,
different evaluation criteria were utilized. Results: The results demonstrate that models with correlation
effect perform much better than the models without a correlation of pedestrians and bicyclists. The joint
models also aid in the identification of the significant covariates contributing to the safety of each of the
two active transportation modes. The findings show that population density, employment density, and
bus stop density positively influence bicyclist-involved crashes, suggesting that an increase in population,
employment, or the number of bus stops leads to more active modes involved collisions. Practical
Applications: The findings of this study may prove helpful in the development and implementation of
the safety management process to improve the roadway environment for the active modes in the long
run.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The challenge of meeting the mobility requirements of the 21st
century requires a shift in mindset from designing an automobile-
focused highway system to operating a transportation network
that accommodates all users and modes safely and conveniently.
The goal may be achieved by implementing complete streets
design, which allows the flexibility to enhance traffic safety and
strategic urban mobility planning (Smith et al., 2010). Typical ele-
ments of the complete streets include sidewalks, bicycle lanes (or

wide, paved shoulders), shared-use paths, designated bus lanes,
safe and accessible transit stops, and frequent and safe crossings
for pedestrians and bicyclists. Among the different roadway facili-
ties, the transit stop plays a crucial role in successfully implement-
ing complete streets programs due to its unique position as an
intermodal interface. It is worth mentioning that here ‘‘transit”
refers to both bus transit and rail transit (road-based and segre-
gated rail transit). Compared with other modes, non-motorized
transportation modes provide enormous health, environmental,
social benefits, and many others. However, the non-motorists are
a vulnerable segment of the traveling public due to the lack of a
protective structure and difference in body mass as compared to
motor vehicles, which renders them prone to heightened injury
susceptibility in case of a collision (Mader & Zick, 2014; Cai et al.,
2017). Therefore, incorporating transportation network attributes
into traffic safety would facilitate the development of safety
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programs and better strategies to engender a safe environment for
all roadway users.

On the other hand, the Sustainable Communities and Climate
Protection Act of 2008, Senate Bill (SB) 375 in California, requires
that Metropolitan Planning Organizations (MPOs) develop a Sus-
tainable Communities Strategy (SCS) to reduce per capita green-
house gas emissions through integrated transportation, land use,
housing, and environmental planning. SB 375 creates incentives
for residential or mixed–use residential projects that may be
exempt from, or subject to a limited review of, the California Envi-
ronmental Quality Act (CEQA), provided they are consistent with
the MPO’s adopted SCS. These ‘‘transit priority projects” must,
among other criteria, be located within one–half mile of a major
transit stop or high–quality transit corridor (HQTC).

SB 743, signed into law in 2013, provides further opportunities
for CEQA exemption and streamlining to facilitate transit-oriented
development (TOD). Specifically, certain types of projects within
‘‘transit priority areas” (TPAs) can benefit from a CEQA exemption
if they are consistent with an adopted specific plan and the SCS. A
TPA is an area within a half-mile of a major transit stop that is
existing or planned, if the planned stop is scheduled to be com-
pleted within the planning horizon included in a Federal Trans-
portation Improvement Program (FTIP).

The 2016–2040 SCAG Regional Transportation Plan/Sustainable
Communities Strategy (RTP/SCS) plans for focusing new growth
around transit, particularly in the High Quality Transit Areas
(HQTAs). While HQTAs account for only 3% of total land area in
SCAG region, they are planned and projected to accommodate
46% of the region’s future household growth and 55% of the future
employment growth. With more development and growth focused
around transit stops, it is anticipated that the traffic accidents
around transit stops will increase too, without proper proactive
planning and design. Meanwhile, the Fixing America’s Surface
Transportation (FAST) Act calls for establishing performance mea-
sures and standards on traffic safety. The Federal Highway Admin-
istration (FHWA) is now requiring State Department of
Transportation (DOTs) to work with MPOs to assess fatalities and
serious injuries on all public roads and to set annual performance
measures.

To address this urgent need, previous studies have strived to
obtain valuable insights by considering various empirical and
methodological aspects of non-motorist safety modeling. Crash
frequency models are often used to identify the factors influencing
the propensity of active-modes-related crashes. As the crash fre-
quency data are non-negative integers, the most widely used crash
frequency models assume the Poisson distribution of crash counts.
The initial Poisson regression models are subject to the limitation
of equality between mean and variance of crash counts (Kim
et al., 2002; Miranda-Moreno, 2006), which means Poisson models
cannot handle over-dispersion and can be adversely influenced by
low-sample means. The presence of such issues in data could result
in biased and inconsistent parameters, leading to erroneous infer-
ences and predictions relating to the factors that estimate crash-
frequencies (Oh et al., 2006; Lord & Mannering, 2010). In this
regard, subsequent enhancement contains various model alterna-
tives including, but not limited to, Poisson gamma or negative
binomial (Hauer, 2001; El-Basyouny & Sayed, 2006; Lord &
Bonneson, 2007), Poisson lognormal (Park & Lord, 2007; Lord &
Miranda-Moreno, 2008; Aguero-Valverde & Jovanis, 2008;
Daniels et al., 2010), and zero-inflated models (Malyshkina &
Mannering, 2010; Washington et al., 2020; Aguero-Valverde,
2013a,b), which can address crash over-dispersion using different
model formulations.

Among the models mentioned above, the most extensively used
format is the univariate model, which contains only one dependent
variable for the data interpretation (Anarkooli et al., 2019). How-

ever, the univariate setting cannot address the unobserved hetero-
geneities that might be common to various crash types or
severities (Mannering & Bhat, 2014). In response, multivariate
models have been employed extensively to explicitly account for
the possible correlations among the distinct response variables.
Some papers relied on the bivariate framework for various applica-
tions such as angled injury security (Russo et al., 2014) and inves-
tigation of bicycle conflict location (Conway et al., 2013), while
others took advantage of multivariate models to address response
variable of multiple discrete outcomes like different crash types
(Serhiyenko et al., 2016) and crash involving distinct modes
(Huang et al., 2017). Another benefit of using bivariate/multivari-
ate is the explicit consideration of correlation among different
crash outcomes (Bijleveld, 2005; Song et al., 2006; Park & Lord,
2007; Aguero-Valverde & Jovanis, 2009). Even with well-
documented benefits over the univariate alternatives (Mothafer
et al., 2016), studies are still dedicated to further enhancing the
bivariate models.

In addition to the above-mentioned different models, one pop-
ular strategy is the explicit consideration of spatial effect in the
safety analysis of active transportation. For example, some
research incorporated pedestrian safety into urban road space allo-
cation (Chen et al., 2020), some investigated the effect of road net-
work configuration urban design on incidences of pedestrian and
cyclist crashes (Dumbaugh et al., 2013), yet others explored the
use of new data types such as household travel survey data and
bike sharing usage data to estimate the pedestrian and cyclist crash
exposure (Branion-Calles et al., 2021; Ding et al., 2020) Incorporat-
ing geographic information collected by sophisticated software
such as geographical information system (GIS) allows to include
the influential factors relating to the spatial perspective. Neverthe-
less, the data from the same geographic area may share unob-
served effects and arise spatial correlation problems. Given this
context, various studies develop Bayesian spatial models such as
conditional autoregressive (CAR) (Song et al., 2006; Soroori et al.,
2019; Zeng et al., 2020), simultaneous autoregressive (SAR)
(Quddus, 2008; Chiou et al., 2014; Hosseinpour et al., 2018), mul-
tivariate conditional autoregressive (MCAR) (Aguero-Valverde,
2013a,b; Lee et al., 2015; Cai et al., 2018) to address the spatial cor-
relation issue. Another prevalent method to account for spatial cor-
relation is the inclusion of random effects models in which
common unobserved effects are assumed to be uncorrelated with
independent variables and distributed over spatial units. In the
context of crash frequencies, random effects models have been
used by a large number of studies.

All in all, active transportation has gained ever-increasing pop-
ularity due to its multiple benefits over the typical motorized
modes. However, how to improve the safety of non-motorists plays
a pivotal role in promoting such healthy, economical, and environ-
mentally friendly modes, especially at various transit stops where
different transportation modes interact with one another. Com-
pared with other transportation facilities such as intersections,
sidewalks, and bike lanes, there is considerably less research ded-
icated to safety analysis along with the transit stops. Until now, it
remains unclear which factors constitute the main contributing
ones to the walking and biking safety conditions in the areas adja-
cent to transit stops, given the complexity of the influential factors
and their interactions. To bridge this gap, the present study aims to
rank the importance and quantify the impact of pedestrian and
bicyclists traffic safety-pertinent variables near the transit (bus
transit and rail transit) stops, which are imperative for the effective
design of complete streets and transportation planning policies.
For this purpose, bivariate spatial models were utilized owing to
the frequent advantages reported in previous research associated
with multivariate settings and spatial heterogeneity consideration.
Specifically, joint models based on the multivariate conditional
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autoregressive (MCAR) priors with distance-oriented neighboring
weight matrix were used. In order to take advantage of a substan-
tial reduction in computational time for estimation under a com-
plex model scenario (Serhiyenko et al., 2016; Blangiardo et al.,
2013), the current study employs an integrated nested Laplace
approximation (INLA)-oriented package, INLAMSM (Palmi-Perales
et al., 2019), to carry out approximate Bayesian inference within
a bivariate spatial framework. In addition, feature selection using
both random forest (RF) and correlation analysis is employed,
which yields different covariates to each of the two active trans-
portation modes and leads to an increase in the model flexibility.
Moreover, high-quality transit-oriented development (TOD)
related data, including the built environment, socioeconomic,
demographic, and crash data aggregated at the 0.5-mile-radius cir-
cular zone surrounding transit stops, were used for statistical anal-
ysis. Not only the number of bus and rail transit stops, but also the
characteristics of transit stops (such as the configuration of transit
stops, accessible routes, and crossing) are considered in this study.
Finally, for a comprehensive comparison of the predictive accuracy
of models, different evaluation criteria were utilized, which include
deviance information criterion (DIC), widely applicable informa-

tion criterion (WAIC), posterior mean deviance (D
�
Þ and the effec-

tive number of parameters (PD).
The proposed project expects to promote active transportation

and enhance the multimodal traffic safety conditions adjacent to
the HQTAs, which is imperative for successive implementation of
complete street design and SCAG’s RTP/SCS. The research results
are anticipated to furnish transportation professionals with addi-
tional insights to create safer access to transit and thus promote
active transportation in the United States.

The paper is structured as follows: Section 2 shows the existing
literature relevant to this study by highlighting previously
published studies. Section 3 describes the methodology used in
this paper. Section 4 presents the data collected for the study.
Then, the empirical estimation results and discussion are included
in Section 5. Finally, Section 6 concludes the paper with
recommendations.

2. Literature review

A plethora of studies in the safety field has employed bivariate/-
multivariate models for crash count data. For example, Wang et al.
(2013) developed a Poisson-lognormal conditional autoregressive
model for their bivariate spatial analysis of pedestrian crash counts
across census tracts in Austin, Texas. The results indicate that a
bivariate cross-correlation of serious (fatal and major injury) and
non-serious crash rates shows covariates’ impacts across severity
levels are more local in nature (e.g., lighting conditions or local
sight obstructions along with spatially lagged cross-correlation).
Ma et al. (2008) used a multivariate Poisson-lognormal specifica-
tion to investigate different crash counts at different severity
levels. Their findings show that the bivariate/multivariate
Poisson-lognormal model aids in showing the statistically signifi-
cant correlations between crash counts at a different level of injury
severity.

Explicit consideration of spatial autocorrelation in the bivari-
ate/multivariate settings is one popular strategy and includes both
random effect (Aguero-Valverde, 2013a,b) and random parameter
models (Barua et al., 2016; Imprialou et al., 2016). However, bivari-
ate/multivariate models are complex to estimate as the correlation
matrix formulation is required (Lord & Mannering, 2010). Employ-
ing another method to account for spatial correlation, many stud-
ies consider the random effects models where the common
unobserved effects are assumed to be uncorrelated with indepen-
dent variables and distributed over spatial units. A study con-

ducted by Hausman et al. (1984) examined random effects and
fixed effects in negative binomial models for panel data in their
research. The findings suggest that random effects help to account
for unobserved factors shared by distinct, discrete outcomes. In the
context of crash frequencies, random effects have been used by a
large number of previous studies. For instance, Ma et al. (2017)
proposed a series of multivariate models under the framework of
Full Bayesian with different random effects to predict the crash fre-
quencies of different injury severity levels over a one-year period
in Colorado. Cheng et al. (2017) developed the multivariate Poisson
lognormal models with random effects to predict the motorcycle
injury severity crashes using weather data during the years
2008–2013 in the city of San Francisco. Hou et al. (2018) developed
the random effect negative binomial (RENB) model by investigat-
ing the effects of traffic characteristics and freeway design ele-
ments on crash frequency in China. Besharati et al. (2020)
utilized the bivariate spatial negative binomial Bayesian model
with random effects to examine the association between the fuel
consumption in the transportation sector and the annual fatal
and nonfatal injury counts from 2005 to 2015 in Iran. Nonetheless,
the random effects models only influence the intercept of the
model. The extension of random effects models is the random
parameter models that provide the flexibility to accommodate
the site-specific unobserved heterogeneity by allowing each esti-
mated parameter to vary across each individual observation in
the data (Anastasopoulos & Mannering, 2009; Milton et al., 2008).

To carry out the Bayesian inference, the Markov Chain Monte
Carlo (MCMC) simulation method is the most popular approach
used in the safety field. Park and Lord (2007) adopted the MCMC
simulation method in multivariate Poisson-lognormal models to
evaluate covariates’ impact on crash counts. Similarly, El-
Basyouny and Sayed (2006) used multivariate Poissonlognormal
models with the MCMC simulation approach through the Win-
BUGS platform to jointly analyze a dataset of crash counts catego-
rized by two injury severity levels. However, the Bayesian
framework using the MCMC simulation method may be computa-
tionally challenging under a complex model scenario and time-
consuming, especially for large datasets (Narayanamoorthy et al.,
2013). To address this issue, the present research adopts an alter-
native Bayesian approach, Integrated Nested Laplace Approxima-
tion or INLA (Rue et al., 2009), to carry out approximate Bayesian
inference. The INLA method aids in reducing the computational
time and efforts involved in the estimation of complex and large
datasets (Serhiyenko et al., 2016; Blangiardo et al., 2013) sevenfold
compared to the MCMC simulation method (Serhiyenko, 2015).

3. Data description

The data used in this research were obtained from multiple
sources: Southern California Association of Governments (SCAG),
Transportation Injury Mapping System (TIMS), Los Angeles
Metropolitan Transportation Authority (LACMTA), InfoUSA, and
U.S. Census Bureau (Census). All data were compiled into GIS data-
bases. The dependent variables include the total number of
pedestrian-involved crashes, the total number of bike-involved
crashes, and the total number of vehicle-only crashes (i.e., crashes
with no pedestrian or bike involved). The independent variables
are categorized into various groups, including the following:
socioeconomic characteristics, employment characteristics, diver-
sity/mixed use of land, built environment/access to active trans-
portation and transit, land development characteristics such as
Transit-Oriented Development (TOD), and biking-/walking-
related built environment variables.

SCAG’s High-Quality Transit Area (HQTA) is within one half-
mile from major transit stops and high-quality transit corridors
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(HQTC), and it was developed based on the language in Senate Bill
375 (Barbour, 2016). According to SCAG, the definitions of major
transit stops and HQTC are as follows:

Major Transit Stop: a site containing an existing rail transit sta-
tion, a ferry terminal served by either a bus or rail transit service, or
the intersection of two or more major bus routes with a frequency
of service interval of 15 minutes or less during the morning and
afternoon peak commute periods (C.A. Public Resource Code Sec-
tion 21064.3). It also includes major transit stops that are included
in the applicable regional transportation.

HQTC: a corridor with fixed-route bus service, and the service
intervals are no longer than 15 minutes during peak commute
hours. (SCAG, 2020).

It is worth mentioning that, for the research purpose, the anal-
ysis is focused on the one-half mile buffer zones around high-
quality transit stops in the High-Quality Transit Area (HQTAs) in
the SCAG region for the year 2016 (see Fig. 1). As mentioned above,
SCAG adopted the one-half mile radius from the major transit stop
to define the HQTA and HQTC. To be consistent with SCAG’s defini-
tion, the observation unit in this study is the one-half mile buffer
zone surrounding the major transit stop. Most variables used in
this study were obtained or derived from SCAG’s travel demand
and land-use models. There are 948 major transit stops in the SCAG
region, including 155 rail stations. Fig. 1 shows the location of
these stops for the year 2016. Out of 948 stops, 870 stops are in

Los Angeles County (LAC). Without losing the representativeness,
this research focuses on the major transit stops in LAC. Further-
more, to avoid the duplication among stops that are too close to
each other because of the half-mile buffer, 293 stops that are
within one mile to each other are removed in the analysis. This
results in 655 stops in LAC.

Transit-oriented development (TOD) is mixed-use development
designed/planned to be near transit stops. TOD is characterized by
‘‘a mix of residential, commercial, and civic uses within walking
distance (a half-mile radius) from a transit stop; pedestrian-
friendly streets with sidewalks and walkable destinations; reduced
parking; high-density development; preservation of open space;
and a variety of housing types and prices” (Policy & Tools:
Transit-Oriented Development (TOD), https://www.forworking-
families.org/resources/policy-tools-transit-oriented-development-
tod).

To better characterize TOD, a variety of built environment-
related variables were derived at SCAG’s Tier 2 TAZ (traffic analysis
zones) level. There are 11,267 Tier 2 TAZs in the SCAG travel
demand model. Table 1 shows the descriptive statistics of the vari-
ables used in the research. The bottom row indicates the statistics
of the stop-to-stop distance (on network) matrix used for spatial
autocorrelation analysis in the model development.

As shown in Table 1, variables directly associated with transit
stops include:

Fig. 1. 2016 Existing High-Quality Transit Corridors in the SCAG Region (Source: SCAG 2045 RTP/SCS).
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ExBus_D1 Stop density for Express Bus and BRT (number of
stops per acre).

HFLbus_D1 High-Frequency Bus Stop Density (local bus
headway � 20 mins).

TTbus_D1 Total Bus Stop Density.
HQTA_pct1 Percent of TAZ area are in non-freeway HQTA

(high-quality transit area).
TPA_pct1 Percent of TAZ area are in TPA.
Distance The distance between each pair of the 655

transit stops (miles).

A total of 250,817 non-freeway collisions in LA County from 2012
through 2017 were collected from the Transportation Injury Map-
ping System (TIMS) website, which provides quick, easy, and free
access to California crash data maintained by the Statewide Inte-
grated Traffic Records System (SWITRS). Each collision was geo-
coded to the actual location. First, a GIS layer with the selected
major transit stops was used to create the one-half-mile buffer
zones. Then, the GIS layer was intersected with SCAG’s Tier 2 TAZ,
where the built-environment information is available. Lastly, the
above two layers were overlaid with another GIS layer that stores
collision information in LA County from 2012 through 2017 (see
Fig. 2 for the screenshot of the collision layer overlaying transit stop

buffer zones). The integrated dataset was cleaned and developed,
containing transit-oriented crash count, built environment, and
other related information.

4. Methodology

This section presents the methodological details, including
modeling specification, variable importance by random forest,
and evaluation criteria.

4.1. Modeling specification

In the current study, under the framework of INLA (Lindgren &
Rue, 2015), INLAMSM package (Palmi-Perales et al., 2019) is used
to draw the inferences due to its capability to address bivariate
latent effects. The Bayesian hierarchical approach is used to esti-
mate the Poisson process:

y � PoissonðkÞ ð1Þ
where y is the observed crash count, and k is the Bayesian mean
expected crashes, which can be modeled as a function of the covari-
ates following a lognormal distribution as shown below:

logðkÞ ¼ b0 þ bX þ /þ e ð2Þ

Table 1
Variable description of collected data.

Variables Description

Density (TAZ level)
Pop_den1 Population density (persons/acre)
HH_den1 Household density (households/acre)
Emp_den1 Employment density (jobs/acre)
Ret_den1 Retail job density (jobs/acre)
RetSer_den1 Retail + Service (retail + FIRE + Food + Other Serv.) job density
Diversity/Mixed Use of Land (TAZ Level)
Jobmix131 Employment mix (13sectors); 1 = highest mix (jobs are equal for all sectors)
Jobmix91 Employment mix (9 sectors); 1 = highest mix (jobs are equal for all sectors)
Emix131 Employment mix (13sectors); 1 = highest mix (jobs are equal for all sectors)
Emix91 Employment mix (9 sectors); 1 = highest mix (jobs are equal for all sectors)
EH_ratio1 Job/Household ratio
EP_ratio1 Job/Population ratio
Built Environment/Access to Active Transportation and Transit (TAZ Level)
Int34_Den1 Intersection density (number of intersections/acre)
BKlnAcc1 Bike lane access (1 = if a TAZ has a bike lane)
Rail1 1 = at least one rail stop in a TAZ
ExBus_D1 Stop density for Express Bus and BRT (number of stops per acre)
HFLbus_D1 High-Frequency Bus Stop Density (local bus headway � 20 mins)
TTbus_D1 Total Bus Stop Density
Land Development Characteristics: TOD (HQTA/TPA) (TAZ Level)
Mlt_pct1 Percent of households living in multiple units
HQTA_pct1 Percent of TAZ area are in non-freeway HQTA (high-quality transit area)
TPA_pct1 Percent of TAZ area are in TPA (transit prority area)
Additional Biking or Walking Related Built Environment Variables (TAZ Level)
BLdenIND1 Bike Lane Density Indicator = Sum (Bike Lane Density/Distance to Home TAZ within 3 miles)

Bike Lane Density for Each TAZ = ((Street15-25 mph) * 1 + (Street 35 mpg) * 2 + Bike Lane Class1 * 3 + Bike Lane Class2 * 4 Bike Lane Class 3 * 5)/Total TAZ
area (excluding speed > 60mph)

Blck_len1 Estimated block length = Local St/Int34new (Total street length/number intersection), but freeways and state highways are excluded
WalkAcc1 Walk Accessibility (RS_den2/block_len) = (weighted retail + service density)/estimated block length
Pct_Art1 Percent of main arterial (45–55 mph) of TAZ � higher % means more difficult to across street (also larger block to across street); can be used with

WalkAcc
Natural Log Transformation
L_Pden1 L_Pden = Ln (Pop_den + 0.001)
L_Hden1 L_Hden = Ln (HH_den + 0.001)
L_Eden1 L_Eden = Ln (Emp_den + 0.001)
L_REden1 L_REden = Ln (Ret_den + 0.001)
L_RSEden1 L_RSEden = Ln (RetSer_den + 0.001)
Crash Count (Geo-coded to the actual location)
Ped Pedestrian-involved accidents count.
Bike Bike-involved accidents count.
Distance
Distance The distance between each pair of the 655 transit stops (miles)
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where b0 is the global intercept, b is a fixed coefficient vector, X is
the covariate matrix, / is the spatially structured error term, and
fit by the multivariate conditional autoregressive (MCAR), e repre-
sents the white noise matrix. For the bivariate model, correlated
priors in the random effects vector are estimated using normal pri-
ors (Ma & Kockelman, 2006; Park & Lord, 2007):

e � Normal l;
X� �

ð3Þ

where e ¼ e1
e2

� �
; l ¼ l1

l2

� �
;
X

¼ s1
ffiffiffiffiffiffiffiffiffiffi
s1s2

p
=q12ffiffiffiffiffiffiffiffiffiffi

s1s2
p

=q12 s2

� �
ð4Þ

In the above equations, Normal represents the bivariate normal
distribution, e is the independent random effect matrix which cap-
tures the extra-Poisson heterogeneity among locations, l is the
vector consisting of the mean value for each transportation mode,
and

P
is called the precision matrix where the diagonal elements

s’s represent the marginal precision of each of the transportation
modes, while the off-diagonal elements represent the inverse of
covariance, calculated as the ratio of

ffiffiffiffiffiffiffiffiffiffi
s1s2

p
and q12 (or the correla-

tion coefficient between the two response variables). If no correla-
tion between the transportation modes is assumed, the off-
diagonal elements can be specified to zero. In this research, both
correlated and non-correlated modes are considering for model
performance purposes. This inverse of the precision matrix is
defined by:X�1 � WishartðI;nÞ ð5Þ

where the
P�1 is a symmetric positive definite matrix, I is the scale

matrix (Congdon, 2007), and J (J = 2) is the degree of freedom,

resulting in a non-informative specification (Heydari et al., 2017).
The covariates coefficient was specified with a normally distributed
vague priors N (0,100). Such diffused normal distribution with
mean values of zero and a large variance is commonly employed
as a vague prior to posterior estimates n the absence of sufficient
knowledge of priori distribution (Osama & Sayed, 2017; Cheng
et al., 2018).

To tackle the spatial dependency, the authors employed the
MCAR algorithm initially derived by Mardia (1998) from the
results in Besag (1974). Let /T ¼ ð/T

1 � � � :::/T
mÞ, where U is nm �1;

with each / being an n-dimensional vector. In the present study,
n = 2 representing the two transportation modes, and m = 655 rep-
resenting the 655 transit stops in Los Angeles County. Considering
a bivariate Gaussian distribution for U:

Uð Þ ¼ 2pð Þ�nm
2 Sj j12 exp �1

2
UTSU

� �
ð6Þ

where S is a nm � nm precision matrix. The matrix can also be con-
sidered as a m � m block matrix n � n blocks S. Following the
Mardia (1998), the zero-entered MCAR, which has a conditional
normal density, is shown as follows:

/ij/j;

X
i

� Nk

X
j�1

Cij;/j;

X
i

 !
ð7Þ

where subscripts i and j refer to a transit stop and its neighbors j,
each

P
i is an n � n positive definite matrix representing the condi-

tional precision matrix, Cij is a distance matrix of the same dimen-

sions
P

i (Jonathan et al., 2016). The precision matrix
P�1 follows

the Wishart distribution as shown in Eq. (5).

Fig. 2. Traffic Collisions within Half-Mile Buffers of Major Transit Stops in the San Fernando Valley (Part of LA County).
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4.2. Variable importance by random forest

Random forest (RF) is an ensemble classifier that consists of
many decision trees and outputs the model estimates by individual
trees. The method combines bagging and the random selection of
features to construct a collection of decision trees with a controlled
variation. Using ensembles of predictors for classification or
regression has proved to yield more accurate results than using a
single predictor. This technique has an advantage over the tradi-
tional decision trees of obtaining unbiased error estimates without
separating the cross-validation test dataset. When a particular tree
is grown from a bootstrap sample, usually-one-third of the training
cases, called out-of-bag (OOB) data, are left out and not used to
grow the tree.

The efficient implementation of the RF algorithm relies on two
important components: the number of trees to grow, and the num-
ber of predictors that would be selected to split each node to pro-
duce stable results and a minimumOOB error rate. Once the proper
values of the tree number and predictor size were determined, the
variable importance ranking was reported based on the mean
decrease of accuracy in predictions on the OOB samples when a
given variable is excluded from the model. A similar practice is
shown in some previous research in the traffic safety field
(Abdel-Aty & Haleem, 2011; Siddiqui et al., 2012; Jiang et al.,
2016). As illustrated in these studies, compared with the typical
feature selection techniques such as forward or backward selection
based on statistical model metrics, the RF is free of specific data
distribution and features the enhanced capability to handle data
complexity, especially those with a high order of interactions.
The interested readers can refer to the pertinent document
(James et al., 2013) for details of RF and variable importance
ranking.

4.3. Evaluation criteria

For Bayesian hierarchical model evaluation, deviance informa-
tion criterion (DIC) is a popular criterion used to assess the models’
complexity and goodness of fit (Spiegelhalter et al., 2003). As a
hierarchical modeling generalization of the Akaike information cri-
terion (AIC), DIC can be expressed as using the following
formulation:

DIC ¼ D h
�� �

þ 2PD ¼ D
�
þPD ð8Þ

where D h
�� �

is the deviance evaluated at the posterior means of

estimated unknowns h
�� �

, and posterior mean deviance D
�

can be

taken as a Bayesian measure of data-fitting. PD denotes the effective

number of parameters in a model, as the difference between D h
�� �

and D
�
. In general, the difference between observed and model-

predicted data decreases as the number of parameters in a model
increases. Therefore, the PD term is mainly used to compensate
for this effect by favoring models with a smaller effective number
of parameters. The larger the DIC value, the worse the model tends
to perform. As a general rule of thumb suggested by Lunn et al.
(2012): the models with a DIC value less than five are considered
to have the same performance. The models with a greater DIC value
by 5 and 10 points are slightly worse, and the models with a larger
DIC by more than 10 points are significantly worse. Overall, DIC
may be regarded as the measure of an indirect assessment of the

out-of-sample errors as it is based on in-sample errors (D
�
), while

also accounting for the bias due to overfitting usually resulting from
more model parameters (James et al., 2013).

Like DIC, the widely applicable information criterion (WAIC) is
another generalized version of AIC. For Bayesian models, WAIC
(Watanabe, 2010) can be viewed as an improvement on the DIC,
which is not fully Bayesian since it is based on a point estimate
(van der Linde, 2005; Plummer, 2008). By contrast, WAIC is fully
Bayesian, which is invariant to parametrization and closely
approximates Bayesian cross-validation using leave-one-out tech-
niques. Like DIC, the model with smaller WAIC is more preferred
(Gelman et al., 2013). WAIC was also used in the present research
as an additional criterion to assess model performance from a dif-
ferent perspective.

5. Results

For the bivariate spatial crash prediction models, the different
covariates were first selected for each of the two transportation
modes. The R-package ‘‘INLAMSM” was utilized to develop the
models and generate the posterior mean of the model parameters.
Distinct evaluation criteria were finally employed to assess the
model performance.

5.1. Feature selection

Based on the parsimony rule, it is often desirable to reduce the
model data load to the fewest number of inputs with maximal pre-
dictive accuracy. The typical feature selection techniques inte-
grated with statistical model development like backward-forward
feature selection are usually subject to the strong assumption of
the particular distribution function and lack the capability to han-
dle the possible complex variable interactions. Therefore, the pre-
sent study performs feature selection using the correlation analysis
and one of the ensemble techniques (or RF), which has recently
gained popularity due to its benefits over the typical techniques.

The RF model was developed via the R package ‘‘randomforest”
(Cutler et al., 2012). During the tree-growing, four predictor vari-
ables were randomly sampled as candidates at each split, where
the OOB error rate was found to be at a minimum of 0.264, with
63.24% of data variability being explained by the model. Once the
RF model was generated, the variable importance ranking was
determined based on the contribution of variables to reduce the
mean squared errors (MSE) in the OOB samples. The larger the con-
tribution, the more important the particular variable tends to be
for model development. The plots for the variable importance are
shown in Fig. 3 with a decreasing order (vertically) for both pedes-
trian and bike counts.

This study also performed a correlation analysis to avoid sup-
plying redundant information fed into the models. To determine
whether the variables are highly correlated or not, the popular
cut line 0.6 for the correlation coefficient with the significance
level of 0.05 was used. The correlated variables were removed in
multiple steps using the engineering judgment to avoid excluding
any significant variables. This procedure acts as a tradeoff between
omitted variable bias and multi-collinearity. At last, out of 32 vari-
ables, 14 were retained to perform modeling development, as
shown in Table 2 as variables marked in bold. It is noteworthy that
different covariates are used for different transportation modes,
which enhances the model flexibility and accuracy, with more
related important variables being used for the respective modes.

5.2. Model parameter estimates and performance evaluation

Once the proper covariates were selected for pedestrian and
bicyclist-involved collisions, two bivariate spatial models were
developed with and without explicitly considering the correlation
of the two modes.
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Table 3 reveals posterior estimates of model parameters with
and without correlation of pedestrian and bike. It can be observed
that models with explicit consideration of the correlation of pedes-
trian and bike highlight more statistically significant covariates
than the models without correlation being considered. For
instance, the variables ‘ExBus_D’ (Stop density for Express Bus
and BRT), ‘WalkAcc10(Walk Accessibility), and ‘L_Pden10 (Popula-
tion density) for pedestrian and EH_ratio1 (Job/Household ratio)

for the bike were found to be significant in models with correla-
tion. Such finding indicates that consideration of correlation
between the modes greatly impacts not only the coefficient magni-
tude but also the precision and the associated confidence level.
Interestingly, only one variable, ‘L_REden10 (Retail job density),
was found to have a statistically significant adverse impact across
both modes, either with or without correlation. The possible expla-
nation may be that the local area traffic management at retail areas
reduces vehicle operating speeds and thereby decreases the likeli-
hood of pedestrian and bicyclist collisions.

At the individual model level, three covariates which include
‘HH_den1l’ (Household density), ‘TTbus_D10 (Total bus stop den-
sity), and ‘Emix1310 (Job mix 13 sectors), appear to have a statisti-
cally positive impact on the pedestrian crash counts in both cases
(with and without correlation), indicating the propensity of pedes-
trians to be involved in collisions with the increase of the number
of households (Noland & Quddus, 2004; Ponnaluri & Nagar, 2010;
Sze et al., 2019), bus stops (Truong & Somenahalli, 2011;
Quistberg et al., 2015; Craig et al., 2019), and jobs (Hess et al.,
2004; Schneider et al., 2010; Miranda-Moreno et al., 2011; Lee
et al., 2015; Nesoff et al., 2018). Likewise, for bikes, there are four
statistically significant variables with consistent signs in both situ-
ations, which contain Blck_len1 (Estimated block length),
‘ExBus_D10 (Stop density for Express Bus and BRT), ‘L_Pden10 (Pop-
ulation density), and ‘L_Eden10 (Employment density). As expected,
the latter three variables demonstrate positive coefficient values,
suggesting that the increase in population, employment, and the
number of express bus stops lead to more bicyclist-involved colli-
sions. Interestingly, ‘Blck_len10 (Estimated block length) seems to
have a statistically negative influence on bike-involved crashes.
The phenomenon may be due to the longer reaction time and more
environmental adaptability rendered to the bicyclists by the
greater street block lengths.

As previously mentioned, this study employed both DIC and
WAIC to assess the performance of different models from different
perspectives. DIC, a penalized criterion, acts as a trade-off between
model fit and model complexity, which are represented by its two

components: posterior deviance (D
�
) and effectiveness number of

parameters (PD). WAIC, a fully Bayesian approach, was adopted
as a cross-validation measure to assess the model performance
from another angle. The models with comparatively smaller values

Fig. 3. A Variable Importance Plot for (a) Pedestrian-Involved Crash Counts (a) Bike-Involved Crash Counts. Note: ‘‘%IncMSE” represents the percentage of the drop of mean
squared errors with certain variables being excluded from the model development.

Table 2
Descriptive Statistics of Collected Data.

Variables Minimum Maximum Mean S.D.

Pop_den1 0.00 76.86 22.13 12.74
HH_den1 0.00 30.59 7.56 5.03
Emp_den1 0.05 127.48 11.81 12.17
Ret_den1 0.00 7.11 1.12 1.03
RetSer_den1 0.02 26.62 3.84 4.13
Jobmix131 0.23 0.86 0.65 0.08
Jobmix91 0.25 0.79 0.61 0.08
Emix131 0.30 0.77 0.66 0.05
Emix91 0.14 0.55 0.41 0.06
EH_ratio1 0.00 10495.77 94.07 757.99
EP_ratio1 0.00 10495.55 85.17 817.95
Int34_Den1 0.01 0.58 0.20 0.06
BKlnAcc1 0.00 1.00 0.56 0.30
Rail1 0.00 0.72 0.08 0.14
ExBus_D1 0.00 0.71 0.03 0.05
HFLbus_D1 0.00 0.47 0.05 0.05
TTbus_D1 0.00 2.71 0.42 0.29
Mlt_pct1 0.00 0.49 0.28 0.12
HQTA_pct1 0.00 1.00 0.89 0.23
TPA_pct1 0.00 1.00 0.71 0.33
BLdenIND1 0.03 11.82 6.32 2.83
Blck_len1 0.11 1.12 0.24 0.08
WalkAcc1 0.01 53.41 6.94 6.75
Pct_Art1 0.00 0.27 0.04 0.05
L_Pden1 0.01 6.91 2.78 0.90
L_Hden1 0.01 6.91 1.84 0.97
L_Eden1 0.06 4.13 1.81 0.94
L_REden1 0.00 5.62 1.04 0.76
L_RSEden1 0.00 4.55 0.80 0.66
Ped 0.00 222.00 48.12 38.50
Bike 0.00 177.00 35.93 29.65
Distance of pairs of stops 0.00 156.97 20.90 17.61

Notes: 1. S.D. represents standard deviation. 2. Variables fed into final spatial model
development are marked in a bold font.
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of DIC and WAIC indicate better performance (Gelman et al., 2013).
The results for DIC and WAIC are illustrated in Table 4. It is obvious
that the models with consideration of correlation of pedestrian and
bike counts demonstrate the superior performance under DIC,

WAIC, and D
�
. This superiority may be attributed to incorporating

the correlation structure that explicitly allows the flexibility to
capture spatial heterogeneity. However, the value of PD (950.68)
in the models with a correlation structure is substantially higher
(with a difference of 168.34 points) than in the models without
correlation. It suggests that the advantage associated with models
with correlation is accompanied by the dramatic increase in the
model complexity due to the inclusion of the correlation coeffi-
cient. Overall, the significantly better performance accompanied
by models with the included correlation clearly justifies the bene-
fits of addressing the correlation between the transportation
modes.

Table 5 illustrates the marginal precision and correlation coeffi-
cient between walking and biking crash counts. As exhibited, the
statistically positive correlation (see Eq. (4)) between the trans-
portation modes (q = 0.953) was observed within the correlated
effect models, which shows that the close spatial proximity (0.5-

mile-radius zone) may be attributed to shared unobserved factors
such as road surface type, lighting condition, day/night, and
weather condition between pedestrian and bicyclist crashes. The
results again corroborate the sensibility of using the bivariate spa-
tial framework in this study.

6. Conclusions and recommendations

The main objective of this study was to quantify the impact of
TOD influential variables on the pedestrian and bicyclist’s traffic
safety near those stops. For this purpose, joint models based on
the multivariate conditional autoregressive (MCAR) priors with
distance-oriented neighboring weight matrix were employed.
First, R package INLAMSM was employed to take advantage of
the approximate Bayesian inference within a bivariate spatial
framework. Second, different covariates to each of the two active
transportation modes were identified via the feature section using
both random forest and correlation analyses. The mode-specific
covariates used in the jointed models are anticipated to increase
both model flexibility and accuracy. Third, the rarely collected
transit stop-centered data allow the transportation practitioners
to better understand the safety-pertinent factors at these impor-
tant intermodal interfaces. Finally, evaluation criteria relying on
both in-sample and out-sample errors clearly reveal the perfor-
mance of models in both cases, or, with and without correlation
between the modes being explicitly taken into consideration. Over-
all, the following conclusions are drawn:

1. The models with the correlation of pedestrians and bicyclists
exhibited better results than those without the correlation
being considered. Such finding highlights the importance of
employing the bivariate spatial models, rather than two sepa-

Table 3
Description of Model Parameter Estimates.

Variables With Correlation of Ped and Bike Without Correlation of Ped and Bike

Pedestrian Bike Pedestrian Bike

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Model Parameters
(Intercept) 1.572 0.153 3.788 0.735 1.604 0.153 3.792 0.734
HH_den1 0.188 0.028 NA NA 0.453 0.052 NA NA
Jobmix91 0.015 0.044 NA NA 0.002 0.044 NA NA
Emix131 0.135 0.024 NA NA 0.286 0.044 NA NA
Emix91 NA NA 0.021 0.040 NA NA 0.048 0.036
EH_ratio1 NA NA �0.072 0.019 NA NA 0.029 0.032
BKlnAcc1 �0.031 0.044 0.034 0.040 �0.030 0.036 0.018 0.031
ExBus_D1 0.234 0.045 0.270 0.040 �0.007 0.042 0.130 0.031
TTbus_D1 0.095 0.025 NA NA 0.524 0.050 NA NA
BLdenIND1 NA NA 0.251 0.022 NA NA �0.684 0.038
Blck_len1 NA NA �0.086 0.026 NA NA �0.322 0.041
WalkAcc1 0.108 0.027 NA NA �0.034 0.046 NA NA
L_Pden1 0.295 0.049 0.289 0.044 0.073 0.045 0.085 0.037
L_Eden1 NA NA 0.100 0.033 NA NA 0.089 0.043
L_REden1 �0.216 0.050 �0.286 0.050 �0.098 0.046 �0.139 0.047

Notes: 1. The bold fonts represent the variables that are statistically significant at the significance level of 0.05.
2. S.D. represents standard deviation.
3. Refer to Table 1 for a detailed variable description.

Table 4
Good-of-fit criteria results.

Good-of-fit
Criteria

With Correlation of Ped
and Bike

Without Correlation of Ped
and Bike

DIC 8752.37 9285.00
WAIC 8706.51 9186.79

D
� 7801.69 8502.66

PD 950.68 782.34

Note: The bold fonts indicate the best performance under specific criteria.

Table 5
Marginal precision and correlation coefficient.

With Correlation of Ped and Bike Without Correlation of Ped and Bike

Pedestrian (S.D) Bike (S.D) Pedestrian (S.D) Bike (S.D)

s(Tau) 0.001 (4.2E�05) 0.002 (4.9E�05) 0.002 (4.2E�05) 0.003 (1.6-E04)
q(Rho) 0.953 (0.002) –

Note: 1. s represents marginal precision of pedestrian and bike. 2. q illustrates the correlation coefficient between pedestrian and bike. 3. S.D shows the standard deviation.
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rate univariate ones, to capture the unobserved heterogeneity
shared by the crashes involving both modes. It is noteworthy
the inclusion of the correlation parameter would substantially
enhance the model complexity per the model results.

2. Regarding model parameters, retail job density appeared to
have a statistically significant negative impact on both
modes-related collisions in cases of both correlation treat-
ments. The increase in households, jobs, and transit stops would
lead to the rise of pedestrian-involved crashes may be due to
the increase in pedestrian exposure. For bicyclists, the stop den-
sity for express bus and BRT, population density, and employ-
ment density seem to influence bicyclist-related crashes
significantly. Interestingly, longer street block length was
demonstrated to enhance bicyclist safety near the transit stops.
The potential reason may be the longer reaction time and more
surrounding adaptability rendered to the bicyclists by the
greater street block lengths.

The findings mentioned above from this study reflect a better
understanding of transit stop-related factors and their impacts on
active transportation safety. However, it is important to be aware
of some caveats. First, the current findings are based on the empir-
ical results obtained from the bicycle and pedestrian crash data of
Los Angeles County only. The superiority of specific models may
not hold when employed at a different spatial level. Second, even
though the present study focused on a set of influential factors to
pedestrian and bicycle safety, some other factor attributes includ-
ing road network configuration, accessible routes to public transit
station, and traffic management and control on pedestrian and
cyclist safety are also important to the active transportation safety,
and shall be further explored in the future studies.. Third, the pre-
sent study used the MCAR formulation to account for the spatial
correlation problem. It is recommended to explore the other spa-
tial formulations that might produce different findings from the
present study. Fourth, other feature selection techniques may lead
to different covariates used and hence the different coefficient val-
ues. Fifth, the zone with a fixed radius of 0.5 miles was utilized for
model development and evaluation purposes. The zones with dif-
ferent radii or varying radii corresponding to zones’ characteristics
might generate different findings. Sixth, the present paper uses the
typical variables such as population density and household density
to represent the proxy exposure. It’s preferred that household tra-
vel survey data and bike sharing data may be adopted to estimate
the pedestrian and bicyclist exposure, as shown in more recent
studies. Finally, the random effects were employed to address
the unobserved heterogeneity. Future studies may adopt a more
flexible approach of random parameters, which might lead to dif-
ferent parameter estimates from the current study.
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a b s t r a c t

Purpose: The impact of employer safety obligations on safety climate and safety outcomes has become an
important area of research in organizational and safety sciences. Evidence shows that employer safety
obligations positively impact safety outcomes, including safety climate and safety behaviors. However,
these relationships have not been thoroughly explored within the garment settings. This study is one
of the first known studies to examine the relationships between employer safety obligations, safety cli-
mate, and safety behavior outcomes in a sample of garment employees. Methods: Two-wave time-lagged
data were collected from 347 garment employees and their supervisors in Bangladesh. Hierarchical
regression analysis was applied to examine hypothesized relationships using AMOS a SPSS. Results:
Employer safety obligations positively influenced safety climate perceptions among garment employees.
Safety climate perceptions are positively and significantly associated with safety behaviors, including
safety compliance behaviors, prosocial safety behaviors, and proactive safety behaviors. Moreover, the
safety climate mediates the influence of employer safety obligations on safety behaviors. Conclusions:
These findings provide important evidence of the relationships between employer safety obligations,
safety climate, and safety behaviors in the garment industry of Bangladesh. Practical Applications:
Ultimately, these findings guide the government, garment manufacturers, and managers to bolster gar-
ment employees’ safety outcomes.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Workplace safety is an integral part of the national economy,
organizations, and society. Organizations strive to ensure safety
issues to maintain a safe workplace and achieve sustained compet-
itive advantage in an industry. Although previous research exam-
ined safety in different industries, there has been a lack of
apparel-related research on safety, which has led to more severe
accidents and injuries in the garment industry in recent years.
The collapse of the Rana Plaza building, the Tazreen Fashion factory
fire in Bangladesh, and the Ali Enterprises factory fire in Pakistan
accounted for three out of the seven world’s deadliest industrial
disasters in the last 20 years (McClure, 2018). The Rana Plaza
building collapse in Bangladesh killed at least 1,132 people and
injured more than 2500 people (ILO, 2018). A few months before
the Rana plaza incident, at least 112 workers had lost their lives

in another tragic accident in Bangladesh, trapped inside the burn-
ing Tazreen Fashions factory (ILO, 2018). Since the Rana Plaza tra-
gedy, at least 109 accidents have occurred in Bangladesh. Among
these, at least 35 were garment and textile industry incidents in
which 491 workers were injured and 27 were killed (ILO, 2018).
Therefore, the garment industry is considered the deadliest indus-
try in Bangladesh; fire and other health and safety incidents caused
1,303 deaths and 3,875 injuries from 2012 to 2018 (Solidarity
Center, 2018). These statistics accentuate the extreme importance
and urgency of reducing garment accidents and improving the
safety performance of garment employees.

Three common causes of accidents are attributed such as tech-
nical issues, organizational issues, and human factors. Despite the
development and implementation of modern technology in
improving safety management systems, human casualties and
injuries are still mounting in the garment setting due to organiza-
tional and human factors. Previous studies on safety-related
behaviors mainly focused on the influence of organizational factors
and leadership (Smith et al., 2016; Chen & Chen, 2014; Clarke,
2013); however, the psychological contract from employers’ per-
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spective (i.e., employer safety obligations) on individuals is still
rare. Considering that employees hold beliefs about safety obliga-
tions in their workplace (Walker, 2010), exploring further how
these beliefs transfer into employees’ safety-related attitudes and
behaviors within the garment settings is necessary. When observ-
ing the fulfillment of safety obligations by the employer, individual
employees may be more likely to comply with safety rules and
show safety citizenship behaviors.

Although a plethora of research identified the outcomes of a
safety climate, little attention has been paid to the reciprocity
between employer and employees, predicting an unthreatened
environment in the organization (Mullen et al., 2017). In the social
exchange theory, Blau (1964) suggests that mutual exchange hap-
pens between the two parties when one individual does something
in exchange for the action of other individuals or entities. More
specifically, employers are obliged to formulate and implement
safety policies and procedures to shape a safety climate – and in
response, employees are more likely to exhibit safety behaviors.
This reciprocity leads to psychological contracts (Rousseau, 1990)
that are stemmed from social exchange theory (Blau, 1964) and
the norm of reciprocity (Gouldner, 1960). In the realm of safety,
psychological contracts are individual beliefs in reciprocal safety
obligations between employees and employers viewed from the
employee’s perspective (Rousseau, 1990). An employer’s obliga-
tions to safety represent fulfilling implicit or explicit promises
(Walker, 2010). Perceived safety obligations are defined as employ-
ees’ beliefs regarding organizational safety activities stemming
from the influence of society and organizations, which have
become a significant predictor of organizational safety behavior
in recent years (Mullen et al., 2017). Prior research shows that
employees bear the beliefs of safety obligations in their working
environment (Walker, 2010; Walker, 2013). Walker and Hutton
(2006) established that individuals show safety behaviors in
response to the organizational applications of safety responsibili-
ties. This study focused on how employer safety obligations impact
employees’ in-role and extra-role safety behaviors—namely, safety
compliance behaviors, prosocial safety behaviors, and proactive
safety behaviors. Safety compliance behaviors are in-role task
behaviors that are somewhat mandatory to perform, whereas
prosocial and proactive safety behaviors are extra-role behaviors
that are volitional. Therefore, the first goal of this study is to iden-
tify the influence of employer safety obligations on employee
safety behaviors.

Although few researchers have shown a keen interest in reveal-
ing the influence of psychological contracts on safety climate in
recent years (e.g., Walker, 2013; Newaz et al., 2019b), not much
is known about the ready-made garment industries. Safety climate
is the shared perception of an organization’s safety-related poli-
cies, procedures, and practices (Griffin & Neal, 2000). This study
assumes that employer safety obligations influence building safety
climate in the garment organization. Employees expect employers
to provide necessary training to operate equipment, avoid acci-
dents, and respond to an emergency (Mullen et al., 2017). In addi-
tion, employers are expected to offer proper training for coworkers
and monitor the safety practices of coworkers to prevent the orga-
nization from safety violations (Walker, 2010). Employees want to
ensure that the equipment is well-maintained and operating cor-
rectly as a safety precaution. Accordingly, employees’ safety expec-
tations induce employers to shape a favorable safety climate. The
previous study found the positive influence of the psychological
contract of safety on safety climate (e.g., Walker, 2013; Newaz
et al., 2019b). Thus, the second goal of this study is to examine
the impact of perceived employer safety obligations on garment
employees’ safety climate attitudes.

The safety climate development process will be more accurately
understood when its connection to employer safety obligations is

investigated. Therefore, this study posits that employer safety obli-
gations in the ready-made garment industry will be predicted by
their employees’ safety perceptions (i.e., safety climate), which
ultimately affects employee compliance and their prosocial and
proactive safety behaviors. Evidence shows that safety behaviors
are related to safety climate (Clarke, 2006; Liu et al., 2019). More-
over, the safety climate developmental process is checked by
investigating the mutual relationship between employers and
employees. Therefore, the employer safety obligations model is
implemented to clarify the effect of perceived safety obligations
on a safety climate in the ready-made garment industry. Hence,
the third goal of this paper is to investigate whether employer
safety obligations impact garment employees’ perception of safety
climate, which, in turn, influences their safety compliance and
safety citizenship behaviors.

The study moves forward previous research in several ways.
First, we empirically investigated the consequences of employer
safety obligations on two important employee safety behaviors:
safety compliance and citizenship behaviors. Little is known about
the relationship between employer safety obligations and
employee prosocial and proactive safety behaviors. Second, this
study investigates how employer safety obligations impact
employee safety behaviors by examining the mediating role of
employees’ perceived safety climate. Previous studies largely
ignored the intervening mechanism through with employer safety
obligations affect employee behaviors. Finally, no empirical
research was found reflecting the employee safety attitudes and
behaviors in the garment industry. Moreover, the role of employer
safety obligations in developing a safety climate is articulated in a
few studies—mostly in Western settings. Therefore, further
research is warranted to validate the association in the garment
industry in a South Asian country, Bangladesh.

2. Literature review

2.1. Perceived employer safety obligations and safety behaviors

The safety literature reveals that employees show favorable
attitudes and behaviors in response to the social responses in part
from their organizations. Based on the social exchange theory
(Blau, 1964), psychological contract theory (Rousseau, 1990) pos-
tulates that in reaction to organizational transactional (e.g., safety
resource) and relational (e.g., safety commitment) influences,
favorable safety attitudes and behaviors are also demonstrated
(Walker, 2010). Over their employment period, employees build
their perceptions about the safety obligations of both employer
and employee (Walker & Hutton, 2006). Based on their stay in
the organization, employees make some expectations regarding
safety in their workplace that help them create perceptions of
safety-related obligations that demand reciprocal actions.

When it comes to expectations, garment employees focus on
having the essential skills to safely operate machinery and equip-
ment and prevent accidents from occurring (Mullen et al., 2017).
Employees frequently complain about a lack of training in identify-
ing potential hazards and responding to an emergency. Further-
more, if they are doing an unsafe job, they want their company
to stop them and safeguard them from harming their health and
safety (Walker, 2013). Although ensuring safety is a shared respon-
sibility, even a single employee’s disregard for safety might endan-
ger the well-being of their coworkers and the entire organization
(Walker, 2010). Employees want to be assured that no one is
allowed to engage in dangerous tasks without the proper training.
Employees try to protect themselves from the potential unsafe
behaviors of their coworkers. In order to prevent the company
from safety violations, employees expect that their employer will
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provide adequate training to coworkers and keep an eye on their
coworkers’ safety practices (Mullen et al., 2017). A well-
maintained and working piece of machinery can help protect
employees from the risk of equipment failures. In general, garment
organizations are concerned with ensuring that safety rules and
initiatives are appropriately implemented.

These safety expectations constitute psychological contracts of
safety. Employees think that the organization will look after their
safety and establish appropriate safety policies regarding their
welfare. When employees observe that their organization fulfills
safety-related obligations and transactional responsibilities, such
as providing regular safety training and the necessary resources
to cope with the safety measures, it signals to employees that their
safety and well-being are valued within the organization (Mullen
et al., 2017; Walker & Hutton, 2006). Conversely, there may be a
feeling of less fulfillment of obligations if the obligations are not
periodically met. If it continues over a long period, employees
may perceive it as a breach of contract (Walker, 2013), resulting
in dissatisfaction among the employees and provoking them to
demonstrate negligence in their safety behaviors (Walker, 2013).
If employers comply with safety obligations, it indicates to the
employees that their safety concerns are highly emphasized in
the organization. In response, employees feel obligated to demon-
strate safe behaviors (Hofmann & Morgeson, 1999; Kath et al.,
2010). Several meta-analyses of safety ensure the positive associa-
tion between organizational safety practices and employee safety
behaviors, thus supporting the concept of employer-employee
reciprocity of safety (Clarke, 2006; Liu et al., 2019).

Employer safety obligations are based on the social exchange;
therefore, there are perceived obligations on the part of employees
to reciprocate their responsibility by doing something that benefits
employers (Blau, 1964; Gouldner, 1960). This study proposes a
direct relationship between employer safety obligations and two
types of employee safety behaviors – namely, safety compliance
and safety-related organizational citizenship behaviors (OCBs).
Safety compliance represents safety performance related to
mandatory safety-related tasks, such as organizational safety pro-
cesses and relevant safety procedures. On the contrary, safety citi-
zenship behavior represents the voluntary safety-related behaviors
directed toward the organization and its employees, such as help-
ing employees cope with safety issues and providing safety-related
suggestions. Safety citizenship behaviors are the discretionary
behaviors that benefit the organization, but the formal reward sys-
tem does not recognize these behaviors (Organ et al., 2006).

OCBs are a comparatively less developed research domain
within the field of safety and are primarily tested as a single con-
struct for safety citizenship research (Curcuruto & Griffin, 2018;
Curcuruto et al., 2015; Curcuruto et al., 2019). The most common
categories of OCBs are prosocial and proactive (van Dyne &
LePine, 1998; Curcuruto & Griffin, 2018). Prosocial behaviors focus
on affiliation with other individuals and are exhibited through
cooperating with colleagues and seeking their welfare (Curcuruto
& Griffin, 2018). They concentrate mainly on the safety concern
related to group members and the establishment of the interper-
sonal relationship among its members. On the other hand, proac-
tive behaviors are inherently challenging, and they try to make
beneficial changes in work policies (Curcuruto et al., 2019; Mei
et al., 2018). These behaviors concentrate less on interpersonal
relations and more on changing the existing practices (Curcuruto
et al., 2016). Although these behaviors are discretionary, they are
separate from each other. Prosocial behaviors concentrate on col-
laboration and proactive behaviors, focusing on challenges. Follow-
ing the study by Curcuruto et al. (2015), this research considers
initiating change as proactive behavior and helping others as
prosocial behavior. These categories are reflected in the overall
OCB literature and indicate that safety behaviors can also be

divided in order to examine their differing impacts on outcomes
(Reader et al., 2017). This notion is supported by recent research
that demonstrates that these behaviors work with safety proce-
dures differently. Employees may reciprocate their responsibilities
by expanding their obligatory roles consistent with the type of
behavior valued in their work environment. Specifically, in
response to fulfilling safety obligations, employees payback their
employers by engaging in safety citizenship behaviors that benefit
the employer and others in the work setting. Given this evidence,
we assume that perceived employer safety obligations are related
to compliance, prosocial, and proactive safety behaviors. Hence,
the following hypotheses are drawn.

Hypothesis 1a. There is a positive relationship between perceived
employer safety obligations and employee safety compliance
behaviors.

Hypothesis 1b. There is a positive relationship between perceived
employer safety obligations and employee prosocial safety
behaviors.

Hypothesis 1c. There is a positive relationship between perceived
employer safety obligations and employee proactive safety
behaviors.

2.2. Safety climate and safety behaviors

Safety climate is the shared perception of safety affairs related
to risky operations (Zohar, 2000). Like the organizational climate,
safety climate perception instills behaviors that the organization
rewards and supports. Zohar (1980) defined an organizational
safety climate as ‘a summary of molar perceptions that employees
share about their work environments . . . a frame of reference for
guiding appropriate and adaptive task behaviors’ (p. 96). In a
broader sense, safety climate covers the manifestation of ongoing
safety culture and management’s attitude towards safety (Saedi
et al., 2020; Mullen et al., 2017). The focus on merely counting
the number of mishaps has been transformed into predicting and
controlling the safety scenario to reduce employee accidents and
injuries (Mearns et al., 2003). A strong safety climate in an organi-
zation leads to fewer occurrences of individual unsafe behaviors
that cause accidents and injuries (Lee et al., 2019). When opera-
tionalizing the safety climate, the shared perception of employees
on the relative priority of safety over other priorities is repre-
sented. In measuring their safety climate, employees express their
perception of their supervisor’s priority in safety matters, while
other competing demands related to achieving the mission must
be completed (Zohar & Luria, 2004).

Researchers used different constructs to assess safety climate,
such as supervisor support, safety communication, safety motiva-
tion, safety knowledge, safety policy, safety training, safety atti-
tude and commitment, safety priority, safety budget, coworker
support, and safety awareness (e.g., Zohar & Luria, 2005; Liu
et al., 2015; Olsen, 2010; O’Connor et al., 2011; Brondino et al.,
2012; Huang et al., 2016; Lu & Yang, 2011). These constructs vary
from industry to industry (Glendon & Litherland, 2001), thus
requiring specifying the relevant constructs that represent the
safety climate of the garment industry. Extant research has been
conducted to explore the safety climate in different sectors such
as nuclear power operations (e.g., Morrow et al., 2014), manufac-
turing (e.g., Zohar, 2000, 2002; Griffin & Neal, 2000; Liu et al.,
2015), construction (e.g., Huang et al., 2006), passenger ferry
(e.g., Lu & Yang, 2011), transport (e.g., Fugas et al., 2012), and hos-
pitals (e.g., Neal et al., 2000). However, there remains a gap in the
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relevant safety climate scale for the garments industry. After
reviewing the literature on safety climate constructs in the differ-
ent industrial sectors and the garment industry’s safety practices,
this study includes management values, communication, training,
and systems. Unlike breaking down the safety climate into several
components, this research considers safety climate as a single con-
struct to examine its relationship with the study variables (Neal
et al., 2000; Lu & Tsai, 2010; Lu & Yang, 2011). The employees’ pos-
itive perception of the safety climate induces them to engage in
safety compliance, proactive safety, and prosocial behaviors
(Curcuruto & Griffin, 2018; Jiang et al., 2019). Several meta-
analyses established the positive influence of safety climate on
employee safety compliance and safety citizenship behaviors
(e.g., Clarke, 2006; Liu et al., 2019). Taken together, we posit the
following hypotheses.

Hypothesis 2a. Perceived safety climate is positively related to
employee safety compliance behaviors.

Hypothesis 2b. Perceived safety climate is positively related to
employee prosocial safety behaviors.

Hypothesis 2c. Perceived safety climate is positively related to
employee proactive safety behaviors.

2.3. Perceived employer safety obligations and safety climate

As discussed earlier, when employees experience any safety-
related social influence within the organization, they are more
likely to reciprocate the benefits through positive safety attitudes
and behaviors (Hofmann et al., 2003; Hofmann & Morgeson,
1999). In response to fulfilling an employer’s safety-related trans-
actional and relational influences, employees develop a positive
attitude toward the organizational safety climate. The felt obliga-
tion induces favorable safety culture in the garment organizations.
Employees expect their company to provide adequate training to
handle the hazardous elements of their jobs and cope with emer-
gencies. Employees place a high value on the ability to safely oper-
ate machinery and equipment and the ability to prevent accidents.
Employees are constantly on the lookout for ways to keep them-
selves and their coworkers safe. Employees want the employer to

provide appropriate training to their coworkers and monitor their
safety behaviors to protect the organization from violation of
safety procedures. Employees want to make certain safety policies
and procedures are implemented correctly. On a sample of health-
care workers in Australia, Walker (2013) found that employer
breach of safety obligations negatively influences employees’
safety climate attitudes and employee fulfillment of safety obliga-
tions positively influences safety climate attitudes. Similarly, in a
study on construction employees in Australia, Newaz et al.
(2019b) found that the psychological contract of safety positively
influences different components of safety climate. In line with
the findings and arguments, we assume that employee safety obli-
gations positively impact employee safety climate attitudes. Thus,
the following hypothesis is predicted.

Hypothesis 3. Perceived employer safety obligations are positively
related to employee safety climate attitudes.

2.4. Safety climate, perceived employer safety obligations, and safety
behaviors

In line with the previous discussion, a comprehensive investiga-
tion would explain how fulfilling employer safety obligations
impact employees’ safety climate attitudes and, ultimately, their
safety behaviors (Walker, 2013; Newaz et al., 2019a; Mullen
et al., 2017). Based on psychological contract theory (Rousseau,
1990) and social exchange theory (Blau, 1964), this study further
assumes that employer safety obligations positively influence
safety climate, affecting employee safety behaviors. More specifi-
cally, when employer safety obligations are met, employees recip-
rocate positive attitudes toward safety policies and practices in
their organization, leading them to engage in certain safety-
related behaviors. Therefore, the following hypothesis is drawn.
The proposed model is depicted in Fig. 1.

Hypothesis 4a. Employee perceived safety climate mediates the
positive relationship between perceived employer safety obliga-
tions and employee safety compliance behaviors.

Hypothesis 4b. Employee perceived safety climate mediates the
positive relationship between perceived employer safety obliga-
tions and employee prosocial safety behaviors.

Fig. 1. The proposed model.
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Hypothesis 4c. Employee perceived safety climate mediates the
positive relationship between perceived employer safety obliga-
tions and employee proactive safety behaviors.

3. Methodology

3.1. Participants and procedures

The respondents were full-time employees from a large ready-
made garment organization located in the Gazipur district in Ban-
gladesh. We contacted the human resource manager for consent to
the survey. After getting approval, the human resource manager is
requested to provide a list of full-time employees. We randomly
chose the employees from the list and distributed the question-
naire. We employed a back-translation method to convert English
to Bengali because all of the items used in this study were initially
written in English (Brislin, 1980). Two sets of questionnaires were
developed for employees and their immediate supervisors. To
ensure the face and content validity, we approached two profes-
sors who taught management and four senior safety officers to
adjust the items with the work practices and culture in the study
context. Further, a pilot study was conducted to ensure the content
validity of the items, and a group of garment employees (n = 32)
and their supervisors (n = 8) at a garment organization in the Gazi-
pur district were surveyed. The alpha reliability of all the con-
structs was tested, and found the reliability ranged between 0.73
and 0.87. The final questionnaire was delivered face-to-face during
their working hours.

We conducted our surveys in two phases with a lag of four
weeks. Collecting data from different periods might prevent possi-
ble common method bias problems (Podsakoff et al., 2003), and
this method supports the proposition that the perceptions of
employer safety obligations might affect perceived safety climate
and employee safety behavior. Data with different time lags were
designed to decrease the participants’ fatigue and promote the
temporal separation among the study variables, such as indepen-
dent and mediating variables. Participation in the survey was vol-
untary. At Phase 1, the structured questionnaire was distributed to
550 respondents. A cover letter addressing the study’s purpose and
assuring the confidentiality of their response was mentioned in the
questionnaire. The respondents were requested to submit their
completed questionnaires the following day. The questionnaire
contained the independent variable that includes the perception
of employer safety obligations. A total of 378 employees (68.73%)
completed the survey. Four weeks later, all initial participants were
surveyed. The second phase questionnaire contained the mediating
variable that included employee-perceived safety climate. In Phase
2, their immediate supervisors were also surveyed. Codes were
allocated to ensure the identification of the dyadic relationship
and anonymity. The questionnaire completed by the supervisors
included safety compliance behaviors, prosocial safety behaviors,
and proactive safety behaviors. Overall, dyadic responses were
received from 358 employees (65.10%). A sample of 347 employees
(63.10%) was obtained after eliminating 11 incomplete question-
naires. Due to the fact that the respondents were surveyed during
their working time, a high response rate was achieved. Most of the
employees were female (75.8%), and the organization’s average
employee tenure was approximately-three years. The average age
of the employees was about 24; around 68% of the participants
received a high school education (HSC) or below. A total of 78
supervisors responded. Most of the supervisors were male
(62.4%), and the organization’s average supervisor tenure was
approximately-seven years. The supervisors’ average age was
about 39; around 57% of the participants received a Bachelor’s
degree or above.

3.2. Measures

All the measures used in this study were collected from the
established literature.

3.2.1. Perceived employer safety obligations
An 11-item measure, originated by Mullen, Kelloway, and Teed

(2017), of perceived employer safety obligations was used in this
study. These items were developed from the work of Walker
(2010) and focused on the transactional (as opposed to relational)
employer obligations (Walker, 2010). Table 1 shows the items of
perceived employer safety obligations. A five-point Likert scale
was used from 1 (strongly disagree) to 5 (strongly agree). The reli-
ability alpha was 0.94.

3.2.2. Safety climate
A 10-item measure of safety climate was used in this study,

developed by previous studies (i.e., Neal et al., 2000; Lu & Tsai,
2010; Lu & Yang, 2011). This scale measured the perception of
safety climate, focusing on management values, communication,
training, and safety systems. Exploratory principal axis factor anal-
ysis resulted in the extraction of one factor accounting for 64% of
item variance. All items loaded substantially (>0.70) on the factor.
A sample item reads, ‘My company has assigned safety issues as a
top priority.’ A five-point Likert scale ranging from 1 (strongly dis-
agree) to 5 (strongly agree) was used to measure the safety climate.
Cronbach’s alpha was 0.96.

3.2.3. Safety compliance behavior
The supervisors completed a three-item scale developed by

Neal and Griffin (2006) was used to measure safety compliance.
The sample items include ‘This employee use all the necessary
safety equipment to do his/her job.’ A five-point Likert scale rang-
ing from 1 (never) to 5 (frequently) was used to measure this
behavior, and the reliability coefficient was 0.86.

3.2.4. Proactive safety behavior
The supervisors completed a four-item scale developed by

Hofmann et al. (2003) to measure proactive safety behavior. This
study established the initiation of safety-related change behavior
as one of the proactive safety behaviors. One sample item was ‘This
employee tries to improve safety procedures.’ A five-point Likert
scale ranging from 1 (never) to 5 (frequently) was used to measure
this behavior. Cronbach’s alpha was 0.84.

3.2.5. Prosocial safety behavior
The supervisors completed a six-item scale developed by

Hofmann et al. (2003), which was used to measure voice behavior
as a prosocial safety behavior. One sample itemwas ‘This employee
assists others to make sure they perform their work safely.’ A five-

Table 1
Items of perceived employer safety obligations.

1. Provided me with safety training
2. Showed me how to prevent accidents
3. Pointed out aspects of the job that could potentially harm me
4. Taught me how to respond to emergency situations
5. Prevented me from carrying out potentially dangerous work
6. Prevented me from performing a task that I have not been properly trained

to do
7. Taught me how to properly use equipment and machinery
8. Ensured that my coworkers were properly trained before performing a job
9. Monitored the safety behavior of my coworkers to ensure they do not

injure someone
10. Implemented safety policies and practices
11. Ensured the equipment is maintained and properly functioning
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point Likert scale ranging from 1 (never) to 5 (frequently) was used
to measure this behavior. The reliability coefficient of this measure
was 0.94.

3.2.6. Control variables
This study controlled age, experience, gender, and education

(Wang et al., 2019). Gender was measured using a dummy variable
(0 for male and 1 for female), and the educational level was mea-
sured using a scale of 1 through to 5 (1 for ‘below secondary school
certificate;’ 2 for ‘secondary school certificate;’ 3 for ‘higher sec-
ondary school certificate;’ 4 for ‘undergraduate;’ 5 for ‘post-
graduate’). Age and experience were both measured in the number
of years.

4. Results

4.1. Preliminary analysis

The descriptive statistics are reported in Table 2. The study vari-
ables were significantly related to each other. All the correlation
values are below the threshold value of 0.9, which indicates that
the multicollinearity problem is not a concern in this study (Hair
et al., 2006). We conducted the confirmatory factor analysis
(CFA) using AMOS v23 statistical software. The maximum likeli-
hood estimation was taken. Several model fit indices were evalu-
ated, such as comparative fit index (CFI), Tucker-Lewis index
(TLI), root mean square error of approximation (RMSEA), and Stan-
dardized Root Mean Square Residual (SRMR). The result of the CFA
showed a five-factor model having a sound model fit
(v2 = 2835.961, df = 488, v2/df = 1.713, CFI = 0.970, TLI = 0.966,
RMSEA = 0.045, SRMR = 0.046).

Table 3 showed the factor loadings of all five latent factors to be
significant and above the threshold value of 0.7. Items six and eight
of employer safety obligations were not above them and were thus
dropped from the analysis (Tabachnick et al., 2007). We further
tested the convergent and discriminant validity of the latent vari-
ables. Convergent validity is about howmuch of a given construct’s
indicators converge or have a high share of variance in common
(Hair et al., 2014). We estimated factor loadings and average vari-
ance extracted (AVE) to identify the convergent validity. Discrimi-
nant validity refers to how different a latent factor is from other
latent factors (Hair et al., 2014). The square root of AVE was used
to check the discriminant validity. Table 2 shows that all the AVE
values are above the threshold value of 0.5 (Fornell & Larcker,
1981). Table 2 also revealed that the square root of AVE that repre-
sents in the diagonals was greater than the respective correlation
values displayed in the rows and columns – which determines dis-
criminant validity. Thus, the data of this study confirmed the reli-
ability, convergent, and discriminant validity issues.

4.2. Hypothesis testing

This study conducted a hierarchical regression analysis to test
the hypotheses. We predicted that employer safety obligations
influenced safety compliance behaviors, prosocial behaviors, and
proactive behaviors in hypotheses 1a, 1b, and 1c, respectively. As
per our assumption, Table 4, Model 2 showed that employer safety
obligations positively influenced safety compliance behaviors
(b = 0.41, SE = 0.05, p < 0.01). Thus Hypothesis 1a was supported.
As shown in Table 5, Model 5, proactive safety behaviors predicted
perceived employer safety obligations (b = 0.57, SE = 0.04,
p < 0.01). Therefore, Hypothesis 1b was also supported. Table 5,
Model 8 showed that perceived employer safety obligations influ-
enced prosocial safety behaviors (b = 0.55, SE = 0.05, p < 0.01).
Hence, Hypothesis 1c was accepted.

Table 2
Descriptive statistics, CR, AVE, and correlation.

Variables Mean SD Alpha CR AVE SC ESO SPA SCB SPS

SC 3.57 0.75 0.96 0.95 0.68 0.82
ESO 3.77 0.61 0.94 0.94 0.61 0.42 0.78
SPA 3.99 0.54 0.84 0.85 0.58 0.49 0.59 0.76
SCB 3.91 0.58 0.86 0.86 0.67 0.45 0.46 0.50 0.82
SPS 4.00 0.62 0.94 0.94 0.71 0.47 0.59 0.58 0.61 0.84
Age 23.84 3.94
Gendera 1.24 0.43
Education level 2.23 0.81
Organization tenure 5.16 3.88

Note: SC = Safety Climate, ESO = Employer Safety Obligation, SPA = Safety Proactive Behavior, SCB = Safety Compliance Behavior, SPS = Safety Prosocial Behavior, CR = Com-
posite Reliability, AVE = Average Variance Extracted, Values in diagonal represents the square root of AVE.

a Male = 0, Female = 1.

Table 3
Factor loadings of the items.

ESO SC SPA SCB SPS

ESO1 0.706
ESO2 0.831
ESO3 0.879
ESO4 0.778
ESO5 0.837
ESO6 0.651
ESO7 0.717
ESO8 0.549
ESO9 0.884
ESO10 0.855
ESO11 0.743
SC1 0.774
SC2 0.885
SC3 0.858
SC4 0.851
SC5 0.743
SC6 0.759
SC7 0.768
SC8 0.772
SC9 0.904
SC10 0.881
SPA1 0.750
SPA2 0.753
SPA3 0.767
SPA4 0.773
SCB1 0.837
SCB2 0.832
SCB3 0.790
SPS1 0.824
SPS2 0.886
SPS3 0.879
SPS4 0.905
SPS5 0.828
SPS6 0.731

Notes: SC = Safety Climate, ESO = Employer Safety Obligation, SPA = Safety Proactive
Behavior, SCB = Safety Compliance Behavior, SPS = Safety Prosocial Behavior.
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We further predicted that employee perceived safety climate
was positively associated with supervisor-rated safety compliance
behaviors (2a), proactive safety behaviors (2b), and prosocial safety
behaviors (2c). As shown in Table 4, Model 3, perceived safety cli-
mate was positively associated with safety compliance behavior
(b = 0.32, SE = 0.04, p < 0.01). Table 5, Model 6 showed that per-
ceived safety climate significantly influenced proactive safety
behavior (b = 0.31, SE = 0.04, p < 0.01). As shown in Table 5, Model
9, prosocial safety behaviors predicted perceived safety climate
(b = 0.36, SE = 0.04, p < 0.01). Thus hypotheses 2a, 2b, and 2c
received support. Additionally, we predicted that perceived
employer safety obligations were related to perceived safety cli-
mate. As shown in Table 5, Model 9, perceived safety climate pre-
dicted perceived employer safety obligations (b = 0.51, SE = 0.06,
p < 0.01). Hence, Hypothesis 3 was not rejected.

In Hypotheses 4a, 4b, and 4c, this study projected that safety
climate would mediate the relationship between employer safety
obligations and safety compliance, proactive safety, and prosocial
safety behaviors. To test these hypotheses, we followed
MacKinnon’s (2008) four-step procedure to establish the media-
tion effect, which demands: (a) a significant relation between
employer safety obligations and three dependent variables such
as safety compliance, proactive safety, and prosocial safety behav-
iors; (b) a significant relationship between employer safety obliga-
tions and safety climate; (c) a significant relationship between
safety climate and three dependent variables such as safety com-
pliance, proactive safety, and prosocial safety behaviors while con-

trolling for employer safety obligations; and (d) a significant
coefficient for the indirect path between the employer safety obli-
gations and three dependent variables, such as safety compliance,
proactive safety, and prosocial safety behaviors via safety climate.
The bias-corrected percentile bootstrap method determines
whether the last condition is satisfied or not. This study estimated
parameters for the mediation effect with PROCESS macro (Model 4)
by Hayes (2013). This study has included respondents’ age, gender,
education, and organizational tenure as covariates throughout the
analyses.

The first and second steps of MacKinnon’s procedure were
demonstrated earlier in analyzing hypotheses 1, 2, and 3, and the
relationships among the study variables were significant. In the
third step, when this model was controlled for employer safety
obligations, safety climate was significantly related to safety com-
pliance behaviors (b = 0.22, p < 0.01; Table 4, Model 4); proactive
safety behaviors (b = 0.14, p < 0.01; Table 5, Model 7); and proso-
cial safety behaviors (b = 0.22, p < 0.01; Table 5, Model 10). We uti-
lized the Sobel test (Sobel, 1982) to calculate the critical ratio as a
test of whether the indirect effect of the employer safety obliga-
tions on the safety behaviors via safety climate is significantly dif-
ferent from zero. The Sobel test confirms the significance of the
indirect relationships of employer safety obligations with safety
compliance behaviors (z = 4.586, SE = 0.024, p < 0.01), proactive
safety behaviors (z = 3.965, SE = 0.018, p < 0.01), and prosocial
safety behaviors (z = 4.607, SE = 0.023, p < 0.01). Finally, the bias-
corrected percentile bootstrap method showed that the indirect

Table 4
Hierarchical regression effect of safety climate and safety compliance behavior.

Variables SC Safety Compliance Behavior

Model 1 Model 2 Model 3 Model 4

Control variables
Age �0.03(0.04) �0.05(0.03) �0.045(0.03) �0.04(0.03)
Gendera 0.11(0.09) 0.03(0.07) 0.00(0.07) 0.00(0.06)
Education level 0.06(0.05) 0.00(0.04) �0.03(0.04) �0.01(0.03)
Organization tenure 0.05(0.04) 0.06(0.03) 0.05(0.03) 0.05(0.03)

Independent Variables
Employer Safety Obligation 0.51**(0.06) 0.41**(0.05) 0.30**(0.05)
Safety Climate (SC) 0.32**(0.04) 0.22**(0.04)

F 15.58** 16.71** 15.10** 20.08**

R2 0.20 0.20 0.20 0.26
Adjusted R2 0.17 0.19 0.17 0.25
D R2 0.06

Notes: Values in parentheses are standard errors; entries are unstandardized coefficients.
** p < 0.01.
a Male = 0, Female = 1.

Table 5
Hierarchical regression effect of Proactive safety behavior and prosocial safety behavior.

Variables Proactive Safety Behavior Prosocial Safety Behavior

Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Control variables
Age 0.00(0.02) 0.00(0.03) 0.01(0.02) 0.01(0.03) 0.02(0.03) 0.02(0.03)
Gendera 0.07(0.05) 0.05(0.06) 0.05(0.05) 0.13(0.07) 0.10(0.07) 0.10(0.06)
Education level 0.02(0.03) �0.02(0.03) 0.01(0.03) 0.00(0.04) �0.04(0.04) �0.01(0.03)
Organization tenure 0.01(0.03) 0.00(0.03) 0.00(0.02) �0.00(0.03) �0.01(0.03) �0.01(0.03)

Independent Variables
Employer Safety Obligation 0.57**(0.04) 0.50**(0.04) 0.55**(0.05) 0.44**(0.05)
Safety Climate (SC) 0.31**(0.04) 0.14**(0.03) 0.36**(0.04) 0.22**(0.04)

F 50.24** 16.66** 47.70** 30.62** 14.16** 32.70**

R2 0.42 0.20 0.46 0.31 0.21 0.37
Adjusted R2 0.42 0.19 0.45 0.30 0.20 0.36
D R2 0.26 0.16

Notes: Values in parentheses are standard errors; entries are unstandardized coefficients.
** p < 0.01.
a Male = 0, Female = 1.
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effect of employer safety obligations on safety compliance behav-
iors via safety climate was significant, ab = 0.23, SE = 0.06, 95%
CI = [0.1304, 0.4017]. This mediation effect accounted for 26% of
the total effect. Similarly, the indirect effect of employer safety
obligations on proactive safety behaviors via safety climate was
significant, ab = 0.31, SE = 0.07, 95% CI = [0.1503, 0.4254]. The
mediation effect accounted for 46% of the total effect. The indirect
effect of employer safety obligations on prosocial safety behaviors
via safety climate was significant, ab = 0.26, SE = 0.05, 95% CI =
[0.1035, 0.3654]. This mediation effect accounted for 37% of the
total effect. Overall, the study results satisfied the four criteria
for establishing a mediation effect. Therefore, hypotheses 4a, 4b,
and 4c were supported.

5. Discussion

The primary purpose of this study was to identify the relation-
ship between employer safety obligations and employee safety
behaviors such as safety compliance, prosocial, and proactive
safety behaviors. This study also examined the mediating role of
safety climate in the association between employer safety obliga-
tions and employee safety behaviors. Time-lagged analyses iden-
tify the positive effect of employer safety obligations on
employee safety behaviors. The findings of this study showed that
employer safety obligations are significantly associated with
employee perceived safety climate. This study also revealed that
employee perceived safety climate positively related to
supervisor-rated employee safety compliance, prosocial safety
behaviors, and proactive safety behaviors. The results of this study
confirmed the mediating role of employee perceived safety climate
in the relationship between employer safety obligations and
employee safety compliance behaviors and prosocial and proactive
behaviors. These results endorse earlier studies in the safety
literature.

5.1. Theoretical contribution

This study examined and found the positive influence of
employer safety obligations on employees’ compliance, proactive,
and prosocial safety behaviors separately based on social exchange
theory and psychological contract theory. Mullen et al. (2017)
found that employer safety obligations were positively related to
employee safety behaviors in line with the findings. This study
focused on the three distinct safety behaviors to examine the rela-
tive impacts largely ignored in past studies. This study found that
employees were more likely to engage in safety citizenship behav-
iors than safety compliance behaviors. The most surprising finding
of this study was that proactive safety behaviors were more likely
to be displayed relative to prosocial behaviors if employees per-
ceived that employers fulfilled their safety obligations. This finding
indicated that employees were more likely to take charge and ini-
tiate safety-related change when they perceived that employers
performed safety obligations.

Our results contributed to the extant safety research that
revealed that proactive employee safety compliance predicted
safety climate attitudes and prosocial safety behaviors. The associ-
ation between safety climate and prosocial safety behaviors
remained unexplored, and this study found a positive linkage. Past
studies supported the impact of safety climate attitudes on safety
compliance behaviors (Griffin & Neal, 2000; Clarke, 2006; Liu
et al., 2019). Moreover, Fugas et al. (2012) found an indirect rela-
tionship between safety climate and employee self-reported proac-
tive safety behavior. The results also showed that employer safety
obligations impacted the construction of garment employees’
safety climate attitudes. Specifically, employees reciprocated

favorable safety climate attitudes in response to employer safety
obligations. The results were consistent with previous studies that
indicated that safety at work could be influenced by organizational
safety factors such as management’s safety concerns (e.g., Griffin &
Neal, 2000; Walker, 2013).

The psychological contract of safety literature primarily investi-
gated the direct relationships between employee safety attitudes
(e.g., Newaz et al., 2019b) and safety behaviors (e.g., Mullen
et al., 2017). However, no study investigated how employer safety
obligations influenced employees’ behaviors. Based on social
exchange theory and psychological contract theory, this study
examined employees’ safety climate attitudes as a mediating
mechanism through which employer safety obligations translated
into employee safety behaviors. This study’s findings suggested
that employees’ safety climate attitudes significantly mediated
the positive relationship between employer safety obligations
and employee compliance, proactive and prosocial safety behav-
iors. The fulfillment of employer safety obligations sends a mes-
sage to employees that the organization values them. In turn,
employees reciprocate positive attitudes toward safety policies
and practices in their organization, which ultimately leads them
to engage in certain safety-related behaviors.

Previous safety literature primarily concentrated on employee
self-rated measures of safety behaviors. However, research sug-
gested articulating relevant others to rate employees’ safety behav-
iors (Postlethwaite et al., 2009). This study focused on supervisor-
rated employee safety behaviors. Moreover, the data were col-
lected at two points with a four-week lag, which might reduce
the potential common method biases. Although the garment
industry is full of risks and hazards (Alamgir & Banerjee, 2019),
the industry’s safety issues are grossly overlooked in the current
literature. To the best of our knowledge, no study focused on orga-
nizational and human factors of safety in the garment industry.
Thus, this study sheds light on how organizational factors (i.e.,
employer safety obligations) impact garment employees’ safety
attitudes and behaviors in Bangladesh.

5.2. Practical implication

Employers should provide a safe working environment to
employees and arrange compensation systems to safeguard them
from accidents. The fulfillment of employer safety obligations
ensures protection against injuries and fatalities. Managers must
acknowledge that legislative duties related to health and safety
(e.g., ensuring safety training and providing safe equipment) can
be essential to enhance safety at work and employees’ safety
behaviors. Employers in the garment industry are expected to pro-
vide the necessary knowledge and skills relevant to handling
equipment, performing the job safely, and preventing accidents.
In addition, garment organizations should constantly monitor
and assess the employees’ tasks so that no one is forced to partic-
ipate in potentially hazardous activities. Workplace safety might
be jeopardized if coworkers engage in unsafe behavior. It is crucial
for organizations to make sure that every employee has received
proper safety training and demonstrates their safety behaviors by
adhering to the company’s safety rules and regulations. Employers
have to make sure that the equipment is well-maintained and run-
ning effectively in order to protect them from prospective failure.
In essence, managers should emphasize their obligations to formu-
late and implement garment organizations’ health and safety
systems.

Additionally, when managers fulfill the safety-related obliga-
tions, the employee will perceive the safety climate positively. In
the garment industry, the employees search for and select extre-
mely concerned employers about safety. Therefore, managers need
to realize that the effectiveness of safety policies and programs
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depends on fulfilling the employers’ safety obligations. Proactive
and prosocial safety behaviors should be promoted to enhance
the safety issues in garment organizations. Managers in garment
organizations should gradually emphasize change-oriented safety
behaviors to improve organizational safety. In the same vein,
helping-related safety behaviors should be encouraged so that
employees can assist their coworkers in understanding and main-
taining safety concerns. However, if employers do not meet the
desired safety standards, employees may not engage in safety cit-
izenship behaviors. Therefore, the manager should test the candi-
dates as to whether they possess proactive and prosocial
behaviors in recruiting employees. Furthermore, managers should
provide the required training, devise appropriate appraisal sys-
tems, and arrange proper incentives to promote these behaviors
in garment employees.

5.3. Limitations and future research directions

This study has some limitations. First, in order to avoid poten-
tial common method variance (Podsakoff et al., 2003), the data of
this study were gathered at two-time phases and from both
employees and their immediate supervisors. Employees were
asked to rate both independent (i.e., employer safety obligations)
and mediating variables (i.e., safety climate), so the data might
be inflated. Second, the cross-sectional nature of this study cannot
confirm causality. A comprehensive longitudinal study might
explore the causal relationships among the study variables in
future studies. Third, this study had a significant gender imbalance
in the participant sample, with 75.8% of the participants being
female because the data were sought from the female-dominated
ready-made garment industry. Further studies may concentrate
on a balanced selection of male and female participants to general-
ize the findings. Finally, this research focused on the ready-made
garment industry in Bangladesh, and therefore it is not clear to
what extent the results generalize to other organizational settings
and countries. Further studies may examine other safety-related
organizational factors (e.g., servant leadership) and safety perfor-
mance to enhance understanding of why and how employer safety
obligations affect safety outcomes in different occupations and
organizational settings.

6. Conclusion

The purpose of the study was to identify why and how
employer safety obligations affect employee safety behaviors. This
study examined the effect of employer safety obligations on safety
attitudes and behaviors. Our time-lagged findings indicated a pos-
itive emphasis on social exchange relations in organizations. The
fulfillment of employer safety obligations influences employees’
safety climate attitudes and exhibits positive safety behaviors.
We also found strong associations between employer safety obli-
gations and safety behaviors through safety climate. Thus, we sug-
gest that employer safety obligations play a crucial part in
establishing safe working conditions. The results of this study
may help organizations facilitate the necessary safety policies
and practices.
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a b s t r a c t

Introduction: Specialized occupational injury surveillance systems are filling the gap in the undercount of
work-related injuries in industries such as agriculture and forestry. To ensure data quality and maximize
efficiency in the operation of a regional occupational injury surveillance system, the need for continued
dual coding of occupational injury records was assessed. Methods: Kappa scores and percent agreement
were used to compare interrater reliability for assigned variables in 1,259 agricultural and forestry inju-
ries identified in pre-hospital care reports. The variables used for the comparison included type of event,
source of injury, nature of injury, part of body, injury location, intentionality, and farm and agriculture
injury classification (FAIC). Results: Kappa (j) ranged from 0.2605 for secondary source to 0.8494 for
event and exposure. Individual coder accuracy ranged from medium to high levels of agreement.
Agreement beyond the first digit of OIICS coding was measured in percent agreement, and type of event
or exposure, body part, and primary source of injury continued to meet levels of accord reaching 70% or
greater agreement between all coders and the final choice, even to the most detailed 4th digit of OIICS.
Conclusions: This research supports evidence-based decision making in customizing an occupational
injury surveillance system, ultimately making it less costly while maintaining data quality. We foresee
these methods being applicable to any surveillance system where visual inspection and human decisions
are levied. Practical Applications: Assessing the rigor of occupational injury record coding provides critical
information to tailor surveillance protocols, especially those targeted to make the system less costly.
System administrators should consider evaluating the quality of coding, especially when dealing with
free-text narratives before deciding on single coder protocols. Further, quality checks should remain a
part of the system going forward.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The agricultural, forestry, and fishing industries (AgFF) have
consistently held the highest fatality rates of any other sector in
the nation. The average worker fatality rate in these fields is seven
times that of the national average, at 25.3 FTE versus 3.4 FTE (per
100,000 Full Time Employees) (Bureau of Labor Statistics, 2020).
Further, public health surveillance systems commonly fail to attain
numbers sufficiently representative of the impact of occupational
morbidity among these industries, underrepresenting injury and
acute events.

The Survey of Occupational Injuries and Illnesses (SOII) is a
common source of data for nonfatal injuries and illnesses in the
United States. While these data provide a snapshot into occupa-
tional morbidity, it does so through the collection of data for a ran-
dom sampling of U.S. businesses while excluding the military, self-
employed individuals, farms with less than 11 employees, and fed-
eral agencies (Bureau of Labor Statistics, 2015). Consequently, esti-
mates are not truly representative of nonfatal injury and illness
rates in smaller AgFF operations. As small-scale operations of this
sort make up the majority of businesses in the Northeastern United
States, large swathes of the AgFF industries ultimately go unac-
counted for (Leigh, Marcin, & Miller, 2004; National Occupational
Research Agenda, 2008; Ruser, 2008). Worsening this lack of repre-
sentation, some ancillary reporting systems such as the Occupa-
tional Injury Surveillance of Production Agriculture (OISPA) have
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been discontinued due to unsustainable costs (Centers for Disease
Control and Prevention, 2015).

There are numerous ongoing efforts to help fill this gap with
accurate reporting. The National Children’s Center for Agricultural
Health and Safety monitor agricultural injuries through media
reports, posted on the AgInjuryNews.org website. Data are gath-
ered from news media, social media, and obituaries for intentional,
unintentional, occupational, and non-occupational agricultural
cases (Weichelt, Salzwedel, Heiberger, & Lee, 2018). The University
of Nebraska Medical Center and Central States Center for Agricul-
tural Safety and Health (CS-CASH) have been surveying self-
employed farmers and ranchers since 2011. Their efforts allow
for a more accurate understanding of injury rates, consequences,
risk factors, and trends in their serviced region (Jadhav, Achutan,
Haynatzki, Rajaram, & Rautiainen, 2017). The NIOSH Western
States Division monitors the United States Coast Guard (USCG)
investigative reports to develop a Commercial Fishing Incident
Database (CFID) in order to identify hazards leading to death
and/or injury within the fishing community. Their database is
applicable at the national level, applying to all fishing industry
workers (Case, Lincoln, & Lucas, 2018). Larson et al. developed a
surveillance system to focus on migrants and seasonal workers.
These workers are notoriously difficult to track accurately due to
population movement, differences in definitions, duplicate counts,
and a plethora of other hazards. To combat this, the Migrant and
Seasonal Farmworker Enumeration Profiles Study (EPS) was cre-
ated to gather accurate numbers at the county level, as well as
state-level estimates for children and youths (Risto, 2021).

While not an exhaustive list of such systems, these efforts illus-
trate how more precise injury and illness rates are calculated, at a
variety of costs. However, there remains a need to provide greater
geographic coverage for these specific events and for systems to be
comparable. This process is typically accomplished by human
coders breaking apart the free-text data to assign consistent cod-
ing, often from the Occupational Injury and Illness classification
(OIICS) and Farm and Agricultural Injury Classification (FAIC) sys-
tems, for example.

Established in 1992 by the Bureau of Labor Statistics, OIICS clas-
sifies occupational injuries, illnesses, and fatalities with four main
categories: (1) nature of injury, (2) type of event or exposure, (3)
source of injury or illness, and (4) body part affected (Bureau of
Labor Statistics, 2012). Each category has up to four levels of
increasing detail. The OIICS codes are available in a tree format
online and are downloadable in desktop version of the tree struc-
ture and as Excel files for OIICS version 2.01, which has more than
3,000 individual codes.

Departing from this general occupational approach, the FAIC
system focuses on agricultural injuries alone, providing a trove of
detailed information from which researchers can pull. The FAIC
coding system was developed by the American Society of Agricul-
tural and Biological Engineers (ASABE) to identify if fatalities or
injuries related to farming/ranching are occupational (American
Society of Agricultural and Biological Engineers, 2020). There are
10 FAIC codes, with four of them linked directly to North American
Industrial Classification System (NAICS) codes. In addition to the
above, the NORA location specifies the locale of the incident, and
intentionality informs as to whether the incident was uninten-
tional or intentional, such as in the case of workplace violence or
a suicide.

The accuracy of the final data requires following the established
coding rules closely, and performing quality checks. This permits
for the aggregation of reports with other sources of data - essen-
tially converting them to a common tongue and allowing different
systems to ‘‘speak the same language.”.

Whenever dual coding is part of the research process, it is
important to mitigate variation between coders and to identify

potential sources for error. Northeast Center (NEC) researchers
developed an algorithm to identify AgFF injury in pre-hospital care
reports (PCR) which, until this analysis, employed a dual coding
protocol. The mechanics of the machine learning algorithm can
be found in previous publications (Hirabayashi, Scott, Jenkins, &
Krupa, 2020; Scott, Hirabayashi, Levenstein, Krupa, & Jenkins,
2021). To test the accuracy of classifications by different coders,
two types of analysis were conducted: the use of Kappa scores
on the first tier of coding, followed by percent level of agreement
for the following tiers; the accepted approach when coding cate-
gorical data (Landis & Koch, 1977). Gorucu et al. set out to deter-
mine levels of agreement regarding codification of the OIICS and
FAIC classification systems (Gorucu, Weichelt, Redmond, &
Murphy, 2020). They identified five themes in regards to accurate
coding of these systems: (a) inclusions/exclusion based on classifi-
cation system, (b) inconsistent and/or discrepant reports, (c)
incomplete and/or nonspecific reports, (d) the effects of supple-
mental information on coding, and (e) differences in coder inter-
pretation of code selection criteria. With the above in mind, the
intent of this paper is to focus on coder interpretation, and describe
methods for maintaining the quality of injury record coding for
PCRs, while minimizing both time and costs expended in the cod-
ification of these surveillance systems.

2. Materials and methods

2.1. Description of dataset

The records used were from the 2011–2016 Maine and New
Hampshire pre-hospital care reports (PCRs) that had been deter-
mined to definitely or possibly contain an injury or exposure
related to the agriculture, forestry, or fishing (AgFF) industries.
The validity of PCRs has been established in an international study
through the University of Leeds, with a pooled specificity of 0.94
and sensitivity of 0.74 within multiple national databases. In plain
language, this means that paramedics correctly excluded a diagno-
sis in 94% of patients, and correctly diagnosed a patient in 74% of
all cases (Wilson, Harley, & Steels, 2018). The process of narrowing
down the original dataset of 2,714,766 records to 29,099 records
for visual inspection and assignment of AgFF case determination
is described in a previous publication: The Development of a
Machine Learning Algorithm to Identify Occupational Injuries in Agri-
culture Using Pre-Hospital Care Reports (Scott et al., 2021).

2.2. Classification systems

It is advantageous to use existing coding methods when devel-
oping a new system for injury analysis, as this allows others to
access those systems for confirmation and further fine-tuning.
The coding team applied four classification systems to the dataset:
OIICS, FAIC, (both described previously) intentionality, and loca-
tion. The coding team established a separate set of four codes to
determine whether injury intentionality was: (1) unintentional
injury; (2) intentional injury, self-inflicted; (3) intentional injury,
inflicted by other; and (4) unknown. This simple classification
allows researchers to easily identify and categorize violent injuries
and deaths and self-harm. The National Occupational Research
Agenda (NORA) Agriculture, Forestry, and Fishing Dictionary of
Terms identified Location of Incident as one of the preferred cate-
gories to define specific characteristics of injuries occurring in pro-
duction agriculture and support services (Agricultural, 2008:).
There are 14 location codes, including but not limited to field/pas-
ture, barn, milkhouse, and farm shop.
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2.3. Coding interface and protocols

All four coding systems were imported into a Microsoft Access
2016 database, along with the 1,258 PCR records. A form was
designed to allow a coder to review the information from the
PCR record (narrative, date of birth, admit date, gender, dispatch
reason, location, primary impression, and mechanism of injury)
and easily assign OIICS, FAIC, intentionality, and NORA location
of incident. Links to the online OIICS coding tree, the research
team’s surveillance manual, EMS abbreviations, and the FAIC code
were embedded in the form.

The coding team consisted of nine Northeast Center staff mem-
bers. The coders were trained by the surveillance team’s principal
investigator and research coordinator with an overview of the
surveillance manual, the coding systems, the coding interface,
and hands-on practice. The initial coders were paired into five
teams, based on experience (veteran coder with new coder) and
availability (number of records to code). Within each coding pair,
one was designated as coder A and the other as coder B, which cor-
responded to the database form they were instructed to use. As a
result, each coder within an assigned pair was coding indepen-
dently of their counterpart. The coder pairs were assigned between
150 and 350 records, depending on their reported availability.

After completing 25 records, the coder pairs viewed and
resolved discrepancies in their coding. If unable to agree on a res-
olution, the records with discrepancies were reviewed by the
surveillance team as a whole. Space was provided on all forms
for coders to enter comments or questions. The PI and research
coordinator updated the surveillance user manual to reflect feed-
back from coders and reviewed the updates with the coders.

2.4. Guidelines for agreement levels

Before beginning analysis of interrater reliability, the research
team established thresholds for coder agreement for these sys-
tems, which, if met or exceeded, would eliminate the need for dual
coding in the future. The agreement thresholds are listed in Table 1.
The Cohen j score is considered the key statistics for measuring
interrater reliability, as it controls for the possibility of chance
agreement (Gorucu et al., 2020; Landis & Koch, 1977). Choosing
0.61 as the Cohen j score threshold was based on Viera and Gar-
rett’s interpretation of Kappa (see Table 2) for categorical variables,
with 0.61 as the lowest point of substantial agreement (Viera &
Garrett, 2005).

The research team did not use the Cohen j score for OIICS
Levels 2–4 due to the high number of categorical options, as shown
in Table 3; in situations such as these, where many response
options may not be selected, the use of Cohen score loses its power
(McHugh, 2012). In explanation, while OIICS Source Level 1 consis-
tently has nine options, allowing for the use of a Kappa rating,
Levels 2–4 have multiple options. For example, in Level 3 there
are six possible branches with the Construction Machinery source,

but only four choices with Agricultural machinery. As a result, per-
centage agreement was employed, which is the number of records
where coders agreed divided by the total number of records
reviewed. This protocol was approved by the Institutional Review
Board of the primary institution.

3. Results

The results of the coding pairs can be found in Table 5, where
kappa (j) ranged from 0.2605 for secondary source, to 0.8494 for
event and exposure. Comparisons between the coder choice and
the final choice can also be found in Table 4. Agreement was almost
perfect between the individual coders and the final coding choice
for type of event or exposure, body part, and primary source of
injury, and there was substantial agreement between the nature
of the injury, intentionality, and NORA location.

Agreement beyond the first digit of OIICS coding was measured
in percent agreement, and type of event or exposure, body part,
and primary source of injury continued to meet high levels of
accord when tested against the final coding, while the secondary
source of injury and the nature of the injury were also high, as seen
in Table 5. These scores were lower when comparing coders
against each other, as shown in Table 6, with the highest levels
of agreement occurring in source of injury, secondary source, and
event exposure.

Individual coder accuracy ranged frommedium to high levels of
agreement. As shown in Table 7, Kappa scores reached perfect
levels of agreement between some coders in nature of injury,
source and secondary source, and event exposure; though one
coder only scored fair agreement regarding secondary sources of
injury. These levels of agreement continued into the 2nd, 3rd,
and 4th digits, with primary and secondary sources of injury and
event exposure maintaining high percentages of agreement
throughout. Confidence intervals were all in the positive direction
with the exception of FAIC codes.

4. Discussion

It is reasonable to assume that the accuracy of some variables is
more critical to successful public health interventions than others.
For example, knowing the primary source of injury and the type of
event and exposure are important in our ability to improve safety.

Table 1
Agreement thresholds.

Coding Variable Options Per Variable Statistical Test Agreement Required for Future Single Coding

OIICS Type of Event of Exposure 8* Level 1: Cohen j score
Level 2–4: Percent agreement

Level 1: 0.61
Level 2: 75%
Level 3: 50%
Level 4: 25%

Primary Source of Injury 10*
Secondary Source of Injury 10*
Nature of Injury 9*
Part of Body Affected 9*

FAIC Code 10 Cohen j score 0.61
Intentionality 4 Cohen j score 0.61
Location 14 Cohen j score 0.61

* For OIICS, the number of options listed per variable is for Level 1.

Table 2
Viera & Garrett’s Interpretation of Cohen j Score.

Kappa Range Agreement

< 0 Less than chance agreement
0.01–0.20 Slight agreement
0.21– 0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–0.99 Almost perfect agreement
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Public health interventions often target these two factors through a
variety of ways, be it elimination, substitution, engineering con-
trols, administrative controls, or personal protective equipment.
An example would be data indicating tractor (source of injury) roll-
overs (event or exposure) being a significant cause of injury, and an
intervention targeting the installation of rollover protective struc-
tures. Though possible, interventions do not typically target a
specific nature of injury (e.g., preventing leg fractures, but not leg
crushing), therefore those variables, while helpful in fully under-
standing the burden of injury, are not always critical for interven-
tion development. Near perfect agreement for event and exposure,
primary source of injury, and body part, along with the substantial
agreement for nature, location, and intent, gives the research team
confidence in changing the surveillance system protocols to elimi-
nate time-consuming dual coding. When disagreement did occur,
it was typically not wildly disparate, but more to do with the

ordering of an injury event or noting the many rules within the
OIICS system. It is worth noting that, due to its infrequent use,
there was greater variation in the kappa score for secondary source
of injury. Given that secondary source is not frequently assigned,
this is not a critical value in the decision to change from dual to
single coding. FAIC Coding showed moderate agreement between
coders and the final choice. This is an area where additional guid-
ance and training has been warranted. Our ability to draw distinc-
tions between production agricultural injury events, which are
likely captured in systems such CFOI or SOII (for larger events),
from bystander injures, such as children hurt on the farm, is impor-
tant. The blurring of the farm as often a workplace but often a
home necessitates a means to code beyond traditional definitions
of ‘‘work” to capture true risk. These findings mirror the kappa
scores and general suggestions of Gorucu et al. (Gorucu et al.,
2020).

Table 3
Number of options available for OIICS Levels 2–4.

Event/Exposure Type Source of Injury Nature of Injury Part of Body Affected

Level 2 48 78 40 45
Level 3 178 439 192 91
Level 4 304 1139 375 74

Table 4
Comparing Coder versus Coder / Coder vs Final Coding.

Comparing Coder A vs Coder B Comparing Coder vs Final Coding

OIICS (1st digit) N Kappa 95% CI N Kappa 95% CI

Nature of Injury 1258 0.5727 0.5241–0.6212 2517 0.7653 0.7366–0.7939
Body Party 1250 0.7479 0.7211–0.7748 2509 0.8536 0.8382–0.8689
Source of Injury 1 1258 0.7330 0.7042–0.7618 2517 0.8515 0.8353–0.8677
Source of Injury 2 1258 0.2605 0.2020–0.3190 2517 0.5198 0.4829–0.5566
Event Exposure 1258 0.8494 0.8271–0.8717 2517 0.9195 0.9075–0.9315
FAIC 1258 0.5346 0.4983–0.5708 2517 0.5939 0.5697–0.6182
Intentionality 1259 0.6052 0.4842–0.7261 2518 0.7395 0.6608–0.8181
NORA location 1257 0.5635 0.5321–0.5949 2516 0.7532 0.7344–0.7719

Table 5
Coder (A and B) versus Final Choice: % Agreement for OIICS codes beyond the first digit.

Nature of Injury (n = 2517) Body Part (n = 2509) Source of Injury 1 (n = 2517) Source of Injury 2 (N = 2517 Event Exposure (n = 2517)

2 digits 78.94 78.68 85.66 82.48 87.41
3 digits 74.29 71.26 82.80 82.08 81.17
4 digits 70.56 70.67 76.52 81.33 75.29

Table 6
Coder A versus Coder B: % Agreement for OIICS codes beyond the first digit.

Nature of Injury (n = 1258) Body Part (n = 1250) Source of Injury 1 (n = 1258) Source of Injury 2 (N = 1258) Event Exposure (n = 1258)

2 digits 62.80 63.12 74.48 79.65 76.79
3 digits 54.93 50.16 70.35 78.78 65.58
4 digits 49.28 48.96 59.86 76.79 54.29

Table 7
Coder range of agreement.

KAPPA 95% CI 2 digit agreement (%) 3 digit agreement (%) 4 digit agreement (%)

Nature of Injury 0.5818–1 0.5971–1 54.09–91.17 44.03–86.93 38.99–84.10
Body Part 0.7986–0.9411 0.4563–1 66.03–88.69 56.41–84.45 55.13–83.75
Source of Injury 1 0.6904–1 0.6040–1 71.52–89.40 62.66–88.34 51.90–83.75
Source of Injury 2 0.2987–1 0.1343–1 80.44–87.28 79.34–87.28 77.13–87.28
Event Exposure 0.8517–1 0.7897–1 79.25–100.00 70.44–100.00 55.97–100.00
FAIC 0.3149–0.8811 �0.0522–1
Intentionality 0.5687–0.8203 0.1303–1.0000
NORA location 0.6475–0.8160 0.3237–1.0000
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These analyses allowed us to assess and customize additional
coder training. Without the rigor of dual coding, there will be con-
tinued need for quality assurance checks. These should involve the
senior members of the research team visually inspecting a random
sample of coded cases on a routine schedule, to ensure that data
quality is maintained. In addition, we recommend that a coder
training environment is established, where they can practice and
get feedback on their kappa scores and percent agreement, before
coding new data. These proposed protocols could be applied to a
variety of surveillance systems, especially when there is a concern
to reduce the staff-time involved in running the system, without
sacrificing data quality.

Various limitations presented themselves over the course of
this project. It was necessary to train reviewers in assigning
codes, and some developed a more firm understanding of the
principles behind the coding than did others. Further, it is natu-
ral for code selection to drift as one becomes more familiar with
the subject matter, albeit ideally in the direction of increasing
accuracy. At other times, the narratives themselves represented
a limitation, as not all information necessary for OIICS coding
was always present. In these cases, there is a tendency to make
assumptions that may not be borne out by the available infor-
mation; for example, assuming an injury was unintentional
when the narrative does not contain the details necessary to
determine that status. A further limitation is that the diagnosis
offered by an EMS PCR does not always match the final diagnosis
as settled upon by the attending hospital physician, particularly
in regards to diagnosis sensitivity (Wilson et al., 2018). While
still effective in tracking AFF occupational injuries, the OIICS cod-
ing might differ somewhat if hospital records were incorporated
alongside EMS PCRs.

5. Conclusions

This research provides for evidence-based decision making for
customizing an occupational injury surveillance system, ultimately
making it less costly. The quality of the coded data was acceptable
for variables important for injury epidemiology and intervention
development. Good stewardship of public health resources is crit-
ical for the long-term success of such programs, and continued
refinements and cost-savings should be considered an important
part of the system.

5.1. Practical applications

Assessing the rigor of occupational injury record coding pro-
vides critical information to tailor surveillance protocols, especially
those targeted to make the system less costly. System administra-
tors should consider evaluating the quality of coding, especially
when dealing with free-text narratives before deciding on single
coder protocols. Further, quality checks should remain a part of
the system going forward.
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a b s t r a c t

Introduction: A disproportionately high number of deadly crash-incidents involve fire-tanker rollovers
during emergency response driving. Most of these rollover incidents occur at dangerous horizontal curves
(‘‘curves”) due to unsafe speed. This study examined the effects of a curve speed warning system (CSWS)
on fire tanker drivers’ emergency response behavior to develop system improvement suggestions.
Method: Twenty-four firefighters participated in driving tests using a simulator. A fire tanker model, car-
rying a full tank of water, was used in emergency driving tests performed with and without CSWS. The
CSWS was designed using the algorithm for passenger vehicles with a few initial modifications consider-
ing the unique requirements of heavy fire tanker and emergency driving. Results: The results indicated
that the CSWS was effective in issuing preemptive warnings when the drivers were approaching curves
with unsafe speed during emergency response. Warnings occurred more frequently at curves with smal-
ler radius. Although the CSWS improved driving performance, it did not significantly reduce the number
of rollover events. A detailed analysis of the rollover events provided suggestions for improvement of
CSWS algorithms. Conclusions: To further improve the CSWS algorithm, the following may be considered:
including increased safety speed margin below the rollover critical speed, moving the speed warning trig-
ger from the curve apex to the curve entry point, extending the safe speed-control zone to cover the
entire curve, and employing artificial intelligence to accommodate individual driving styles. Practical
Applications: Fire tankers continue to be at increased risk of rollover during emergency response due to
unsafe negotiation of dangerous curves. Development and use of advanced driver assist systems such
as CSWS evaluated in this study may be an effective strategy to prevent deadly rollover crash-
incidents. The knowledge generated by this study will be useful for system designers to improve the
CSWS specifically designed for heavy emergency vehicles.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Transportation-related injuries remain a significant problem for
firefighters in the United States. In 2019, an estimated 15,350 col-
lisions resulting in 575 firefighter injuries were directly related to
emergency vehicles responding to or returning from incidents

(Campbell & Evarts, 2020). A disproportionately high number of
these incidents involve fire tankers. Tankers represent only 3 % of
all fire apparatus in the United States but were involved in 21.9%
of all fire vehicle fatal crashes that took place in the period 1990
to 2001 (FEMA, 2003). Rollover crashes are the most common
and most deadly incidents for fire tankers – of the 63 crashes with
73 deaths involving tankers in the period 1977–1999, 77.8% of the
crashes and 74.0% of the deaths involved a rollover (NIOSH, 2002).

Fire tankers, defined as ‘‘mobile water supply apparatus”
(FEMA, 2003), are some of the heaviest apparatus operated by a fire
department. The water carry capacity of typical fire tankers is in
the range 5,678 to 11,356 liters (1,500 to 3,000 gallons) and weigh
more than 25 tons (55,000 lb.) (NFPA, 2008). Furthermore, fire tan-
kers have high center of gravity and are often referred as ‘‘top-
heavy” vehicles. Vehicles that have a high center of gravity are
more challenging to maneuver and control. Specifically, top-
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heavy fire trucks driven at an unsafe speed through a horizontal
curve (‘‘curve”) have a tendency to rollover. The tendency of a vehi-
cle tipping/rolling over while moving through a curve is a matter of
simple physics involving inertia and momentum - as the vehicle
negotiates the turn, its weight leans in the direction opposite to
which the vehicle is turning (FEMA, 2003).

Road-related factors, such as the curve radius and road banking
or super-elevation, provide adequate drainage and facilitate safe
and comfortable negotiation of the curve at a reasonable speed
(FEMA, 2003). The smaller the radius of a curve the larger the tip-
ping forces for the same speed of the vehicle. Flat curves, or curves
without super-elevation are more challenging and require addi-
tional speed reductions to avoid the vehicle sliding or rolling over.
The risk further increases if the roadway is banked toward the out-
side of the turn (i.e., the curve with negative super-elevation). The
effects of these road geometry-related factors can be controlled if
the vehicle is operated within an adequate speed. The real danger
for a rollover is when the driver attempts to negotiate a dangerous
curve at an unsafe speed, which may happen during emergency
driving.

A critical review on rollover of heavy commercial vehicles
(Winkler, 2000) revealed that ‘‘the rollover threshold of loaded
heavy trucks extends well into the ‘emergency’ maneuvering capa-
bility of the vehicle and sometimes into the ‘normal’ maneuvering
range, and it is relatively hard for truck drivers to perceive their
proximity to rollover while driving. Rollover is very much like
walking up to a cliff with your eyes closed: as you approach the
edge, you are still walking on solid ground but once you’ve stepped
over, it’s too late. Further, the rollover threshold of a commercial
truck changes regularly as the load changes, so drivers may not
have the chance to get used to the stability of their vehicle.” Driv-
ing a tanker carrying fluid (which may shift and slosh in the tank)
under emergency conditions poses several additional challenges
regarding rollover threshold and vehicle stability, due to the asso-
ciated time pressure and excessive speed.

Excessive speed for specific driving conditions has been identi-
fied as a major contributing factor for vehicle-related firefighter
fatalities (FEMA, 2003). Emergency responders are commonly
allowed to travel at speeds above the posted limits (FEMA, 2003).
Speeding associated with emergency response driving increases
the amount of risk imposed upon firefighters and the apparatus
in which they ride. Therefore, firefighters should be trained in safe
driving practices, including getting to know the dangerous routes
and curves in their response area. Furthermore, some fire appara-
tuses are equipped with safety technology such as speed limiters
and data collection black boxes, and most of the modern fire appa-
ratuses have stability control systems (NFPA, 2008). Despite these
measures, the risk of speed-related crashes and injuries for fire-
fighters riding in fire apparatus remains high.

A promising technological approach to assist fire apparatus dri-
vers in controlling speed in curves may be the use of a curve speed
warning system (CSWS) (Pomerleau et al., 1999); however, its
effectiveness in emergency driving of heavy vehicles such as fire
tankers has not been well studied. The CSWS is an advanced driver
assistance system (CSWS-ADAS) that uses information from digital
maps and the vehicle’s current location and speed from a global
positioning system (GPS) to issue a warning when the vehicle
approaches a curve at an unsafe speed. The system calculates the
required deceleration and estimates the distance ahead of the
curve at which to issue a warning such that the driver can safely
reduce the vehicle speed before entering the curve. A great advan-
tage of the CSWS-ADAS is that it can use variable or dynamic speed
limits with the ability to adapt to different road and weather con-
ditions (Jimenez, Liang, & Aparicio, 2012). Furthermore, it can be
based on standard GPS (Chowdhury, Faizan, & Hayee, 2020) or con-
nected vehicle technologies (Wang, Wang, Zheng, & Zhixia, 2020),

and be adaptive to individual driver behavior (Ahmadi &
Ghanipoor Machiani, 2019).

The CSWS-ADAS has also been occasionally referred to as an
intelligent speed assistance/adaptation (ISA) system. ISA is a gen-
eric term for a class of ADAS in which the driver is warned and/
or vehicle speed is automatically limited when the driver is, inten-
tionally or inadvertently, traveling over the posted speed limit, or
some other pre-defined (fixed) speed threshold (Young, Regan,
Triggs, Jontof-Hutter, & Newstead, 2010). The benefits of ISA tech-
nology are well documented to reduce speed, speed variability,
speed violations, and injury and fatal crashes (Young et al.,
2010). Devices that exercise a greater control over the driver are
seen to be most beneficial, as opposed to simple advisory systems.
However, these controlling systems are not necessarily appreciated
by drivers (Young et al., 2010). Several negative effects have been
observed with ISA. Two key issues are (1) acceptability of the sys-
tem warnings and (2) driver adaptation or system over-reliance.
System over-reliance is a particular concern as faster speeds in
curves by some drivers have been observed. Research on ISA use
in heavy trucks remains limited (Fitzharris et al., 2011), and it is
not clear if the described ISA effects during the operation of general
vehicles are applicable to heavy fire trucks.

Recently, Simeonov et al. (2021) evaluated the effectiveness,
safety outcomes, and driver acceptance of a CSWS-ADAS during
emergency response of a fire tanker using a driving simulator.
The research findings suggested that the drivers reduced their driv-
ing speed at curve approaching and entering phases for most chal-
lenging curves, without affecting the overall time in completing
the test route. Furthermore, drivers had a reduced number of sev-
ere braking and decreased average in-curve distance traveled over
the safety speed limits, when the CSWS was in use. Drivers also
rated the CSWS as assisting, effective, and useful. Overall, the study
demonstrated that the CSWS can enhance fire truck safety during
emergency driving without sacrificing drivers’ precious response
time.

In the study of Simeonov et al. (2021), the algorithm for the
CSWS was adapted from the guidelines of Pomerleau et al.
(1999) and was further modified to meet the demands (for reduc-
ing the risk of rollover) of a heavy fire tanker in emergency driving
conditions. The working principle in the CSWS algorithm is based
on estimating the maximum curve safety speed and using it to cal-
culate the warning distance (Pomerleau et al., 1999). In the exist-
ing studies, which are predominantly related to passenger cars
(with a low center of gravity), the safety speed profiles were deter-
mined based on the risk of sideslip considering the factors such as
curve radius, road super-elevation, and friction factor (Chowdhury
et al., 2020; Jimenez et al., 2012; Wang et al., 2020). The warning
distance estimation in most of these studies was based on the
curve apex serving as the curve safety speed target location, which
is adequate for passenger cars since drivers usually continue decel-
erating well into the curve (Bella, 2014).

While formulating the CSWS algorithm for the fire tankers
(with an elevated center of gravity) driven under emergency con-
ditions, the factors such as mass distribution and rollover suscep-
tibility were considered to estimate the safety speeds. Based on
the recommendation that heavy trucks require earlier speed reduc-
tion to safely negotiate a curve (IAFF, 2010), the in-curve target for
reducing the vehicle speed (at or below the curve safety speed) was
moved from the curve apex to the entry-apex mid-point, thus
establishing a safety speed zone (from the entry-apex mid-point
to the curve apex). Despite these enhancements, during the simu-
lated emergency responses, no significant difference in the rollover
crash events was observed with and without CSWS conditions, sig-
nifying a need for further improvement in the CSWS algorithm.
Therefore, in this study an in-depth analysis of the fire truck roll-
over crash events was conducted with a goal of developing mean-
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ingful guidance for further improving the CSWS algorithms for
emergency driving of heavy fire trucks.

2. Methods

2.1. Participants

The study participants were active members (career or volun-
teer) of the fire departments in Morgantown, WV, and the sur-
rounding area. The inclusion and exclusion criteria consisted of
age >=18 years, a valid driver’s license, more than 6 months of
experience driving a fire truck, ability to follow the study protocol
and give informed consent, and no symptoms of motion sickness.
Mean age, height, and weight of the participants were 36 years
(SD = 10.1 years), 182.9 cm (SD = 4.8 cm), and 103.5 kg
(SD = 16.8 kg), respectively.

2.2. Equipment

2.2.1. Driving simulator
A motion-base simulator (Mechanical Simulation, Ann Arbor,

MI) with three degrees of freedom motion (roll, pitch, and heave)
was used in this study. The simulator consists of three 178 cm
(70 in) high-definition display screens, a high-fidelity sound sys-
tem for realistic sound effects, a precision steering system, com-
mercial grade foot controls, and a reconfigurable instrument
cluster. A TruckSim (Mechanical Simulation, Ann Arbor, MI) based
tanker model with a 3-axle fire truck in a ‘‘laden” condition (i.e.,
carrying full tank of water; 11,356 liters/3000 gallons) with a total
weight of 26,822 kg (59,008 lb.) was used in this study (Fig. 1a).

The model featured accurate dynamic performance of a heavy fire
truck tanker, including truck dimensions, geometry, mass distribu-
tion, engine power, acceleration, steering and braking perfor-
mance, suspension, and tire-road interaction (friction). Unity
(Unity Technologies, San Francisco, CA) software was used to
develop road geometry and create interactive driving scenarios
with advanced graphic design and performance.

2.2.2. Warning system interface
The CSWS graphic user interface (GUI) provided data on the

current speed of the vehicle, the posted speed limit for the current
route section, and the safety speed for the upcoming curve. The
system status was shown using color-codes: blue – system inac-
tive; green – normal or OK, yellow – caution with sound warnings
with frequency 2.6–3.1beeps/s accompanied by a blinking arrow in
the direction of the upcoming turn, and red with a steady arrow in
the direction of the upcoming turn – danger with sound warnings
with frequency 3.2–4.0 beeps/s. A touch screen tablet (Windows
Surface Pro 4, 312 mm, Microsoft, Redmond, WA) was used to dis-
play the CSWS GUI (Fig. 1b, c).

The audible warning was with a fundamental frequency of
300 Hz and 15 harmonic components (Gonzalez, Lewis, Roberts,
Pratt, & Baldwin, 2012). The audio warning had a pulse duration
of 200 ms and variable inter-pulse interval (185–50 ms). The
inter-pulse duration was regulated to increase the frequency of
audio pulses to indicate increasing danger when speed reduction
was insufficient or absent. The warning signal was issued with
an increasing frequency, which was a function of increasing values
of the calculated deceleration required to reach the safety speed to
avoid a rollover event. In the situations with increasing danger,
synchronized vibration signals at the steering wheel (actuated by

Fig. 1. Selected simulations: (a) fire tanker model; (b) view from the cab, with active CSWS while driving on a straight section within the safety speed limits (green screen);
(c) approaching a curve with inappropriate speed – the active CSWS is issuing a warning (red screen).
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the power steering system) were provided along with the audible
warning signals.

2.2.3. Warning algorithm
The original curve speed warning system (CSWS) algorithm,

mostly applicable to light passenger vehicles, is based on the fol-
lowing equation (Pomerleau et al., 1999):

a ¼ V2 � V2
s

2ðd� trVÞ ð1Þ

where:

a = deceleration required to reach Vs at curve apex.
V = vehicle speed.
Vs = curve maximum safe speed.
d = distance between vehicle position and curve apex.
tr = driver reaction time (assumed to be 1.5 s) (Pomerleau et al.,
1999).

Based on this algorithm, a warning is issued when the calcu-
lated deceleration value becomes higher than a preset average
deceleration value (1.5 m/s2). Considering the specific require-
ments of a fire truck driving under emergency conditions, the fol-
lowing modifications were made to the algorithm (Fig. 2)
(Simeonov et al., 2021):

1. Recognizing that the most critical speed-related crash event in a
curve for a heavy truck on a dry road is a rollover, the safety
speed profile (Vs) was set as 90% of the rollover critical speed.
The rollover critical speed (Vroll.cr) was determined according
to (Eq. (2)). The maximum lateral acceleration (alat.max) was
measured with a swept steer test at 40 mph (64 km/h) in Truck-
Sim using Proving Grounds (Unity Scene) (by Mechanical Simu-
lation, Ann Arbor, MI) (Simeonov et al., 2021).

Vroll:cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ralat:max

p
; Vroll ¼ 0:9Vroll:cr ð2Þ

The rollover critical speed is higher than the posted speed and
the slip-related safety speed (based on the side friction factor
assuming wet and icy conditions) and thus aids with reducing
unnecessary warnings during an emergency response driving on
a dry road.

2. The Vs target location was shifted from the curve apex to the
middle (50%) of the entry-apex curve section. This alteration
was made knowing that a heavy truck driver must reduce vehi-
cle speed (and reach Vs) much earlier in the curve (IAFF, 2010)
compared to light passenger vehicles.

3. Between the Vs target location and the curve apex, a ‘‘speed
control zone” was established. Within this zone a simple con-
trol logic was implemented to issue a warning if the vehicle
speed exceeded the curve safety speed.

2.3. Procedure

The data collection begun with the investigators describing the
study and the experimental tasks to the participants, answering
their questions, and obtaining their signatures on the informed
consent forms approved by the NIOSH IRB. Participants were
screened for susceptibility to motion sickness and to obtain base-
line scores for the subsequent motion sickness monitoring
(Hoffman, Molino, & Inman, 2003).

Each of the 24 participants completed a pre-test driving task
followed by the main test – an emergency response driving task
completed in two trials – one with CSWS ‘‘on” and one with CSWS
‘‘off” (for a total of 48 trials). The participants completed the CSWS
‘‘on” and ‘‘off” trials in a balanced order – half of the participants
started with CSWS ‘‘on” followed by a trial with CSWS ‘‘off;” for
the other half of the participants this order was reversed. Before
each trial the participants were informed/instructed about the sta-
tus (‘‘on” or ‘‘off”) of the CSWS. The participants wore their fire-
fighter protective pants and boots during the driving tasks. The
pre-test task lasted for 10–15 minutes and was primarily designed
to help the participants get familiar with the simulator environ-
ment. The pre-test route was 11.126 km (6.9 miles) long with 14
curves having radius (R) in the range of 51–612 m. Eight of the
14 curves had an R < 200 m and 5 of the 8 had an R < 100 m.

For the emergency response driving task, the route was
12.640 km (7.9 miles) long with 18 curves having R in the range
of 45–1229 m. Eleven of the 18 curves had an R < 200 m and 7 of
the 11 had an R < 100 m (Fig. 3). The driving environment con-
sisted of a rural two-lane (lane width = 3.36 m/11 ft) road on a hilly
terrain with varied vegetation that partially occluded some of the
upcoming curves. The simulated task began with a radio emer-
gency dispatch message. The participants then turned on the emer-
gency lights and sirens and started to drive as fast as possible, but
safely. The participants were instructed to address the warnings by

Fig. 2. Flow chart on working logic of the CSWS system. V = vehicle speed. Vs = curve maximum safe speed. dt = distance between vehicle position and curve trigger point
(trigger point = mid-point between curve entry and apex). d = distance between vehicle position and curve apex. a = deceleration required to reach Vs at curve trigger point
(from equation (1) using trigger point instead of apex). a’ = average deceleration (a’= 1.5 m/s2). Speed control zone - between trigger point and curve apex.
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gradually reducing the vehicle speed until the warnings stop. Dur-
ing the driving task, two additional incident-specific messages
were provided to convey the emergency of the task. In case of a
rollover crash event, the trial was restarted from the location of
the crash.

Throughout the tests, participants were monitored closely for
any symptoms of motion sickness (Hoffman et al., 2003). Rest
breaks (10 min) were provided after each trial and additionally
as needed at the request of study participants. After completion
of the test session, the participants completed a standing balance
test (semi-tandem Romberg test – Cobb, 1999; Simeonov et al.,
2011) as an additional precautionary measure for no symptoms
of carry-over motion sickness before they were compensated for
their time and released.

2.4. Variables

2.4.1. Independent variables
The independent variables included the CSWS status and curve

radius. The status of the CSWS had two levels: system ‘‘off” and
system ‘‘on.” The system ‘‘off” setting was used as a control or
baseline and system ‘‘on” was used to evaluate the effect of the
CSWS on the dependent variables. The curve radius (R) was consid-
ered in the range 46 m–196 m, including the 11 critical curves for
which the safety speed was smaller than the maximum speed
allowed at straight sections (Vs < 96 km/h).

2.4.2. Dependent variables
Two groups of dependent variables were used to evaluate and

describe the CSWS performance and its effect on the safety out-

comes (the occurrence of simulated rollover crashes) in fire tanker
emergency driving.

2.4.2.1. CSWS performance variables. Warning occurrence: The warn-
ing occurrence (Wocc) variable indicates if any warning was issued
when approaching and entering a curve. The warning occurrence is
described using a binary value with 1 – indicating that a warning
was activated, independent of the number or the duration of warn-
ings issued for a specific curve, and 0 – indicating that no warnings
were issued. The distance range analyzed for warning occurrences
was from 200 m before the curve entry (Bella, 2014; Polus,
Fitzpatrick, & Fambro, 2000) to the curve apex. The cumulative
Wocc from all participants for each curve was expressed as a per-
centage (cumulative relative warning occurrence) of the total
warning occurrences possible (24 for all study participants).

Intensity of Warning occurrence: The Intensity of Warning occur-
rence (Wint) was defined as the cumulative relative warning occur-
rence (%) per meter of the total distance with active warnings (%).

2.4.2.2. Safety outcome variable. Rollover crashes at curves: The
count, location, and circumstances of rollover crashes with CSWS
‘‘on” and ‘‘off” were analyzed to obtain clues/guidance for system
improvement.

2.5. Statistical analysis

Regression analyses were performed to determine the relation-
ships of the variables warning occurrence (Wocc) and warning
intensity (Wint) with curve radius (R). For the safety outcome vari-
able ‘‘rollover crashes in curves,” descriptive statistics was used to
compare CSWS ‘‘on” and ‘‘off” conditions.

3. Results

3.1. CSWS performance

The cumulative warnings issued by the CSWS are displayed
along with the average vehicle speed and the reference curve
safety speed (Vs) for the test route in Fig. 4. The figure demon-
strates that warnings were triggered by participants’ driving
behavior at the approaches of most curves. The cumulative warn-
ings had a pattern culminating before the curve with different
intensities for the individual curves.

3.1.1. Warning occurrence and intensity
To further characterize the performance of CSWS, the cumula-

tive relative warning occurrence (Wocc) and intensity of waning
occurrence (Wint) was regressed as a function of curve radius (R)
for the 11 curves with R < 200 m. The cumulative relative warning
occurrence (Wocc) increased with a decrease in curve radius (R),
representing nearly perfect linear relation (R2 = 0.95) (Fig. 5a). On
the other hand, the intensity of warning occurrence (Wint),
increased exponentially (R2 = 0.86) with a decrease of curve radius
(Fig. 5b).

3.2. Rollover events in curves

The emergency response tasks in the simulated driving environ-
ment resulted in a total of 19 rollover events (Table 1). Of the 19
rollover events, 10 occurred with the CSWS ‘‘off” and 9 with the
system ‘‘on.” The rollover events were experienced by 13 out of
the 24 participants: 6 drivers had rollovers only with system ‘‘off,”
4 only with system ‘‘on,” and 3 drivers experienced rollovers both
with system ‘‘off” and ‘‘on.”.

Fig. 3. Map of the test route with alphabetically indicated road segments.
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Rollovers occurred on 5 out of 18 curves. There was a trend for
rollovers to occur at the ending section of the route (i.e., at the last
two curves: ‘‘j-k” and ‘‘l-m”). Six out of 10 rollovers occurred at the
last two curves when the CSWS was ‘‘off” and 8 out of 9 when the
CSWS was ‘‘on” (Fig. 6). All rollovers occurred on curves with
R < 100 m (safety speed drop > 30 km/h). There was also a ten-

dency for rollovers to occur at longer curves without super-
elevation (the last two curves: ‘‘j-k” and ‘‘l-m”). The lengths of
the curves alone, however, were not correlated with the rollover
outcomes.

All rollover events (both with CSWS ‘‘on” and ‘‘off”) were asso-
ciated with in-curve max speed (Vmax) at or above the curve safety
speed limits (Vs) (Table 2, Fig. 7). For rollover events with CSWS
system ‘‘off,” there was a trend for higher curve entry speed (Vent)
and Vmax as compared to rollover events with CSWS ‘‘on.” The Vmax

associated with rollovers with CSWS ‘‘off” was >10% over Vs for
most events, while Vmax associated with rollovers with CSWS
‘‘on” was <10% over Vs (Table 2, Fig. 7). There was an outlier for
Vmax with CSWS ‘‘on,” where the curve entry speed was 26% above
the safety speed limits, in which case there was a proper warning,
but the driver ignored the warning. In all other rollover events with
CSWS ‘‘on,” no warnings were issued by the CSWS.

In analyzing the rollovers at which the CSWS was ‘‘on” and
warnings were not issued, we identified two distinct types of roll-
over events that were not prevented – at curve ‘‘entry” and at curve
‘‘exit” sections. In the five ‘‘entry” cases (Cases # 1–5, Table 2, and
Fig. 7), the Vmax was slightly above the safety speed limit Vs (0%-
6%) within the first 20% of the entry-apex section. In all of these
cases, warnings were not issued because over-speeding (Vmax > Vs)
was relatively small and sufficiently far from the target speed con-
trol zone for the algorithm. In three of the five cases (Cases # 3–5,
Table 2, and Fig. 7), the vehicle was accelerating after the curve
entry. In the three ‘‘exit” cases (Cases # 7–9, Table 2, and Fig. 7),

Fig. 4. Cumulative warnings (dotted line at the bottom) along the test route (plotted using secondary axis on the right) together with safety speed (Vs) (thin line at the top)
and average speed (V) (thick line) (plotted using primary axis on the left).

Fig. 5. Warning occurrence and warning intensity: (a) warning occurrence (Wocc) as a negative linear function of curve radius; (b) intensity of warning occurrence (Wint) as a
negative exponential function of curve radius.

Table 1
Study participants who experienced rollover events during the emergency response
driving trials.

Study CSWS Off CSWS On Rollovers

Participant Rollovers Event #* Rollovers Event #* Total

S1 1 #10 1 #1 2
S5 1 #13 1
S6 1 #17 2 #6, #7 3
S7 1 #14 1 #9 2
S10 2 #4, #8 2
S11 1 #11 1
S14 1 #18 1
S15 1 #16 1
S17 2 #15, #19 2
S18 1 #12 1
S20 1 #3 1
S22 1 #5 1
S24 1 #2 1
Total 10 9 19

*Event # - provided for cross-referencing with Table 2 and Fig. 7.
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the rollover was associated with acceleration and over-speeding
(Vmax > Vs) after the curve apex, which was not a target zone for
speed control and therefore no warnings were issued.

More detailed descriptive analyses for four representative cases
of rollover events are presented in the next section that could be
considered to improve CSWS algorithms. The case examples
include rollover events for curve ‘‘Entry-Apex” section with CSWS
‘‘on” and ‘‘off” and for curve ‘‘Apex-Exit” section with CSWS ‘‘on”
and ‘‘off.”.

3.3. Analysis of circumstances (case study) of rollover events

Case #1: An example of a curve ‘‘Entry – Apex” rollover event
with CSWS ‘‘on” is presented in Fig. 8. It represents 5 similar cases
of ‘‘no adequate warning” after curve entry (cases # 1–5, Table 2,
and Fig. 7). The rollover event in this case is characterized with

insufficient speed reduction at curve entry and no adequate warn-
ing. The vehicle was approaching the curve at a high speed
(�94.0 km/h); the driver (Participant S1) received an advanced
warning (at about 150 m before the curve) by the CSWS; in
response (41 m later) the driver applied the brakes (for about
60 m) and drastically reduced the vehicle speed (with �40 km/h)
to a level at which the warning stopped. The vehicle continued
coasting and entered the curve at speed 54.8 km/h, which was
above the curve safety speed (Vs = 51.7 km/h). Soon after entering
the curve the vehicle lost control, and despite the last-minute brak-
ing, the vehicle crashed in a rollover (at 55 m into the curve). The
CSWS did not issue an additional warning at the curve entry since
the algorithm targeted control zone was from the mid-point of the
curve-entry to apex (48.5 m) section to the curve apex (97 m), for
which the required speed reduction (of 3.1 km/h) could be
achieved at the nominal braking rate (1.5 m/s2). The analysis of this

Fig. 6. Rollover events by on-route location (each symbol represents one rollover-crash occurrence: circle – system ‘‘off”, triangle – system ‘‘on”). Labels next to each symbol
(to the right for circles and to the left for triangles) indicate the rollover event case number as described in Table 2 and Fig. 7.

Table 2
Circumstances of rollover events and suggested measures for CSWS improvement.

Event Curve Vs Vmax Vmax% Dist,% Circumstances and Behaviors Suggest CSWS improvements

Rollover Events with CSWS ‘‘On” in the Curve Entry-Apex Section
1 l-m 51.7 54.8 6.0 �100 Vent > Vs breaking, no in curve warning Trigger at Entry /Reduce Vs

2 j-k 62.5 64.9 3.8 �100 Vent > Vs coasting, no in curve warning Trigger at Entry /Reduce Vs

3 j-k 62.5 62.3 �0.3 �82.5 Vent � Vs accelerating, no warning Trigger at Entry /Reduce Vs

4 j-k 62.5 65.0 4.0 �82.5 Vent � Vs accelerating, no warning Trigger at Entry /Reduce Vs

5 j-k 62.5 64.9 3.8 �80 Vent > Vs coast/accel, late in curve warning Trigger at Entry /Reduce Vs

6 T-U 42.9 54.2 26.3 �100 Vent � Vs decel, adequate warning - no response No suggested change
Rollover Events with CSWS ‘‘On” in the Curve Apex-Exit Section
7 l-m 51.7 51.7 0.0 30.8 V � Vs coasting, no in-curve warning Test after Apex/Reduce Vs

8 l-m 51.7 54.0 4.4 83.3 V > Vs accelerating, no in curve warning Test after Apex/Reduce Vs

9 l-m 51.7 56.5 9.3 95.7 V > Vs accelerating, no in curve warning Test after Apex/Reduce Vs

Rollover Events with CSWS ‘‘Off” in the Curve Entry-Apex Section
10 R-S 62.7 69.9 11.5 �100 Vent > Vs coasting; CSWS could help No suggested change
11 R-S 62.7 69.1 10.2 �100 Vent > Vs decelerating; CSWS could help No suggested change
12 j-k 62.5 66.0 5.6 �87.5 Vent > Vs coast/accel; CSWS would be too late Trigger at Entry /Reduce Vs

13 j-k 62.5 66.8 6.9 �86.6 Vent > Vs accel/coast; CSWS would be too late Trigger at Entry /Reduce Vs

14 j-k 62.5 69.7 11.5 �88.2 Vent > Vs decelerating; CSWS could help No suggested change
15 j-k 62.5 72.4 15.8 �85 Vent > Vs coast/accel; CSWS could help No suggested change
16 H-I 54.9 75.1 36.8 �100 Vent � Vs decelerating; CSWS could help No suggested change
Rollover Events with CSWS ‘‘Off” in the Curve Apex-Exit Section
17 T-U 42.9 47.0 9.6 12.5 V > Vs accelerating to Vmax; CSWS not effective Test after Apex/Reduce Vs

18 l-m 51.7 56.1 8.5 77.3 V > Vs accelerating to Vmax; CSWS not effective Test after Apex/Reduce Vs

19 l-m 51.7 66.9 29.4 100 V > Vs accelerating to Vmax; CSWS not effective Test after Apex/Reduce Vs

‘‘Vmax” = in-curve maximum speed associated with a rollover event.
‘‘Vmax%” = (Vmax-Vs)/Vs*100.
‘‘Dist,%” = Distance from Apex; Curve Entry = -100%, Curve Exit = 100%.
‘‘Reduce Vs” = Reduce Safety Speed to 0.85 of Vroll (currently = 0.9Vroll).
‘‘Trigger at Entry” = Move the algorithm trigger point to the curve entry point.
‘‘Test after Apex” = Provide a warning for V > Vs after Apex; and early warning for acceleration to V > Vs.
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rollover event suggests the need for CSWS algorithm improve-
ments by extending the targeted speed control zone (potentially
to the curve entry), reducing the curve safety speed (using a safety
margin > 10%, i.e., 15%), or using a combination of the two
measures.

Case #7: An example of an ‘‘Apex - Exit” rollover event with
CSWS ‘‘on” is presented in Fig. 9. It represents three similar cases
of ‘‘no warning” after curve apex (cases # 7–9, Table 2, and
Fig. 7). The rollover event in this case is characterized with acceler-
ating after curve entry and coasting at the curve safety speed
before and after the curve apex and no adequate warning. The
vehicle was approaching the curve at the maximum for the straight
section safety speed (�96.0 km/h). The driver (Participant S6)
received an advanced warning by the CSWS (at about 163 m before
the curve); in response (22 m later), the driver applied the brakes

(for about 42 m) and substantially reduced the vehicle speed (with
�25 km/h) to a level at which the warning stopped. The vehicle
continued coasting at �69 km/h and upon getting closer to the
curve received another short warning (at about 35 m before the
curve); the driver applied the brakes (at about 33 m and all the
way to curve entry) and entered the curve at speed 48.4 km/h,
which is below the curve safety speed (51.7 km/h). After curve
entry, the driver accelerated back to approximately the curve
safety speed (51.7 km/h) and continued with this speed all the
way through and beyond the curve apex. The vehicle lost control
and crashed in a rollover at 148 m from curve entry, which is
51 m after the curve apex. The CSWS issued no warnings after
the curve entry, since the vehicle never exceeded the curve safety
speed in the speed control zone, and the algorithm did not include
any control measures after the apex. This case suggests the need to

Fig. 7. Rollover event-related maximum speed (Vmax) as % over safety speed limit (Vs) and its relative location within the curve; dashed line indicates the CSWS algorithm-
targeted ‘‘speed control zone”; labels next to (the right of) each symbol (circle – CSWS ‘‘off”, triangle – CSWS ‘‘on”) indicate the rollover event case number as described in
Table 2.

Fig. 8. Case #1: An example of an ‘‘Entry-Apex” overturn event with CSWS ‘‘on” for participant S1; the overturn occurred in the ‘‘Entry-Apex” zone of curve ‘‘l-m”. Legend:
thin line at the top indicates the safety speed (Vs) at the different road sections; thick line reflects the vehicle speed (V) for this trial; dashed line indicates where the brake
was applied (using an arbitrary value of 5); dotted line reflects where a warning was issued by the CSWS, as a function of beeping frequency (values x5).
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increase the safety speed margin to > 10% (i.e., 15%), extend the
safety speed control zone beyond the curve apex and possibly all
the way to the curve exit, or use a combination of these two mea-
sures. The algorithm may also be enhanced to include in-curve
acceleration detection logic to predictively issue warnings if the
vehicle is approaching the curve safety speed.

Case #16: An example of a curve ‘‘Entry – Apex” rollover event
with CSWS ‘‘off” is presented in Fig. 10. It represents seven similar
cases of entering a curve with speed higher than the curve safety
speed and coasting/decelerating in which a warning could have
potentially helped (cases # 10–16, Table 2, and Fig. 7). The rollover
event in this case is characterized with insufficient speed reduction
during curve approach and at curve entry. The vehicle was
approaching the curve with a speed above the safety speed for
the straight section (�100.0 km/h); in approaching the curve, the
driver (Participant S15) started to reduce the speed by applying
the brakes three consecutive times (at 209 m before the curve for
about 49 m, at 151 m for about 23 m, and at 117 m for about
55 m) thus reducing the speed by� 25 km/h. The vehicle continued

coasting and entered the curve at �75 km/h, which is substantially
higher than the curve safety speed (54.9 km/h); shortly (8–10 m)
after entering the curve, the driver applied the brakes, but lost con-
trol and the vehicle crashed in a rollover just 3.2 m before the
curve apex (at 63.8 m in the curve). The existing CSWS algorithm
model indicated that an active CSWS would have issued appropri-
ate warnings and possibly prevented this rollover event.

Case #18: An example of an ‘‘Apex - Exit” rollover event with
CSWS ‘‘off” is presented in Fig. 11. It represents three similar cases
of acceleration above Vs within the curve after the apex (cases #
17–19, Table 2, and Fig. 7). The rollover event in this case is char-
acterized by hard braking at curve entry followed by acceleration
in the curve to above the curve safety speed after the apex. The
vehicle was approaching the curve at the maximum (for the
straight section) safety speed (�96.0 km/h) and coasting; in curve
vicinity (47 m before curve entry), the driver (Participant S14),
started applying the brakes (for about 62 m including 15 m in
the curve) thus drastically reducing the speed by �47 km/h. The
vehicle entered the curve at 55.9 km/h and within 15 m in the

Fig. 9. Case #7: An example of an ‘‘Apex-Exit” overturn event with CSWS ‘‘on” for participant S6; the overturn occurred in the ‘‘Apex-Exit” zone of curve ‘‘l-m”. Legend: thin
line at the top indicates the safety speed at the different road sections (Vs); thick line reflects the vehicle speed for this trial; dashed line indicates where the brake was applied
(using an arbitrary value of 5); dotted line reflects where a warning was issued by the CSWS, as a function of beeping frequency (values x5).

Fig. 10. Case #16: An example of an ‘‘Entry-Apex” rollover event with CSWS ‘‘off” for participant S15; the rollover occurred in the ‘‘Entry-Apex” zone of curve ‘‘H-I”. Legend:
thin line at the top indicates the safety speed at the different road sections (Vs); thick line reflects the vehicle speed for this trial; dashed line indicates where the brake was
applied (using an arbitrary value of 5); dotted line reflects where a warning could be issued by the CSWS if it was ‘‘on”, as a function of beeping frequency (values x5).
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curve the speed was reduced to 37.8 km/h, which is substantially
below the curve safety speed of 51.7 km/h. Immediately after that,
the driver accelerated and continued accelerating after passing the
curve Apex to reach speed of 56.1 km/h, well above the curve
safety speed limit. At that time the driver lost control and despite
the last-minute braking, the vehicle crashed in a rollover at 184 m
in the curve (87 m after the curve Apex). The existing CSWS algo-
rithm model suggested that a warning with increasing urgency
(beeping frequency) could have been properly issued if the CSWS
was active, and thus preventing the aggressive braking during
the curve entry. The existing CSWS algorithm model, however,
could not have detected the acceleration to above the safety speed
after the curve Apex, indicating the need for further improvements
as suggested at the end of the descriptive analysis of case #7 above.

4. Discussion

4.1. Warning system performance

When approaching curves in an emergency response mode
without a CSWS, fire truck drivers are likely to speed through the
curve and may underestimate the need for a timely speed reduc-
tion. Furthermore, the study results of the baseline condition
(CSWS ‘‘off”) confirmed that this driving behavior is independent
of the curve radius (Simeonov et al., 2021). The evaluation of CSWS
performance by the warning occurrence measure reflects the bin-
ary probability for a driver to receive or not receive any warning
(independent of the number of warnings) when approaching a
curve. The results indicate that this probability increases in a linear
fashion with a decrease of the curve radius. The probability for a
driver to receive a warning can be regarded as a result of the inter-
action between driver behavior and the CSWS algorithm. In the
algorithm, the safety speed limit at a curve is a near-linear function
of the curve radius.

The exponential increase of warning intensity (cumulative
warning probability for each curve) associated with the decrease
of curve radius further highlights the extent of driver behavior
deviation from the algorithm predictions. The CSWS algorithm
assumed a linear behavior in speed reduction using a constant
deceleration rate to calculate the warning timing and duration.
As compared to the linear CSWS prediction, drivers adjust the vehi-
cle speed in a non-linear fashion – usually in the last moments
before a sharp turn, which can trigger an increased number of

warnings and with a longer total warning duration. Previous
research on speed-reducing measures for curves (for passenger
vehicles and non-emergency driving) has reported that clear
reduction in speed in the baseline condition is not observed until
approximately 100 m before a curve entry, and after this point,
the deceleration becomes heavy into the curve (Comte & Jamson,
2000).

4.2. Effects of warning system on safety outcomes

The test route for this study was designed to be challenging for
the fire truck drivers with many sharp turns preceded by long rel-
atively straight sections. There was a total of 19 rollover crashes
during the driving trials, of which 10 with CSWS ‘‘off” and 9 with
CSWS ‘‘on.” While the CSWS has been helpful in reducing the aver-
age distance traveled at speeds over the safety speed limits at the
entry-to-apex section of a curve (Simeonov et al., 2021), the overall
rollover counts suggested a need for further improvements in the
warning system algorithms. An in-depth analysis showed that all
rollovers occurred at or above the safety speed, which reflects an
accurate vehicle model and safety speed calculations. Most of the
rollovers in the simulation could be preventable if the vehicle
speed is maintained below the safety speed limits. The tendency
for more rollovers to occur later in route (8 of 9) when the system
was ‘‘on” as compared to the CSWS ‘‘off” condition (6 of 10) may
indicate an increased driver risk-taking behavior with over-
reliance on the CSWS later in route, which also suggests the need
for improvements of the CSWS.

The safety speed limit for the CSWS algorithm in this study was
derived from the vehicle rollover speed (Vs = 0.9*Vroll), in contrast
to previous research using slide-out speed (Pomerleau et al.,
1999). Considering the emergency response driving and the dry-
road conditions where the leading crash risk for the heavy fire tan-
ker is rollover, this setting was selected to minimize the unneeded
false warnings, reduce drivers’ annoyance, and improve system
acceptance. However, this safety speed setting also leaves little
room for errors and may be one of the causes for the observed roll-
overs with system ‘‘on.” Furthermore, at some of the sharp curves,
the driver’s comfort speed limit (based on lateral acceleration) for
the tested fire tanker was higher than the rollover speed, which
leads to ‘‘undetectable risk” conditions for rollovers. Therefore,
one possible direction for improvement of the CSWS algorithm is

Fig. 11. Case #18: An example of an ‘‘Apex-Exit” rollover event with CSWS ‘‘off” for participant S14; the rollover occurred in the ‘‘Apex-Exit” zone of curve ‘‘l-m”. Legend: thin
line at the top indicates the safety speed at the different road sections (Vs); thick line reflects the vehicle speed for this trial; dashed line indicates where the brake was applied
(using an arbitrary value of 5); dotted line reflects where a warning could be issued by the CSWS if it was ‘‘on”, as a function of beeping frequency (values x5).
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to lower the Vs to below 0.9*Vroll.cr levels (e.g., increase the safety
margin to more than 10%, for example, 15%).

Analysis of the rollover circumstances indicated that in six (out
of nine) of the rollovers with system ‘‘on,” drivers lost control
before the curve apex. In one case a warning was issued but
ignored, and in five cases, warning was not issued since the drivers
entered the curve at speeds close to the safety speed (Vs) and accel-
erated within the curve at a timing that did not trigger the algo-
rithm. The existing guidelines (Pomerleau et al., 1999) set the
trigger point at the curve apex. In contrast, in this study, the speed
control zone for the algorithm was set to start (trigger) at mid-
distance of the curve entry-apex to accommodate heavy emer-
gency vehicles that need to reduce speed earlier in the curve
(IAFF, 2010). This setting in the algorithmmay need to be adjusted,
since it allowed entering the curve at a speed above the safety
speed and missed detecting some in-curve accelerations at speeds
above Vs before the trigger point. To address this issue, the trigger
point can be moved from the mid-distance of the curve entry-apex
section to the curve entry in the CSWS algorithm.

In three out of nine rolloverswith the CSWS system ‘‘on,” the dri-
vers lost control at locations after the curve apex, usually due to
acceleration within the curve at speeds above Vs Obviously, to
reduce the risk of these rollovers, the truck speed must be main-
tained below the safety speed limits even after the apex, especially
for heavy emergency response trucks and long curves. Possiblemea-
sures to reduce the riskof rollovers after theapexmay include reduc-
ing the curve safety speed (as discussed above) and extending the
safety speed control zone beyond the apex (or for the whole curve).

4.3. Suggested CSWS modifications, challenges, and directions for
future work

The analysis of the rollover crash circumstances suggested the
following modifications for improvement of the CSWS algorithm:
(1) reduce the safety speed to below 0.9Vroll.cr, (2) move the trig-
ger point to curve entry, (3) extend the safety speed-control zone
beyond the apex (to possibly cover the whole curve), and (4) check
for acceleration behavior to calculate and predictively issue a
warning if speed will reach the safety speed limit while in curve.
Implementing just one or a couple of these measures may be suf-
ficient to reduce rollover crashes. It must be noted that some of
these measures may introduce additional challenges, such as
sub-optimal (too early or too late) warnings that may increase dri-
ver annoyance, reduce system acceptability, and result in compen-
satory (rebound) speeding behavior.

Preventing nuisance alarms is difficult because there is no com-
monly accepted benchmark for ‘‘correctly” negotiating a curve
(Pomerleau et al., 1999). An effective way to reduce nuisance
warnings is the development of an adaptive CSWS, which can
account for the considerable variation in driver behavior, and
specifically in speed profiles when negotiating a curve. A sophisti-
cated adaptive CSWS may model an individual driver’s curve nego-
tiation behavior, including measures such as driver’s reaction time,
brake onset time, deceleration rate, and tolerance for lateral accel-
eration (Pomerleau et al., 1999; Ahmadi & Machiani, 2019). An
innovative CSWS may also use artificial intelligence (AI) to fine-
tune the optimal speed profiles by implementing learning algo-
rithms using data from previous driving runs through specific
routes of vehicles with similar dynamic characteristics and emer-
gency response tasks.

4.4. Limitations

The use of a driving simulator as a modeling research tool in
this study is associated with several limitations, related to the fide-
lity of the simulation and the previous gaming experience of the

participants. The benefits of using driving simulations in vehicle
safety research are well known. Simulators allow for a better con-
trol over the experimental conditions, lower expense and better
efficiency, improved safety for participants and researchers, and
convenience in data collection. However, driving simulations also
have some major limitations, such as lack of realism associated
with low-risk perception, limited physical laws (i.e., lack of appro-
priate vestibular and motion cues), moderate behavioral validity,
and potential motion sickness (Godley, Triggs, & Fildes, 2002;
Nilsson, 1993). Nevertheless, driving simulations have been vali-
dated for generating and generalizing relative speed in testing
road-based speeding countermeasures (Godley et al., 2002) and
in studies on curve negotiation in two-lane rural roads (Bella,
2008). However, previous research has shown that in a driving
simulator, participants initiate braking later and brake much
harder as compared to real roads (Boer, Girshick, Yamamura, &
Kuge, 2000); and, in a driving simulator as compared to real roads,
the curve-entry speed was faster in less challenging curves
(R > 582 m) and slower in the most difficult curves (R < 146 m)
(Bittner, Simsek, Levison, & Campbell, 2002).

Participants with extensive car-racing gaming experience may
have been more used to simulated driving environments and drive
more aggressively as compared to the average person. This study
did not assess the gaming car-racing experience of the participants.
However, during the tests some of the participants provided com-
ments on their gaming car-racing experience (and real-life car-
racing experience) and their perceptions of how it may have
affected their performance. In video-racing games, drivers are rein-
forced for driving recklessly and systematically breaking traffic
rules, and as a result, video-racing gaming experience may increase
risk-taking driving behaviors (Fischer et al., 2009).

This study used a balanced experimental design in which all
participants performed all the experimental conditions in a bal-
anced order, which should help in cancelling out most of the
effects of the abovementioned limitations.

5. Conclusions

Acurve speedwarning system(CSWS)was tested in this study for
its effectiveness in preventing fire tanker rollover crashes at risky
curves during simulated emergency response driving. The results
demonstrated that the CSWS was effective in issuing preemptive
warningswhen driverswere approaching curves at an unsafe speed.
Warnings were more likely to occur at curves with radius smaller
than 200 m and occurredmore often at sharper curves. There is lim-
ited information on developing a warning system for heavy emer-
gency vehicles in preventing curve speed-related rollover crashes.
While the CSWS algorithms tested in this simulation study did not
show a significant reduction in the number of rollover crashes, the
study results provided valuable suggestions for improving the CSWS
algorithm, including programming a safety speed with a more than
10% safety margin below the rollover critical speed, establishing a
speed warning trigger at the curve entry point instead of the mid-
point between the curve entry and apex, extending the safe speed-
control zone to cover the entire curve beyond the apex point, and
employing artificial intelligence technologies to accommodate indi-
viduals with different driving styles.

6. Practical Applications

Fire tankers are top-heavy vehicles that continue to be at
increased risk of rollover during emergency response due to unsafe
negotiation of dangerous curves. Development and use of
advanced driver assist systems such as CSWS evaluated in this
study may be an effective strategy to prevent deadly rollover

P. Simeonov, A. Nimbarte, H. Hsiao et al. Journal of Safety Research 83 (2022) 388–399

398



crash-incidents. The knowledge generated by this study will be
useful for system designers to improve the CSWS specifically
designed for heavy emergency vehicles.
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authors and do not necessarily represent the official position of
the National Institute for Occupational Safety and Health (NIOSH),
Centers for Disease Control and Prevention (CDC). Mention of any
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a b s t r a c t

Introduction: Prior studies examining the relationship between work- related injuries and healthcare use
among middle-aged and older workers were mainly cross-sectional and reported inconsistent results.
Objective: The objective of this study was to examine the associations between work-related injuries
and 10 types of healthcare service use for any cause among middle-aged and older Canadian workers
using longitudinal data. Methods: Our study involved longitudinal analysis of baseline and 18-month
follow-up Maintaining Contact Questionnaire data from the Canadian Longitudinal Survey on Aging
(CLSA) for a national sample of Canadian males and females aged 45–85 years who worked or were
recently retired (N = 24,748). Results: Among CLSA participants who worked or were recently retired,
361 per 10,000 reported a work-related injury within the year prior to the survey. Work-related injuries
decreased with increasing age. Work-related injury was associated with emergency department visits,
overnight hospitalization, visits to dentists, and visits to physiotherapists, occupational therapists, or chi-
ropractors at follow-up in bivariate analyses. Compared to those with no work-related injuries, Canadians
with work-related injuries had used, on average, a significantly higher number of health services within
the last 12 months prior their survey. When controlling for the contribution of various socio-
demographic, work-related, and health-related characteristics, work-related injuries remained a signifi-
cant predictor of emergency department visits and visits to physiotherapists, occupational therapists, or
chiropractors. Conclusions: The relationship between work-related injuries, emergency department visits,
and visits to physiotherapists, occupational therapists, or chiropractors in middle-aged and older workers
in Canada suggests that workplace injuries can be associated with ongoing health problems. Practical
Applications: Healthcare services used by injured employees must be considered priorities for employ-
ment insurance coverage, if not already covered. Future research should more fully examine whether
pre-existing health conditions predict both work-related injury and subsequent health problems.
Injury-specific healthcare use following work-related injuries in middle-aged and older workers, as well
as economic costs, should also be examined.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Injuries are a serious public health concern in Canada and
worldwide. The economic burden of all types of injuries, including

costs associated with healthcare expenditures, and reduced pro-
ductivity due to hospitalization, disability, and premature death,
is approximately $26.8 billion per year (or 1.7% of the Gross
Domestic Product [GDP]) in Canada (Parachute, 2015) and 4% of
the average global GDP (International Labour Organization (ILO),
2005). Although information on work-related incidence and fatal-
ities for Canadian workers by region is available (Morassaei &
Breslin, 2013; Tucker & Keefe, 2019), less is known about post-
injury treatment seeking among middle-aged and older workers.
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The association between work-related injuries and healthcare use
(e.g., general practitioner [GP] or emergency department visits,
overnight hospitalizations) is an indicator of the presence of ongo-
ing problems resulting from injuries, and an indirect measure of
the economic costs of workplace injuries (Brown, McDonough, &
Mustard, 2006). Examining the relationship between work-
related injuries and healthcare use is important as a significant
proportion of the working population in Canada is aged 55+ years
(36%), which is predicted to increase to 40% by 2026 (Statistics
Canada, 2017a), with similar increases expected worldwide
(White, Burns, & Conlon, 2018). Increases in the age of the working
population are due to a number of factors, including increased life
expectancy and financial necessity (Statistics Canada, 2017b).

A recent systematic review (Stoesz, Chimney, & Deng, 2020)re-
vealed that work-related injuries were less common among older
(aged 40+ years) than younger workers, but that older workers
experienced more severe work-related injuries (Chen,
Chakrabarty, & Levine, 2013; Frickmann, Wurm, & Jeger, 2012;
Konstantinidis, Talving, & Kobayashi, 2011), more adverse health
and economic outcomes (Scott, Liao, & Fisher, 2018), and higher
healthcare costs (Algarni, Gross, & Senthilselvan, 2015). The review
also highlighted evidence of unmet healthcare needs. For example,
older workers (aged 65+ years) in Alberta, Canada, were less likely
than younger workers (aged 25–54 years) to be offered rehabilita-
tion services and the delay between their work injuries and the ini-
tial rehabilitation assessments was significantly longer (Algarni
et al., 2015). Health seeking behaviors following workplace injuries
have also been reported in other jurisdictions (Berdahl & Zodet,
2020; Brown et al., 2006; Chen et al., 2013; Ruseckaite, Collie, &
Prang, 2016). For example, using administrative and compensation
data in British Columbia, Canada, Brown et al. (Brown et al., 2006)-
found more GP visits, mental healthcare services, and hospitaliza-
tions among lost-time injured workers five years post-injury
compared to one year pre-injury, and these rates were higher than
those observed for non-injured workers. Administrative and com-
pensation data in Australia showed that one third of injured work-
ers of all ages visited GPs, which was followed by hospitalization
services, physiotherapy, and psychologists 12 months post work-
related injury, and that rates were higher with increasing age for
some healthcare services (i.e., GP visits, physiotherapy)
(Ruseckaite et al., 2016). However, some studies failed to find evi-
dence of increases in healthcare use following work-related inju-
ries. McCaig, Burt, and Stussman (1998), for example, did not
find a significant difference in the proportion of emergency depart-
ment visits between those with and without work-related injuries
using the 1995–1996 National Hospital Ambulatory Medical Care
Survey data. Other studies have reported the proportion of the
study population who were working and experienced work-
related injuries that led to utilization of specific health services
(e.g., visits to emergency departments), but did not compare these
with workers without work-related injuries (Tonozzi & Layne,
2016).

Research also documents other risk factors for increased health-
care use following work-related injuries. Females are more likely
than males to use healthcare services following work-related inju-
ries (Ruseckaite et al., 2016). U.S. emergency services data showed
that the rate of occupational knee injuries increased from 10 to 15
per 10,000 for females ages 25–34 and 50–54 years, respectively,
but rates decreased with age for males (Chen et al., 2013). In addi-
tion, individuals living in rural areas use healthcare services less
often following workplace injury; this may be due to decreased
availability of services compared to urban areas and increased
traveling time (Ruseckaite et al., 2016; Young, Cifuentes, &
Wasiak, 2009).

Working hours and type and severity of injuries have also been
linked to healthcare service use among workers. For example, in

Japan, significantly higher rates of physician visits were found for
male workers aged 18–65 years who worked 100–200 hours per
month compared to those who worked 201–250 hours per month
(Sato, Yamazaki, & Hayashino, 2011). However, they were less
likely to use over the counter medication. Individuals who worked
more than 250 hours per month were also less likely to use over
the counter medication, as well as dietary supplements for symp-
toms experienced than those working 201–250 hours per month.
The authors concluded that full-time work might act as a barrier
to access required health services. In terms of specific relationships
between work-related injuries and post-injury treatment seeking,
studies in the United States and Switzerland have shown that
machine- and fall-related injuries and increased severity of injury
are significantly associated with increased hospitalization rates
(Pfortmueller, Kradolfer, & Kunz, 2013; Tadros, Sharon, & Chill,
2018).

Results of many studies examining healthcare use following
workplace injuries cannot be generalized to the broader working
population as these studies have focused on particular occupa-
tional categories (Nilsson, Pinzke, & Lundqvist, 2010;
Pfortmueller et al., 2013; Tonozzi & Layne, 2016; Weigel,
Armijos, & Beltran, 2014), or were based on administrative data
(medical or workers’ compensation claims), in which the incidence
of underreporting of workplace injuries is high (Tucker & Keefe,
2019). In addition, previous studies were mostly cross-sectional
in design (Berdahl & Zodet, 2020; McCaig et al., 1998; Ruseckaite
et al., 2016; Seo, Chao, & Yeung, 2019; Weigel et al., 2014). To
the best of our knowledge, only one Canadian study has used a ret-
rospective longitudinal design based on the linked Medical Service
Plan, hospital discharge and Workers Ccompensation Board (WCB)
data for workers in the Canadian province of British Columbia to
examine the link between work-related injuries and healthcare
utilization (Brown et al., 2006).

To address methodological limitations and observed inconsis-
tencies reported in the literature, we used national-level longitudi-
nal data from the Canadian Longitudinal Study on Aging (CLSA)
(Canadian Longitudinal Survey on Aging (CLSA), 2020; Raina
et al., 2018, 2019) to examine the associations between work-
related injuries and the utilization of 10 types of healthcare ser-
vices including: (1) emergency department visits; (2) overnight
hospitalizations; (3) nursing home or convalescent home use; (4)
family doctor visits; (5) medical specialist visits; (6) psychologist
visits; (7) optometrist visits; (8) visits to a physiotherapist, occupa-
tional therapist, or chiropractor; (9) visits to a social worker; and
(10) dentist visits among middle-aged and older Canadian workers.
We selected these 10 types of healthcare services as they were
studied in relation to work-related injuries in previous research
with inconsistent results, and were available in the CLSA data.
We controlled for the contribution of various socio-demographic
and health-related characteristics, which may relate to patterns
of utilization.

2. Methods

2.1. Study design and data sources

We conducted longitudinal analyses using data from the CLSA
(Canadian Longitudinal Survey on Aging (CLSA), 2020; Raina
et al., 2018, 2019), which consists of two cohorts. The Tracking
Cohort (N = 21,241) consists of a randomly (within age/sex strata)
selected sample of Canadian males and females in 10 provinces,
aged 45–85 years, who completed a Baseline Questionnaire admin-
istered via computer-assisted telephone interviews (CATI). The
Comprehensive Cohort (N = 30,097) were randomly (within age/sex
strata) selected Canadian males and females living near one of 11

S. Shooshtari, V. Menec, B.M. Stoesz et al. Journal of Safety Research 83 (2022) 371–378

372



data collection sites located across Canada. The Comprehensive
Cohort completed the Baseline Questionnaire during in-home inter-
views; they also provided physical, biological, and clinical data at
data collection sites. Approximately 18 months after the baseline,
both cohorts (N = 51,338) completed the Maintaining Contact Ques-
tionnaire via CATI, which included questions on healthcare use.
Individuals living in long-term care institutions, those with cogni-
tive impairment, residents in the Canadian territories, individuals
living on federal First Nations reserves, full-time members of the
Canadian Armed Forces, unable to respond in English or French
were excluded from participation in CLSA. For this study, Baseline
and Maintaining Contact Questionnaire data for a subsample of the
CLSA were examined.

2.2. Study sample

Given the present focus on work-related injuries, this study was
based on a subsample of CLSA participants who were either still
employed (full-time or part-time) at the time of the Baseline inter-
view, or had recently retired. Recently retired participants were
defined as those who reported having retired within a 12-month
period prior to the date of the interview. This study was, therefore,
based on data for 24,748 participants (48.2% of the full sample).

2.3. Study measures

2.3.1. Socio-demographic characteristics
Socio-demographic measures including age (45–54 years, 55–

85 years), sex (male/female), marital status (married/living with
a partner in a common law relationship, single/never married/
never living with a partner/widowed/divorced/separated), educa-
tion (<secondary graduation/secondary graduation/no post-
secondary, some post-secondary/post-secondary degree/diploma),
and total annual household income (less than $20,000/$20,000-$
49,999/$50,000-$90,000/$100,000–149,999/$150,000 or more)
were collected from CLSA participants.

2.3.2. Work-related injuries
In the Baseline Questionnaire, participants were asked the yes/

no question, ‘‘In the last 12 months, have you had any injuries that
were serious enough to limit some of your normal activities? For
example, a broken bone, a bad cut or burn, a sprain or a poisoning.”
Those who responded ‘‘yes” were asked to indicate the causes of
their injuries: (1) Fall, (2) Motor Vehicle Collision (including inju-
ries sustained as a pedestrian), (3) An incident in your workplace,
(4) None of the above, and (5) Don’t know/No answer/Refused. Par-
ticipants were then asked what type of activity they were doing
when they were injured: (1) Sports or physical exercise (include
school activities); (2) Leisure or hobby; (3) Working at a job or
business (including travel to or from work); (4) Household chores,
other unpaid work or education; (5) Sleeping, eating, personal
care; or (6) Other. Using these two variables, those who reported
an activity-limiting injury caused by ‘‘an accident in their work-
place” or ‘‘working at a job or business including travel to or from
work” were classified as having a work-related injury.

2.3.3. Work-related variables
2.3.3.1. Current working status. Respondents who indicated that
they were currently working were asked, ‘‘What is your current
working status? If you are self-employed, choose full-time or part
time, as appropriate.” Responses were classified into full-time or
part-time employee.

2.3.3.2. Current work schedule. Respondents were asked, ‘‘Which of
the following best describes your working schedule?: (1) Daytime
schedule or shift; (2) Evening shift; (3) Night shift; (4) Rotating

shift, changing periodically from days to evenings or nights; and
(5) Seasonal, on-call or casual, no pre-arranged schedules, but
called as need arises.” Responses were classified into Working day-
time or Other types of work schedules or shifts.

2.3.4. Vision
Respondents were asked, ‘‘Is your eyesight, using glasses or cor-

rective lens if you use them excellent, very good, good, fair, or
poor?” Responses were coded as Excellent/Very good/Good, or
Fair/Poor/non-existent (blind).

2.3.5. Mood disorder
Respondents were asked, ‘‘Has a doctor ever told you that you

have a mood disorder, such as depression (including manic depres-
sion), bipolar disorder, mania, or dysthymia?” Responses were
coded as having or not having a mood disorder.

2.3.6. Memory problem
Respondents were asked if they were diagnosed with memory

problems by a health professional. Responses were coded as yes
or no.

2.3.7. Smoking
Participants were asked about their smoking behaviors during

the past 12 months. Responses to smoking behavior questions
were classified into the following categories: (1) Daily smoker;
(2) Occasional smoker, but former daily smoker; (3) Occasional
smoker; (4) Former daily smoker, but non-smoker now; and (5)
Never smoked. In this study, we used a binary variable to differen-
tiate: (1) Occasional smoker/Former daily smoker, but non-smoker
now/Never smoked from those who were, from (2) Daily smoker/
Occasional smoker, but former daily smokers. This classification
was used to differentiate those with current heavier smoking
behavior from others.

2.3.8. Health care utilization
In the Maintaining Contact Questionnaire, participants were

asked: ‘‘During the past 12 months, have you had contact with
any of the following about your physical or mental health? (a)
Family doctor? (b) Medical specialist (such as a cardiologist, gyne-
cologist, psychiatrist, or ophthalmologist)? (c) Psychologist? (d)
Optometrist? (e) Physiotherapist, occupational therapist, or chiro-
practor? (f) Social worker.” From this list, we identified those par-
ticipants who had seen a family doctor (vs those who had not) and
those who had seen a psychologist (vs not). Respondents were also
asked: ‘‘Have you been seen in an Emergency Department during
the past 12 months?”, ‘‘Were you a patient in a hospital overnight
during the past 12 months?”, and ‘‘Were you a patient in a nursing
home or convalescent home during the past 12 months?” We cre-
ated 10 binary variables (yes/no) to indicate the use of each type of
healthcare. In addition, we defined a new index variable indicating
the sum of the 10 types of healthcare use to be able to examine and
compare utilization of multiple types of healthcare within the
same timeframe between those with and without work-related
injuries.

2.4. Data analysis

We conducted descriptive analyses to describe the socio-
demographic, work-related, and health-related characteristics of
our study population. Sampling weights were applied to obtain
population estimates. We used cross-tabulations to test associa-
tions between each study factor and work-related injuries. We also
tested the bivariate association between work-related injuries and
the 10 types of health services use. The average number of various
types of healthcare utilization were estimated and compared
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between those with and without work-related injuries among our
study population. Finally, we ran several multivariate regression
models to examine the independent contribution of work-related
injuries on subsequent health care use. Adjusted odd ratios (AOR)

and their 99% confidence intervals (CIs) were used to identify sig-
nificant predictors of subsequent health care use among middle-
aged and older workers in Canada. Analytical weights that adjust
for the CLSA complex survey design were applied for any statistical

Table 1
Socio-demographic Characteristics of the Study Population.

Variable Canada

Weighted n % 99% CI

Age (years)
45–54 4,203,803 58.1 56.8 59.3
55–85 3,036,649 41.9 40.7 43.2
Total 7,240,452 100.0

Sex
Female 3,438,555 47.5 46.2 48.8
Male 3,801,897 52.5 51.2 53.8
Total 7,240,452 100.0

Marital status
Single, never married or never lived with a partner/Widowed/Divorced/Separated 1,493,185 20.6 19.7 21.6
Married/ Living with a partner in a common-law relationship 5,745,164 79.4 78.4 80.3
Total 7,238,350 100.0

Education
Less than secondary school
graduation/Secondary school

1,087,650 15.1 14.1 16.0

graduation, no post-secondary
Some post-secondary education/Post- 6,136,157 84.9 84.0 85.9
secondary degree/diploma
Total 7,223,808 100.0

Total household income
Less than $50,000 1,097,548 15.8 83.3 85.1
$50,000 or more 5,861,597 84.2 14.9 16.7
Total 6,959,145 100.0

Table 2
Comparing Profiles of the CLSA Participants With and Without Work-Related Injuries.

Variable Work-related injuries x2

Yes
% (99% CI)

No
% (99% CI)

Age (years)
45–54 63.5 (56.9, 70.2) 57.9 (56.6, 59.1) 13.4*
55–85 36.5 (29.8, 43.1) 42.1 (40.9, 43.4)

Sex
Male 57.9 (50.9, 64.9) 52.3 (51.0, 53.6) 3.6
Female 42.1 (35.1, 49.1) 47.7 (46.4, 49.0)

Marital status
Single, never married or never lived with a partner/Widowed/ Divorced/Separated 21.7 (16.5, 26.9) 20.6 (19.6, 21.6) 11.0*
Married/ Living with a partner in a common-law relationship 78.3 (73.1, 83.5) 79.4 (78.4, 80.4)

Education
Less than secondary school graduation/Secondary school graduation, no post-secondary 16.9 (11.8, 22.1) 15.0 (14.0, 16.0) 6.8*
Some post-secondary education/Post-secondary degree/ diploma 83.1 (77.9, 88.2) 85.0 (84.0, 86.0)

Annual household income
Less than $50,000 20.7 (15.0, 26.4) 15.6 (14.7, 16.5) 19.7*
$50,000 or more 79.3 (73.6, 85.0) 84.4 (83.5, 85.3)

Current working status
Full time employee (30 + hours/week) 86.1 (81.2, 91.0) 81.6 (8.5, 82.7) 7.1*
Part time employee 13.9 (9.0, 18.9) 18.4 (17.3, 19.5)

Current work schedule
Daytime schedule or shift 67.9 (60.5, 75.4) 82.7 (81.6, 83.8) 43.5*
Evening/night/rotating shift, seasonal, on call, or casual but called as need arises 32.1 (24.6, 39.5) 17.3 (16.2, 18.4)

Vision
Excellent/ Very good/ Good 89.2 (84.8, 93.6) 93.6 (92.9, 94.3) 20.8*
Fair/Poor or non-existent (blind) 10.8 (6.4, 15.2) 6.4 (5.7, 7.1)

Smoking
Occasional smoker/Former daily smoker, but non-smoker now/Never smoked 84.3 (79.3, 89.4) 90.0 (89.2, 90.8) 26.6*
Daily smoker/Occasional smoker (former daily smoker) 15.7 (10.6, 20.7) 10.0 (9.2, 10.8)

Mood disorder
Yes 11.6 (6.7, 16.5) 7.1 (6.5, 7.8) 19.2*
No 88.4 (83.5, 93.3) 92.9 (92.2, 93.5)

Memory problem
Yes 1.7 (0.0, 3.3) 1.0 (0.7, 1.2) 4.3*
No 98.3 (96.7, 100.0) 99.0 (98.8, 99.3)

Note. CI = confidence interval; *p <. 01.
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testing. SAS version 9.4 was used to conduct the analyses. Respon-
dents’ province of residence and whether they were in the Tracking
vs Comprehensive Cohorts were also controlled in the multivariate
analyses, as recommended by CLSA. We used p <.01 as our signifi-
cance level for all analyses.

2.5. Ethics

Data access for this study was approved by the CLSA Data
Access Committee. The Health Research Ethics Board of the Univer-
sity of Manitoba approved the study protocol.

3. Results

About 51.7% of the Canadian population aged 45–85 years were
working at the time of their CLSA Baseline Questionnaire with 361
per 10,000 experiencing a work-related injury within the year
prior to the survey (see Table 1). Significant age effects for work-
related injuries were observed, such that a higher proportion of
workers aged 45–54 years reported work-related injuries than
those aged 55–85 years (see Table 2). Marital status, education
level, annual household income, current working status, work
schedule, and several health and health-related conditions and
behaviors (i.e., vision, smoking behavior, mood disorder, and mem-
ory problem) were also significantly associated with a higher risk
of work-related injuries.

Results from bivariate analyses revealed that work-related inju-
ries were significantly associated with increased risk of overnight
hospitalization, emergency department visits, visits to dentists,
and visits to physiotherapists, or occupational therapists, or chiro-
practors, but not with the number of visits to family doctors, med-
ical specialists, psychologists, optometrists, social workers, or
nursing home/convalescent home use (Table 3).

The average number of healthcare services used within the last
12 months by those who reported work-related injuries (M = 3.54,
SE = 0.09) was significantly higher than for those without work-
related injuries (M = 3.31, SE = 0.02). However, the observed mean
difference was not statistically significant [t(47,726) = -0.06,
p = 0.95].

When controlling for the contribution of other factors, work-
related injury remained a significant predictor of emergency
department visits, and visits to physiotherapists, or occupational
therapists, or chiropractors but not overnight hospitalizations, or
dentist visits (see Table 4).

4. Discussion

Our results are based on analyses of a large national sample of
Canadian males and females, aged 45–85 years. At the time of the
CLSA, the incidence of work-related injuries among middle-aged
and older workers in Canada was 361 per 10,000 workers, and
the rate was higher among 45–54-year-olds than among 55–85-
year-olds. A key finding of our study is the significant independent
contribution of work-related injuries on subsequent healthcare use
of specific type.

Although we found a statistically significant bivariate associa-
tion between work-related injuries and overnight hospitalizations
and visits to dentists, these associations were not significant in
multivariate analyses in which we controlled for the contribution
of various factors. In contrast, we found that work-related injuries
were significantly associated with increased odds of emergency
department visits, and visits to physiotherapists, or occupational
therapists, or chiropractors even after controlling for the effects
of age, sex, annual household income, education, and all the other
factors associated with work-related injuries in our study.
Although work-related injuries did not predict hospitalizations,

Table 3
Associations between Work-related Injuries and Healthcare Use.

Variable Work-related injuries X2

Yes% (99% CI) No% (99% CI)

Overnight hospitalization
Yes 10.5 (5.5, 15.4) 5.8 (5.1, 6.4) 10.9*
No 89.5 (84.6, 94.5) 94.2 (93.6, 94.9)

Emergency department visits
Yes 29.3 (22.3, 36.3) 18.7 (17.7, 19.8) 24.1*
No 70.7 (63.7, 77.7) 81.3 (80.2, 82.3)

Family physician visits
Yes 87.7 (82.5, 92.9) 85.6 (84.6, 86.6) 2.6
No 12.3 (7.1, 17.5) 14.4 (13.4, 15.4)

Psychologist visits
Yes 5.3 (2.4, 8.2) 5.4 (4.8, 6.1) 2.1
No 94.7 (91.8, 97.6) 94.6 (93.9, 95.2)

Medical Specialist visits
Yes 44.0 (36.6, 51,5) 40.9 (39.5, 42.2) 2.1
No 56.0 (48.5, 63.4) 59.1 (57.8, 60.5)

Dentist visits
Yes 78.7 (73.1, 84.2) 84.0 (83.0, 85.0) 19.0*
No 21.3 (15.8, 26.9) 16.0 (15.1, 17.0)

Optometrist visits
Yes 52.3 (44.9, 59.7) 53.3 (51.9,54.7) 0.5
No 47.7 (40.3, 55.1) 46.7 (45.3, 48.1)

Physiotherapist, occupational therapist, or chiropractor visits
Yes 43.2 (35.8, 50.7) 35.5 (34.2, 36.9) 18.8*
No 56.8 (49.3, 64.2) 64.5 (63.1, 65.8)

Social Worker visit
Yes 2.9 (0.3, 5.6) 2.4 (2.0, 2.9) 0.0
No 97.1 (94.4, 99.7) 97.6 (97.1, 98.0)

Nursing Home resident
Yes 0.7 (0.0, 2.1) 0.2 (0.1, 0.3) 0.0
No 99.3 (97.9, 100.0) 99.8 (99.7, 99.9)

Note. CI = confidence interval; *p <.01.
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lower education level and household income, and non-daytime
work schedule significantly increased the odds of having been hos-
pitalized overnight. This suggests that hospitalization was mainly
driven by socio-economic factors. Given that socio-economic sta-
tus is also a predictor of work-related injuries, a mediational anal-
ysis might have been informative, as it may have teased out
possible indirect effects of work-related injuries and socio-
economic status on hospitalization. The differential effect for
emergency department visits and hospitalization could also be
the result of model power issues as the number of middle-aged
and older workers with histories of hospitalization was low (i.e.,
10.5%). The lack of significant associations between work-related
injuries and visits to family physicians and clinical psychologists
may be due to ceiling and floor effects, respectively. Specifically,
more than 95% of our study population reported family physician
visits but only 5% reported visits to psychologists in the 12 months
prior to their follow-upMaintaining Contact Questionnaire. It should
be noted that there are more barriers to access mental health care
than to access family physicians, including long waiting lists, out of
pocket costs, and lower availability in rural contexts.

Although work-related injuries were associated with specific
types of healthcare use, visits to emergency departments, and vis-

its to physiotherapists, occupational therapists, or chiropractors,
combining healthcare utilization into an index of overall health-
care use did not result in statistically significant differences
between those with and without work-related injuries. These
results suggest that the relationship between work-related injuries
and subsequent healthcare use is quite complex.

In addition, the increased use of some of the healthcare services
in this study is unlikely to be the direct result of the work injury,
given that CLSA participants were asked about injuries in the year
prior to the Baseline Questionnaire, whereas healthcare use was
assessed following the Baseline Questionnaire. Therefore, a causal
relationship between work-related injuries and subsequent
healthcare use cannot be concluded. Nevertheless, the significant
association between workplace injuries, emergency department
visits, and visits to physiotherapists, occupational therapists, or
chiropractors suggests that middle-aged and older workers experi-
enced ongoing health problems that may be exacerbated following
their injuries.

A strength of our study is its longitudinal design based on
national sample of Canadian workers with all types of occupations
are generalizable to the broader population of workers within the
age groups that we studied. Our findings also build upon existing

Table 4
Predictors of Healthcare Use in Middle-Aged and Older Canadian Workers aged 45 – 85 years of age.

Variables Emergency
Department Visits

Overnight
Hospitalization

Dental
Visits

Visits to physiotherapist, occupational
therapist, or chiropractor

OR
(99% CI)

OR
(99% CI)

OR
(99% CI)

OR
(99% CI)

Age: 45–54 years 0.943
(0.845, 1.051)

0.597*
(0.497, 0.716)

1.080
(0.958,
1.218)

1.140*
(1.045, 1.244)

Sex: Female 0.998
(0.890, 1.119)

0.948
(0.783, 1.149)

1.637*
(1.441,
1.859)

1.322*
(1.207, 1.447)

Marital status: Married/Living with a partner in a common-law
relationship

1.024
(0.889, 1.178)

1.086
(0.863, 1.365)

0.980
(0.839,
1.144)

1.025
(0.916, 1.147)

Education: Less than secondary school graduation/Secondary
school graduation, no post-secondary

1.168
(0.992, 1.375)

1.365*
(1.062, 1.754)

0.586*
(0.499,
0.687)

0.845
(0.734, 0.974)

Total household income: $50,000 or more 0.803*
(0.680, 0.949)

0.704*
(0.539, 0.921)

3.128*
(2.660,
3.678)

1.270*
(1.103, 1.463)

Work schedule: Daytime 0.872
(0.754, 1.009)

0.770*
(0.614, 0.965)

1.286*
(1.105,
1.496)

1.020
(0.903, 1.152)

Work status: Full time employee (30+ hours/week) 1.021
(0.880, 1.184)

0.893
(0.708, 1.126)

1.248*
(1.067,
1.459)

0.986
(0.877, 1.108)

Work-related injuries 1.490*
(1.145, 1.939)

1.409
(0.945, 2.100)

0.748
(0.552,
1.014)

1.471*
(1.158, 1.870)

Memory problem 1.483
(0.859, 2.560)

1.684
(0.801, 3.542)

1.090
(0.573,
2.076)

1.278
(0.799, 2.044)

Mood disorder 1.390*
(1.202, 1.606)

1.485*
(1.176, 1.876)

1.094
(0.919,
1.301)

1.232*
(1.092, 1.390)

Vision: Excellent/very good/good 0.949
(0.761, 1.185)

0.751
(0.547, 1.031)

1.376*
(1.098,
1.725)

1.204*
(1.000,1.448)

Smoking: Daily/Occasional (former daily) 1.320*
(1.104, 1.579)

1.026
(0.761, 1.384)

0.506*
(0.424,
0.602)

0.683*
(0.581, 0.803)

Note. Province of residence and tracking versus comprehensive cohort are also controlled for because of the analytic weights used in the analyses.
CI = confidence interval; *Significant at p <.01.
Reference categories: Participants aged 55–85 years; males; Single, never married or never lived with a partner/Widowed/ Divorced/Separated; Some post-secondary
education/Post-secondary degree/ diploma; No memory problem; less than $50,000 total household income; current working schedule Evening/night/rotating shift, seasonal,
on call, or casual but called as need arises; Part time employee; No mood disorder; Fair/Poor or non-existent (blind) vision; Occasional smoker/Former daily smoker, but no-
smoker now/Never smoked; not injured while working at a job.
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research demonstrating that socio-economic status and ongoing
health problems are important considerations when examining
the complex relationship between workplace injuries and health-
care use in middle-aged and older workers. To the best of our
knowledge, prior studies on healthcare utilization outcomes of
work-related injuries were mostly cross-sectional and/or focused
on a particular occupational category (i.e., farmers) (Nilsson
et al., 2010; Pfortmueller et al., 2013; Tonozzi & Layne, 2016;
Weigel et al., 2014)with few studies of longitudinal design exam-
ined patterns of healthcare utilization following work-related inju-
ries (Brown et al., 2006; López Gómez, Williams, & Boden, 2020;
Tonozzi & Layne, 2016). Although studies such as these shed light
on the association between work-related injuries and use of health
services among injured workers, the models cannot be generalized
to the entire working population in that jurisdiction as the existing
evidence suggests that the incidence of underreporting is high,
with less than half of workers filing work-related injuries claims
(Tucker & Keefe, 2019).

Despite its strengths, we acknowledge limitations of our study.
First, measures of work-related injuries and healthcare use are
based on self-reported CLSA data, and therefore are susceptible
to recall bias. Second, we did not examine the independent contri-
bution of work-related injuries on subsequent healthcare utiliza-
tion rates by age, sex, or type of injury or by occupation type.
We looked at type of injuries in our study, but since the majority
were classified as sprains or strains, and there was little variability
in our study population, we did not include that variable in our
analyses when examining healthcare utilization. Examining the
contribution of type of injury or socio-economic factors other than
the ones included in our analysis (e.g., ethno-cultural background)
could be the focus of future studies. Further analysis to examine
the link between work-related injuries and subsequent healthcare
use by these characteristics is important as there is evidence from
prior studies that the contribution might vary by age, sex, and type
of injury. For example, younger workers (15–24 years) have been
found to report twice the rate of emergency department visits
due to knee injuries compared to older workers (55+ years), but
older workers had more severe injuries than their younger coun-
terparts (Chen et al., 2013). Other studies have found that older
workers (60+ years) reported dramatically fewer but more severe
work-related injuries of the lower extremities than younger work-
ers (20–39 years) but here also the older workers reported greater
injury severity scores (Frickmann et al., 2012; Konstantinidis et al.,
2011). Male workers also have higher rates of emergency depart-
ment visits for work-related injuries compared to female workers
(McCaig et al., 1998). We also cannot rule out the possibility that
the work-related injury and health care use was due to a common,
underlying health problem. Although we controlled for some
health-related variables in the analysis (e.g., mood disorder), future
research should include additional potential health issues, such as
arthritis which may affect mobility and dexterity. We also recom-
mend conducting mediation analysis in future studies to further
investigate the association between work-related injuries, socio-
economic characteristics, and targeted health outcomes.

There are several practical implications emanating from these
findings. First, organizations and WCBs could ensure that health-
care services used by injured employees are considered priorities
for employment insurance coverage, if not already covered. For
example, our findings show that injured employees are more likely
than non-injured employees to use physiotherapists, occupational
therapists, chiropractors, and dentists. This is particularly impor-
tant because some provincial health care plans offer limited access
to these types of services (e.g., a maximum of seven visits to chiro-
practic care per calendar year in Manitoba), whereas others do not.
Although use of physical therapy practitioners was not surprising
given the nature of common work injuries, we were surprised by

the increased use of dentists. It is unclear whether increased use
of dentists among injured employees co-occurs with increased
use of other healthcare services; this latter finding deserves more
research attention and consideration by organizations supporting
injured employees. Second, consideration of these findings for
employees once they retire and how their organizations can sup-
port injured retirees is worth discussion. For example, do these
organizations ensure that these healthcare services are covered
in retirees’ benefits? Third, the stability of findings between our
bivariate and multivariate analyses has implications for employers
and provincial-level WCBs. When controlling for residency in
Canadian provinces, there are differences among injured and
non-injured employees in visits to dentists and physical therapy
practitioners. For example, workers from the provinces of Ontario
and Nova Scotia had increased odds of visits to dentists when com-
pared to workers from Newfoundland and Labrador. When we
examined use of physical therapy practitioners, workers from the
provinces of Alberta, Saskatchewan, British Columbia, Manitoba,
and Ontario all had increased odds of utilization compared to
workers from Newfoundland and Labrador. This might indicate dif-
ferent levels of accessibility for these types of healthcare practi-
tioners by employees in these provinces, and the extent to which
workers compensation boards in those provinces provide coverage
for healthcare services for injured employees.

5. Conclusions

Our study findings contribute to a greater understanding of the
association between workplace injuries and subsequent healthcare
use, specifically emergency department visits, and visits to physio-
therapists, occupational therapists, and chiropractors, among
middle-aged and older workers in Canada. Our findings of
increased healthcare use following workplace injuries after con-
trolling for a number of socio-demographic and health-related
characteristics suggest a need for the focus on prevention of work-
place injuries for all ages including middle-age and older workers.
Examination of long-term health and health care utilization of
work-related injuries of middle-aged and older workers is
recommended.
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a b s t r a c t

Objective: Several studies have confirmed the existence of a safety-in-numbers effect in relation to vul-
nerable road users. The safety-in-numbers effect refers to a phenomenon wherein the number of bicy-
clists/pedestrians on a road is higher, and consequently, the risk of each bicyclist/pedestrian being
involved in a crash is lower. Nevertheless, the existence of the safety-in-numbers effect in the aspect
of injury severity in traffic crashes has not yet been investigated. Thus, this study aimed to explore
whether traffic injuries are more (less) severe with fewer (more) pedestrians/bicyclists at the county
level. Method: Using two fractional split multinomial logit models, the relationships between the number
of bicyclists/pedestrians and the proportion of crashes involving bicyclists/pedestrians based on crash
severity were investigated at the county level using crash data from Florida. In other words, we explored
whether differing number of bicyclists/pedestrians could change the distribution of traffic injury severity
levels. Results: The modeling results clearly revealed a lower proportion of severe injuries caused to bicy-
clists/pedestrians at a higher level of daily bicycle/pedestrian flows, indicating existence of the safety-in-
numbers effect. Several variables (e.g., the percentage of people aged 65 years and older, the percentage
of commuters using public transportation, and the proportion of recreational land use) were found to
have a significant effect on the distribution of traffic injury severity among bicyclists/pedestrians.
Conclusion: This study proves that a safety-in-numbers effect exists in the aspect of injury severity among
bicyclists and pedestrians. Practical applications: These findings are expected to provide recommenda-
tions for promoting the use of active transportation, which will improve the safety of vulnerable road
users in future.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, a number of transportation and public health
researchers have agreed that walking and cycling should be pro-
moted owing to their advantages of economic and environmental
sustainability and benefits to public health (Mueller et al., 2018).
However, more than half of all the road traffic deaths reported
involve vulnerable road users, such as pedestrians, cyclists, and
motorcyclists (World Health Organization, 2021), which presents
a barrier to the shift from motorized transportation to sustainable
modes of transportation. To encourage car users to choose walking
or cycling as their primary mode of transportation, several efforts
have been dedicated to explore and improve the safety of vulnera-

ble road users. A phenomenon called safety-in-numbers was dis-
covered while studying the safety of vulnerable road users
(Brüde & Larsson, 1993).

The safety-in-numbers effect refers to the hypothesis that an
individual in a larger group is more likely to be protected frommis-
haps or accidents. In other words, when the number of bicyclists/-
pedestrians increases, the risk of crash involvement for each
bicyclist/pedestrian decreases. Over the past two decades, the
safety-in-numbers concept has attracted significant research inter-
est. Some researchers have investigated the relationship between
crashes involving bicyclists/pedestrians and the number of bicy-
clists/pedestrians, and the results have indicated that the safety-
in-numbers effect exists on a microscopic scale, including intersec-
tions (Kröyer, 2016; Miranda-Moreno, Morency, & El-Geneidy,
2011; Murphy, Levinson, & Owen, 2017; Schneider et al., 2010;
Xie, Dong, Wong, Huang, & Xu, 2018; Xu, Xie, Dong, Wong, &
Huang, 2019), crosswalks (Elvik, 2016), and roundabouts
(Daniels, Brijs, Nuyts, & Wets, 2010). In contrast, other studies have
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investigated the safety-in-numbers effect on a macroscopic scale,
including states (Robinson, 2005), census tracts (Tasic, Elvik, &
Brewer, 2017), and metropolitan statistical areas (Lee, Abdel-Aty,
& Cai, 2020). Jacobsen (2015) examined the safety-in-numbers
effect and proved its existence across different macro levels rang-
ing from cities to countries.

In addition to exploring the existence of the safety-in-numbers
effect on a microscopic or macroscopic scale, a few studies have
analyzed more specific circumstances. Agent-based modeling was
applied to replicate the safety-in-numbers effect in a simulated
environment, and the results implied that the safety-in-numbers
effect exists only when bicycle density increases over time
(Thompson, Savino, & Stevenson, 2015). Lee, Abdel-Aty, Xu, and
Gong (2019) explored the safety-in-numbers effect in areas with
low pedestrian activities at intersections. The results indicate that
the safety-in-numbers effect exists at intersections with larger
pedestrian activities, whereas it does not exist at intersections with
minimal pedestrian activities.

Although the above-mentioned studies have identified the exis-
tence of the safety-in-numbers effect, the reported strength of the
effect varies significantly between studies. Elvik (2017) reviewed
existing studies analyzing the safety-in-numbers effect using count
regression models and revealed that the strength of the safety-in-
numbers effect is inversely related to the number of cyclists and
pedestrians. Another meta-analysis conducted by Elvik and Bjørn-
skau (2019) suggested that the strength of the safety-in-numbers
effect is more likely to be larger for pedestrians than for cyclists
and higher at the macro level than at the micro level.

Mechanisms underlying the safety-in-numbers effect have also
been investigated in recent years. Some possible mechanisms that
have been proposed include the behavioral adaptation of drivers
(Jacobsen, 2015), improved interaction between road user groups
(Phillips, Bjørnskau, Hagman, & Sagberg, 2011), and safer street
regulations, design, and operation (Bhatia & Wier, 2011). These
mechanisms have been tested in several studies. The improved
interaction between road user groups, which refers to other road
users creating more correct expectations when they become accus-
tomed to the presence of bicyclists, was verified by analyzing data
from Oslo, Norway, where bicycle use exhibits a substantial sea-
sonal variation (Fyhri, Sundfør, Bjørnskau, & Laureshyn, 2017).
Two studies that used simulated environments demonstrated that
behavioral adaptation may be a sufficient but unnecessary input
and that the safety-in-numbers effect still exists even in the
absence of behavioral adaptation (Thompson et al., 2015, 2016).
One mechanism involves the following hypothesis: more attention
will be paid to cyclists if more drivers are also cyclists (cyclist dri-
vers), which occurs when the number of cyclists increases. To test
this mechanism, Johnson, Oxley, Newstead, and Charlton (2014)
conducted an online survey among Australian drivers who did
not cycle and cyclist drivers and discovered that cyclist drivers
tended to report positive attitudes towards cyclists.

Based on the previous discussions, it can be established that
considerable effort has been devoted to explore the safety-in-
numbers effect. However, previous studies have analyzed the
safety-in-numbers effect with regard to the crash frequency or
crash rate. An analysis of the effect with regard to injury severity
among bicyclists and pedestrians has not yet been investigated.
The existence of this effect would indicate that with an increasing
proportion of bicyclists/pedestrians, the proportion of more severe
injuries would decrease, whereas that of less severe injuries would
increase. The primary objective of the current study is, therefore, to
evaluate the existence of the safety-in-numbers effect from the
perspective of traffic injury severity among vulnerable road users.
To accomplish this, the current study adopts two fractional split
multinomial logit models to analyze the proportion of crashes

based on their severity with data collected from Florida aggregated
at the county level.

2. Data

Descriptive statistics of the data for bicyclists and pedestrians
are summarized in Tables 1 and 2, respectively. These data were
collected from 67 counties in Florida, USA. Four main datasets were
integrated and used in the current study: bicycle and pedestrian
crash data, Strava data, Florida socioeconomic and demographic
data, and land-use data. The data used in this study are described
in detail in this section.

2.1. Bicycle and pedestrian crash data

Bicycle and pedestrian crash data at different severity levels
were obtained from the Florida Department of Transportation
(FDOT) Crash Analysis Reporting System. The crash data contained
five injury severity levels: fatal injury (K), incapacitating injury (A),
non-incapacitating evident injury (B), possible injury (C), and prop-
erty damage only (O). To obtain sufficient observations at each
injury severity level, the crash data were divided into three levels:
severe injury (KA), moderate injury (B), and minor/no injury (CO).
Bicycle crash data from 2012–2016 and pedestrian crash data from
2012–2015 were used in this study. The crash data based on sever-
ity type were further aggregated according to the county, and the
corresponding crash proportions were calculated. No bicycle
crashes were reported for three counties during the study period.
Therefore, these three counties were excluded from this study.

2.2. Exposure data

Strava tracks the activities of cyclists and pedestrians via smart-
phone applications based on the global positioning system. Thus,
Strava data were obtained from the FDOT Unified Basemap Repos-
itory. Similar to the crash data, Strava data for bicyclists from
2012–2016 and for pedestrians from 2012–2015 were used in this
study. The daily bicycle miles traveled (DBMT) and daily pedes-
trian miles traveled (DPMT) were calculated by multiplying the
travel distance by the trips of bicyclists and pedestrians, respec-
tively. The logarithms of the DBMT and DPMT were used as the
traffic exposure variables in this study.

2.3. Socioeconomic and demographic data

Socioeconomic data such as the percentage of occupations in
the primary industry sector (raw materials), secondary industry
sector (manufacturing), and tertiary industry sector (services), per-
centage of families with no vehicles, unemployment rate, andmed-
ian household income were obtained from the U.S. Census Bureau.
Demographic data including the percentages of the population
based on age group and the percentages of specific races (i.e.,
Asian, Black, and Hispanic) were also collected from the U.S. Cen-
sus Bureau.

2.4. Commuting travel data and land-use data

Commuting travel data were acquired from the U.S. Census
Bureau, and the percentages of commuters using specific travel
modes (e.g., car, public transportation, and walking) were com-
puted for each county. Land-use data containing details of land-
use classification were acquired from the FDOT. This study includes
the proportions of several major land-use types (i.e., agricultural,
public, recreational, residential, and commercial land use).
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3. Preliminary analysis

Preliminary analyses were conducted to investigate the exis-
tence of the safety-in-numbers effect in the aspect of crash fre-
quency. The relationship between bicycle/pedestrian volume and

bicycle/pedestrian crash frequency was analyzed using the follow-
ing general negative binomial regression model:

Number of bicycle ðpedestrianÞ crashes

¼ expb0Vehb1BicðPedÞb2 ð1Þ

Table 1
Descriptive statistics of data for bicycle analysis (N = 64).

Category Variable Mean Stdev Min Max

Injury severity
related variables

Proportion of severe injuries (KA) 0.212 0.148 0.000 1.000
Proportion of moderate injuries (B) 0.357 0.162 0.000 0.857
Proportion of minor/no injuries (CO) 0.643 0.162 0.143 1.000

Exposure variables DBMT (daily bicycle miles traveled) 163,789 268,459 1326.1 1,382,029
Socioeconomic characteristics Percentage of occupations in the primary industry sector 3.172 4.146 0.300 19.600

Percentage of occupations in the secondary industry sector 14.200 3.084 5.800 23.400
Percentage of occupations in the tertiary industry sector 82.628 6.107 61.800 93.800
Percentage of families with no vehicles 5.666 1.872 1.900 10.300
Percentage of unemployment 5.961 1.547 2.900 12.000
Percentage of education level: college and higher 23.013 9.904 8.300 46.200
Percentage of individuals without health insurance 12.811 3.590 5.600 25.600
Median household income (in USD) 51,616 10,376 35,438 82,252

Demographic characteristics Percentage of age group: 5–14 years 10.953 1.810 4.200 15.100
Percentage of age group: 15–24 years 11.478 3.066 4.300 25.100
Percentage of age group: 25–64 years 50.584 4.405 33.100 57.700
Percentage of age group: 65 years and older 21.939 7.781 11.600 56.800
Percentage of males 50.883 3.086 47.400 59.600
Percentage of African Americans 14.091 9.295 3.000 56.100
Percentage of Hispanics 14.572 13.327 2.600 68.500
Percentage of Asian Americans 1.678 1.336 0.100 6.100

Commuting characteristics Percentage of commuters using cars 89.795 3.764 76.000 96.900
Percentage of commuters using public transportation 0.881 1.247 0.000 6.600
Percentage of commuters who walk 1.427 0.873 0.200 4.700
Percentage of workers at home 5.561 2.083 0.900 11.000

Land-use attributes Proportion of agricultural land-use 0.486 0.251 0.000 0.938
Proportion of public land-use 0.112 0.136 0.004 0.762
Proportion of recreational land-use 0.080 0.141 0.000 0.700
Proportion of residential land-use 0.094 0.076 0.006 0.421
Proportion of commercial land-use 0.011 0.013 0.000 0.080

Table 2
Descriptive statistics of data for pedestrian analysis (N = 67).

Category Variable Mean Stdev Min Max

Injury severity
related variables

Proportion of severe injuries (KA) 0.341 0.154 0.000 1.000
Proportion of moderate injuries (B) 0.347 0.133 0.000 1.000
Proportion of minor/no injuries (CO) 0.311 0.122 0.000 0.600

Exposure variables DPMT (daily pedestrian miles traveled) 10,261 18,368 42.629 99,147
Socioeconomic characteristics Percentage of occupations in the primary industry sector 3.503 4.462 0.300 19.600

Percentage of occupations in the secondary industry sector 14.181 3.041 5.800 23.400
Percentage of occupations in the tertiary industry sector 82.316 6.297 61.800 93.800
Percentage of families with no vehicles 5.724 1.909 1.900 10.300
Percentage of unemployment 6.118 1.731 2.900 12.000
Percentage of education level: college and higher 22.413 10.076 7.900 46.200
Percentage of individuals without health insurance 12.851 3.548 5.600 25.600
Median household income (in USD) 51,290 10,300 35,438 82,252

Demographic characteristics Percentage of age group: 5–14 years 10.955 1.774 4.200 15.100
Percentage of age group: 15–24 years 11.513 3.018 4.300 25.100
Percentage of age group: 25–64 years 50.840 4.477 33.100 58.400
Percentage of age group: 65 years and older 21.639 7.735 11.600 56.800
Percentage of males 51.339 3.740 47.400 65.200
Percentage of African Americans 14.542 9.464 3.000 56.100
Percentage of Hispanics 14.378 13.082 2.600 68.500
Percentage of Asian Americans 1.616 1.337 0.000 6.100

Commuting characteristics Percentage of commuters using cars 89.954 3.823 76.000 98.000
Percentage of commuters using public transportation 0.863 1.225 0.000 6.600
Percentage of commuters who walk 1.434 0.873 0.200 4.700
Percentage of workers at home 5.427 2.157 0.600 11.000

Land-use attributes Proportion of agricultural land-use 0.500 0.254 0.000 0.938
Proportion of public land-use 0.109 0.134 0.003 0.762
Proportion of recreational land-use 0.079 0.139 0.000 0.700
Proportion of residential land-use 0.091 0.076 0.006 0.421
Proportion of commercial land-use 0.010 0.013 0.000 0.080
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Here, Veh, Bic, and Ped represent the annual average volumes of
the motor vehicles, bicycles, and pedestrians, respectively. b0

denotes the intercept, b1 and b2 represent the corresponding expo-
nential coefficients of the vehicle volume and bicycle (pedestrian)
volume, respectively.

As presented in Table 3, the exponential coefficients of vehicle
volume and bicycle (pedestrian) volume are greater than zero
and less than one, which indicates that the crash rate decreases
as the vehicle volume and bicycle (pedestrian) volume increases;
this confirms the existence of the safety-in-numbers effect in the
aspect of crash frequency (Elvik & Bjørnskau, 2017; Elvik & Goel,
2019; Lee et al., 2019, 2020).

4. Method

The fractional split model was first proposed by Papke (1996) to
analyze fractional bivariate dependent variables that range
between zero and one. The multinomial version, the fractional
multinomial split model, was further developed and has been
applied in the field of transportation, including the evaluation of
crash proportion based on severity levels (Yasmin, Eluru, Lee, &
Abdel-Aty, 2016), crash proportion based on vehicle type (Lee,
Yasmin, Eluru, Abdel-Aty, & Cai, 2018), and the proportion of speed
limit violations across highway segments (Afghari, Haque, &
Washington, 2018). The formulation of the fractional split multino-
mial logit model to analyze the proportion of crashes based on
severity level is presented in this section.

In this study, the dependent variables are the proportions of
crashes based on severity level, which consider continuous values
between zero and one and add up to one for each county.

0 � ysc � 1
XS

s¼1

ysc ¼ 1 ð2Þ

The fraction of crashes based on injury severity s (s = 1, . . ., S;
S = 3) in county c (c = 1,2, . . ., C), ysc , is a function of a vector consist-
ing of the relevant explanatory variables related to the characteris-
tics of that county.

E ysjxð Þ ¼ Gs x; bð Þ ¼ expðxbsÞPS
s¼1expðxbsÞ

; s ¼ 1; . . . ; S ð3Þ

The predetermined link function Gs �ð Þ is assumed to follow a
logistic distribution that responds to the fractional split multino-
mial logit model.

The fractional split multinomial logit model cannot be esti-
mated using a conventional maximum likelihood function. Thus,
the quasi-likelihood function Lq bð Þ is employed in this study:

Lq bð Þ ¼
YS

s¼1

Gs xc;bð Þysc ð4Þ

The quasi log-likelihood function, L bð Þ; is defined as.

L bð Þ ¼
XC

c¼1

lnðLq bð ÞÞ ð5Þ

5. Results

Tables 4 and 5 present the parameter estimation results of the
fractional split multinomial logit models for bicyclists and pedes-
trians, respectively. In the fractional split multinomial logit model,
each alternative has a propensity equation, and the model estima-
tion requires one of the alternatives as a reference. In the current
study, the model was estimated using the proportion of minor/no
injuries as the reference. Thus, no coefficients are specific to the
proportion of minor/no injuries in Tables 4 and 5.

Table 3
Negative binomial model for bicycle and pedestrian crashes.

Variables Bicycle crash frequency Pedestrian crash frequency

Intercept � 13.822***

(SE = 1.449)
� 11.666***

(SE = 1.093)
Daily pedestrian miles traveled (DPMT) 0.289***

(SE = 0.066)
Daily bicycle miles traveled (DBMT) 0.436***

(SE = 0.113)
Daily vehicle miles traveled (DVMT) 0.930***

(SE = 0.163)
0.951***

(SE = 0.103)
Overdispersion (a) 0.422

(SE = 0.077)
0.164
(SE = 0.033)

Log-likelihood ratio (d.f. = 2) 146.460***

(d.f. = 2, p < 0.0001)
206.780***

(d.f. = 2, p < 0.0001)

Pseudo R2 0.170 0.229

*** Significant at 99% confidence level.

Table 4
Parameter estimates for bicycle crash proportion based on severity.

Variables Proportion of Severe Injuries Proportion of Moderate Injuries Proportion of Minor/No Injuries

Natural logarithm of DBMT �0.207*** (0.074) �0.065 (0.062) Reference
Proportion of age group: 65 years and older 0.007 (0.007) �0.012** (0.006)
Proportion of commuters using public transportation �0.104 (0.067) �0.191*** (0.073)
Intercept 1.611* (0.946) 1.330* (0.807)
Pseudo log-likelihood at intercept �67.810657
Pseudo log-likelihood at convergence �66.757660

Numbers in parentheses represent standard errors of the estimated coefficients.
*** Significant at 99% confidence level.
** Significant at 95% confidence level.
* Significant at 90% confidence level.
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In the fractional split multinomial logit model, the positive
(negative) coefficient of the alternative indicates an increased (de-
creased) proportion of this alternative compared with the propor-
tion of minor/no injury. An insignificant coefficient suggests that
the model does not find a significant difference between the effects
of the variable on the alternative and proportion of minor/no inju-
ries based on the data. It should be noted that the coefficients of
severe (KA) and moderate (B) injuries in the models were obtained
by comparison with the reference: minor/no injuries (CO).

5.1. Bicycle crash model

As presented in Table 4, positive intercepts indicate that the
proportions of severe and moderate injuries are higher than the
proportions of minor/no injuries in the absence of any other fac-
tors. An increase in the natural logarithm of DBMT is related to a
decrease in the proportion of severe injuries. A higher proportion
of people aged 65 years and older or a higher proportion of com-
muters using public transportation is inclined to decrease the pro-
portion of moderate injuries. Meanwhile, it is possible that the
proportion of commuters using public transportation demon-
strates certain effects on the proportion of severe injuries, as the
p-value is slightly greater than 0.1 (p = 0.121); however, this has
not been proven with the data used in this study.

5.2. Pedestrian crash model

The positive intercept in Table 5 demonstrates that the propor-
tion of severe injuries is higher than the proportion of minor/no
injuries in the absence of any other factors. An increase in the nat-
ural logarithm of DPMT is associated with a decrease in the propor-
tions of severe and moderate injuries, with the magnitude for
severe injuries being higher. The proportion of recreational land
use exerts a positive influence on the proportion of severe and
moderate injuries.

Tables 6 and 7 present the marginal effects of the explanatory
variables in the fractional split multinomial logit models for bicy-
clists and pedestrians, respectively. The marginal effect is usually
used to measure the exact magnitude of the effect of the explana-
tory variables on dependent variables. In this study, marginal
effects are defined as changes in the crash proportion of each injury
severity category in response to a one-unit increase in the value of
an explanatory variable while all other variables are maintained
constant.

6. Discussion

It should be noted that Strava data cannot capture all bicyclist/-
pedestrian trips because not all bicyclists/pedestrians use the
Strava application. A previous study discovered that Strava data

Table 5
Parameter estimates for pedestrian crash proportion based on severity.

Variables Proportion of Severe Injuries Proportion of Moderate Injuries Proportion of Minor/No Injuries

Natural logarithm of DPMT �0.202*** (0.044) �0.074* (0.040) Reference
Proportion of recreational land-use 0.769* (0.444) 0.751** (0.364)
Intercept 1.569*** (0.381) 0.634 (0.393)
Pseudo log-likelihood at intercept �73.530311
Pseudo log-likelihood at convergence �72.496468

Numbers in parentheses represent standard errors of the estimated coefficients.
*** Significant at 99% confidence level.
** Significant at 95% confidence level.
* Significant at 90% confidence level.

Table 6
Marginal effects of explanatory variables for bicycle crash proportion based on severity.

Variables Proportion of Severe Injuries Proportion of Moderate Injuries Proportion of Minor/No Injuries

Natural logarithm of DBMT �0.028** (0.012) 0.003 (0.014) 0.025** (0.012)
Percentage of age group: 65 years and older 0.002* (0.001) �0.004** (0.002) 0.001 (0.001)
Proportion of commuters using public transportation 0.0004 (0.008) �0.037** (0.015) 0.036** (0.014)

Numbers in parentheses represent standard errors of the estimated coefficients.
***Significant at 99% confidence level.
** Significant at 95% confidence level.
* Significant at 90% confidence level.

Table 7
Marginal effects of explanatory variables for pedestrian crash proportion based on severity.

Variables Proportion of Severe Injuries Proportion of Moderate Injuries Proportion of Minor/No Injuries

Natural logarithm of DPMT �0.036*** (0.009) �0.007 (0.009) 0.029*** (0.006)
Proportion of recreational land-use 0.080 (0.090) 0.080 (0.080) �0.160** (0.071)

Numbers in parentheses represent standard errors of the estimated coefficients.
*** Significant at 99% confidence level.
** Significant at 95% confidence level; *Significant at 90% confidence level.
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are skewed towards young male cyclists (Hochmair, Bardin, &
Ahmouda, 2019). Therefore, several other explanatory variables
were introduced to complement the incomplete Strava bicyclist/-
pedestrian trip data.

At first glance, some readers may assume that the results of the
current study are counterintuitive or contradictory to those of pre-
vious studies. Nevertheless, it should be noted that the current
study focused on the proportions of crashes based on severity level,
whereas previous studies have focused on crash frequency; thus,
the results of the two topics are, of course, different. It is worth
reiterating that there is an intrinsic difference between the
decrease in an alternative relative to a reference (i.e., minor/no
injuries) and the decrease in the alternative itself. The decrease
in an alternative relative to the reference does not imply that the
alternative itself has decreased. Therefore, both estimated coeffi-
cients in the fractional split multinomial logit model and their
marginal effect should be simultaneously analyzed to understand
the impact of explanatory variables on the proportion of crashes
based on injury severity level.

6.1. Bicycle crash model

According to the marginal effects of the explanatory variables,
as DBMT increases, the proportion of severe injuries decreases,
while the proportion of minor/no injuries increases. This result

suggests that the safety-in-numbers effect still exists from the per-
spective of injury severity of bicyclists. In other words, bicyclists in
counties with a larger proportion of bicyclists have a propensity to
be less seriously injured when they are involved in a crash. A con-
sistent conclusion can be drawn from Fig. 1. Counties with a larger
DBMT are likely to have a smaller proportion of severe injuries and
a higher proportion of minor/no injuries. This phenomenon can be
explained based on two perspectives. First, drivers are accustomed
to the presence of bicyclists and develop more accurate percep-
tions of bicyclists in counties with a larger population of bicyclists
(Fyhri et al., 2017). Second, more drivers will also be bicyclists as
the number of bicyclists increases. These drivers tend to adopt
more positive attitudes towards bicyclists and safer driving behav-
iors (Fyhri et al., 2017). Drivers with greater caution towards bicy-
clists are more likely to react quickly when conflicting with
bicyclists, which will lead to a reduction in injury severity. The
importance of attitudes and safety behaviors in reducing fatal
crashes is highlighted by comparing traffic safety performance in
different countries (Page, 2001). Driving attitudes and behaviors
are considered to be driver-related factors that affect injury sever-
ity (De Oña, De Oña, Eboli, Forciniti, & Mazzulla, 2014).

The results indicate that counties with a high proportion of peo-
ple aged 65 and older are likely to have a higher proportion of sev-
ere injuries but a lower proportion of moderate injuries. This is
because older people are less likely to ride a bicycle than younger

Fig. 1. Proportions of bicycle crashes based on injury severity and daily bicycle miles traveled.

Fig. 2. Proportions of pedestrian crashes based on injury severity and daily pedestrian miles traveled.
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people (Census Bureau, 2021; Survey, 2019). This results in a rela-
tively small number of bicyclists; thus, such counties tend to pro-
vide relatively unsafe environments for bicyclists. Counties with a
high proportion of elderly people should be targeted to improve
the safety of bicyclists. A higher proportion of commuters using
public transportation tends to decrease the proportion of moderate
injuries but increase the proportion of minor/no injuries. This
result suggests that a higher proportion of commuters using public
transportation is related to lower injury severity among bicyclists.
One possible explanation is that commuters using public trans-
portation usually commute to bus stops by walking or cycling.
Therefore, counties with a high proportion of commuters using
public transportation usually have a high proportion of bicyclists
and pedestrians and are more likely to provide a safer environment
for bicyclists.

6.2. Pedestrian crash model

The results indicate that the DPMT is negatively related to the
proportion of severe injuries among pedestrians, while it is posi-
tively related to the proportion of minor/no injuries. Thus, the exis-
tence of the safety-in-numbers effect is confirmed in the aspect of
pedestrian injury severity. This viewpoint is also verified by the
decrease in the proportions of severe injuries and moderate inju-
ries relative to that of minor/no injuries, as shown in Table 5,
and the spatial distributions of DPMT and the distribution of traffic
injury severity among pedestrians in counties, as shown in Fig. 2.
The reason for this phenomenon may be attributed to the fact that
a larger number of pedestrians are more visible to motorists and
are less likely to be overlooked by them (Jacobsen, Ragland, &
Komanoff, 2015). Thus, drivers can undertake evasive actions ear-
lier when encountered with a larger number of pedestrians, which
can reduce injury severity in the event of a conflict.

Based on the proportion of minor/no injuries, the proportions of
severe and moderate injuries increase as the proportion of recre-
ational land use increases. It is speculated that this may be because
the population in recreational areas is more likely to consume alco-
hol and is prone to excitement, which increases the proportion of
severe injuries. The correlation between the alcohol-involved
pedestrian crash rate and proportion of recreational land use was
found to be positive (r = 0.204, p = 0.098), which verifies the above
hypothesis. Accordingly, considerable attention should be paid to
the environment (i.e., recreational areas) when planning pedes-
trian safety.

7. Conclusion

Walking and cycling are essential towards the development of
sustainable transportation; however, crashes are obstacles to the
promotion of this active mode of transportation. To promote walk-
ing and cycling among people, this study focused on exploring the
existence of the safety-in-numbers effect in the aspect of injury
severity among bicyclists and pedestrians. Two fractional split
multinomial logit models were used at the macro level. The mod-
eling results confirmed the presence of the safety-in-numbers
effect from the perspective of injury severity among both bicyclists
and pedestrians. This indicates that the probability of severe inju-
ries resulting from a bicycle or pedestrian crash decreases as the
number of bicyclists/pedestrians increases. This finding can
encourage people to select active modes of transportation while
traveling, thereby supporting long-term planning for sustainable
transportation.

It is also revealed that a higher proportion of people aged
65 years and older is inclined to increase the proportion of severe
injuries but decrease the proportion of moderate injuries among

bicyclists. Counties with a high proportion of commuters using
public transportation are likely to have a lower proportion of mod-
erate injuries but a higher proportion of minor/no injuries among
bicyclists. An increase in the proportion of recreational land use
is related to an increase in the proportion of severe and moderate
injuries relative to the reference (i.e., the proportion of minor/no
injuries) among pedestrians. Therefore, more attention should be
paid to counties with a high proportion of people aged 65 years
and older or a high proportion of recreational areas to improve
the safety of vulnerable road users.

We hope that the findings of this study will help policymakers
and practitioners make informed decisions and take effective coun-
termeasures to decrease injury severity among vulnerable road
users. As Metropolitan Planning Organizations and other agencies
encourage more people to walk and bike, it is important to have
a target of their share in modal split to reach the safety-in-
numbers effect and achieve less risk of severe injuries. Also, to con-
vey these ideas to the public to encourage more of them to walk
and bike, these concepts could be promoted at certain corridors,
and more restrictions on vehicle travel could be suggested.

Although this study discovered key findings, it is not without
limitations. First, the Strava data did not capture all bicyclists/-
pedestrians. This disadvantage of the Strava data may have led to
biased results. Second, the study provides insights into the impacts
of several explanatory variables on the proportion of injury sever-
ities among bicyclists and pedestrians; however, some variables
(e.g., weather and air quality) were not considered. Finally, the cur-
rent study was only conducted at the macro level. The hetero-
geneities between bicyclist/pedestrian individuals and the group
size of bicycles/pedestrians cannot be considered in a
macroscopic-level analysis. The existence of the safety-in-
numbers effect with regard to injury severity at the micro level
with a consideration of bicyclist/pedestrian individuals and the
group size of bicycles/pedestrians is worth exploring using video
data.
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a b s t r a c t

Introduction: Bicycling plays an important role as a major non-motorized travel mode in many urban
areas. While increasingly serving as a key part of an integrated transportation demand management sys-
tem and a sustainable mobility option, interest in biking as an active transportation mode has been unfor-
tunately accompanied by an increase in the number of bike crashes, many with incapacitating injuries or
fatal outcomes. Thus, to improve bicycling safety it is crucial to understand the critical factors that influ-
ence severe bicyclist crash outcomes, and to identify and prioritize policies and actions to mitigate these
risks. Method: The study reported herein was conducted with this objective in mind. Our approach
involves the use of classification models (logistic regression, decision tree and random forest), as well
as techniques for treating unbalanced data by under sampling, oversampling, and weighted cost sensitiv-
ity (CS) learning, applied to bike crash data from the State of Tennessee’s two largest urban areas,
Nashville and Memphis. Results: The results indicate that random forest with weighted CS offers the
potential for greater explanatory accuracy, an important observation given the paucity of efforts to date
in applying random forest to bike safety studies. Inadequate lighting conditions, crashes on roadways,
speed limits, average annual daily traffic, number of lanes, and weekends are the critical features iden-
tified. Conclusion: Based on these results, a series of specific, suggested policy changes are presented
for implementation consideration. Practical Applications: There is existing guidance in FHWA Lighting
Handbook and TDOT’s Roadway Design Guidelines that spell out some engineering design solutions like
lighting provisions, bicycle facility design, and traffic calming measures. These measures may alleviate
the identified key features impacting fatal and incapacitating bicycle injuries. Further research should
be conducted to gauge the efficacy of the solutions suggested.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Bicycling represents a relatively small portion of the total com-
muting activity in the United States, but this non-motorized travel
mode plays an important role in many of the nation’s urban areas.
Biking is a relevant part of many emerging integrated transporta-
tion demand management systems and offers a sustainable mobil-
ity option, with a lower carbon footprint should commuters choose
to switch from modes that rely on traditional fuel sources. This has
prompted several state and local agencies to take steps to promote
biking by employing strategies such as sidewalk modifications and
construction of dedicated bike lanes. In recent years, the number of
cities with bicycle sharing programs has also increased dramati-
cally. These developments have resulted, however, in an increase
in bike crashes, many with incapacitating injuries or fatal out-
comes. Therefore, it is important to improve our understanding

of the critical factors impacting bike crashes in urban areas, aiming
towards developing risk mitigation strategies to curb this crash
trend. This paper discusses an analysis performed with this intent.

Our study objective is to determine bike road safety in select
urban areas within the State of Tennessee using detailed crash data
to investigate the factors affecting bike crashes with incapacitating
and fatal outcomes, and to subsequently develop a classification
model for fatal or incapacitating events. The paper concludes with
a policy discussion directed at enhancements to transportation
infrastructure and operations with bicycle safety in mind.

2. Background

Commuting on a bicycle is the third most utilized U.S. trans-
portation mode and is quickly gaining popularity as a commuting
option. The number of commuters biking to work has increased
by 65% nationwide from 2000 to 2019 (US Census Bureau, 2014
& 2021). Unfortunately, with increased usage there are also alarm-
ing trends involving fatal and incapacitating bicycle crashes. Traffic
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hazards for bicyclists include poorly designed roads, high motor-
vehicle speeds, and lack of responsibility exhibited by other road
users (Furth et al., 2016; Jacobsen & Rutter, 2017). In 2019, bikers
accounted for 0.5% of 156 million commuters; however, of all traf-
fic crashes, bikers account for 1.78% of injury crashes and 2.3% fatal
and serious (incapacitating) injuries for the entire nation. Fatal and
serious bike injuries have seen a 36% increase since 2010 (NHTSA,
DOT HS 813 197: Traffic Safety Facts, 2019), indicating bicyclists
were among the most vulnerable users in terms of being dispro-
portionately impacted (Jacobsen & Rutter, 2017; Smart Growth
America, 2020).

The disturbingly high number of crashes involving bicycles
resulting in fatal or incapacitating injury outcomes leads one to
question whether the transportation infrastructure and operations
lack accessible and safe facilities for bikers, which can be problem-
atic when bikers must share roads with other users, particularly
motor vehicles. Bicyclists are considered among the most vulnera-
ble participants in mixed traffic because of the kinetic energy pro-
duced upon crashes between two differential masses where one is
traveling at a higher velocity and mass (Jacobsen & Rutter, 2017).
In case of an automobile colliding with a cyclist, speeds above 20
miles per hour increase the risk of severe road injury or fatality
(Jacobsen & Rutter, 2017; Jurewicz et al., 2016). Heavily utilized
urban corridors, therefore, impose a potentially significant danger
to cyclists, if not provided with adequate safety measures (NTSB,
2019).

3. Literature review

Bicycle crashes have been studied by researchers worldwide.
Many of these efforts have been directed at individual areas or
regions for the purpose of identifying and rectifying safety issues
within the bicycle infrastructure and operations. The most com-
mon modeling techniques have included use of the Poisson distri-
bution, negative binomial models, linear regression models, logit
models, ordered probit models, and multivariable logistic regres-
sion. Table 1 lists results of significant factors found in previous
studies, organized according to field type and variable. Table 2
summarizes relevant study methodologies.

With regard to Table 2, note that the use of random forest mod-
eling is not included. Studies modeling bicycle injury prediction
using random forest are currently in their infancy, such as one
examining bicyclist only crashes in Victoria, BC, Canada; however,
the dataset consists of only 111 crashes and 234 near misses and
was collected via surveys rather than from official crash records.

4. Data analysis

The bicycle crash data utilized in this analysis was obtained
from the Tennessee Department of Transportation (TDOT) for the
period of January 1, 2017 through December 31, 2020, covering
the entire state. In Tennessee, a crash is reported when a driver
of a vehicle is involved in a crash resulting in injury, death or prop-
erty damage exceeding $50 (Tennessee Code Title 55. Motor and
Other Vehicles § 55-10-106). A crash is also reported when a vehi-
cle collides with an unattended vehicle (Tennessee Code Title 55.
Motor and Other Vehicles § 55-10-104), such as one located in a
parking lot. Crash data obtained from TDOT and used for this study
consists of only bicyclist-motor vehicle crashes. Attributes associ-
ated with each crash record are listed in Appendix I.

During this period, 5,347 bike crashes were recorded for which
there was complete information (see Table 3), distributed across
the state as shown in Fig. 1. Of the 95 counties in Tennessee
(TN), Shelby County and Davidson County recorded the highest
bike crashes, collectively accounting for 2,942 incidents, more than
one-half of the overall state total. This is to be expected since these
two counties are densely populated and include the cities of Mem-
phis and Nashville, respectively. As a result, these two locations
subsequently became the focus of the modeling effort.

Bike crash severity results for the two counties are shown in
Fig. 2. TDOT crash data include an injury severity attribute accord-
ing to whether there was no injury, non-serious injury, serious (in-
capacitating) injury or fatality. An incapacitating injury is one that
results in one or more of the following: (1) severe laceration result-
ing in exposure of underlying tissues/muscle/organs or resulting in
significant loss of blood; (2) broken or distorted extremity (arm or
leg); (3) crush injuries; (4) suspected skull, chest or abdominal
injury other than bruises or minor lacerations; (5) significant burns
(second and third degree burns over 10% or more of the body); (6)

Table 1
Significant bicycle crash factors from prior studies.

Variable Field Variable Analyzed Relevant Studies

Environmental Lighting Zangenehpour et al., 2016
Weather Yan et al., 2011
Intersection Type Klop and Khattak, 1999
Speed Limit Allen-Munley et al., 2004
Traffic Control Device Strauss et al., 2015
Number of Lanes Reynolds et al., 2009
Road Curvature Turner et al., 2011
Traffic Volume (AADT) Lee and Abdel-Aty (2005)
Land Use (urban, rural, residential, industry, farmland, institutional, commercial) Petritsch et al. (2006)

Pai (2011)
Schepers and den Brinker (2011)
Dixon et al. (2012)
Kim et al. (2007)
Eluru et al. (2008)
Oh et al. (2008)
Vandenbulcke et al. (2014)

Crash Specific Crash Type Wang et al., 2015
Severity Klop and Khattak, 1999

Allen-Munley et al., 2004
Time Year

Month
Day
Hour

Wang et al., 2015
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unconsciousness when taken from the crash scene; and (7) paral-
ysis. Particularly notable is that fatal and incapacitating injury col-
lisions account for 27% of 2,942 recorded crashes.

Fig. 3 shows the distribution of bike crashes by time of day,
where times have been grouped into the following categories: (1)
Early Morning (midnight-5:00 am); (2) Morning (5:00–9:00 am);
(3) Peak AM (9:00 am-1:00 pm); (4) Afternoon (1:00–5:00 pm);
(5) Peak PM (5:00–9:00 pm); and (6) Late Evening (9:00 pm-
midnight). Note that while the frequency of bicycle crashes tends
to increase as the day goes along, the percentage of those that
result in incapacitating and fatal injuries are highest during the
earlier part of the day.

As displayed in Fig. 4, the largest number of bike crashes in gen-
eral as well as those resulting in a fatality or incapacitating injury
occurred on four lane roads, two lanes in each direction. It was also

observed that four lane roads experience high bicycle injuries on
medians and in turn lanes.

As seen in Fig. 5, roads with speed limits from 30 mph to 45
mph experience a significant number of bicycle crashes, with the
proportion of those resulting in a fatality or incapacitating injury
increasing at higher speeds. This observation is consistent with
prior studies (Isalsson-Hellman & Toreki, 2019).

5. Modeling approach

An overview of the process used in developing a predictive
model of bicycle crash severity is shown in Fig. 6. Model estimation
was performed using Logistic Regression (LR), Decision Tree (DT),
and Random Forest (RF). LR serves as a baseline for our binary clas-
sification problem and represents a widely used method to study
risk factors impacting injury severity. DT is another frequently
used classification algorithm for undestanding and interpreting
data, where the top node is the root node, representing the best
feature that divides the data. Each internal node is a feature and
branches indicate the decision, with class label being represented
by a leaf node. DT serves as a foundation for RF.

Although RF has not been extensively used as a classification
algorithm for analyzing bicycle crashes, it was included because
RF has been shown to improve modeling performance relative to
a single tree classifier (e.g., DT) and LR. RF enables multiple uncor-

Table 2
Previous methodologies and modeling techniques.

Modeling Technique Author Study Focus Variables Analyzed

Poisson Distribution Oh et al. (2008) Bicycle Crash at Urban
Signalized Intersections

Average daily traffic volume, presence of bus stops, sidewalk widths, number of
driveways, presence of speed restrict devices, and presence of crosswalks are all
statistically significant risk factors.

Negative Binomial
Model

Oh et al. (2008) Bicycle Crash at Urban
Signalized Intersections

Found different types of facility designs impact bicycle safety such as bike lanes, bike
track, pavement markings or colors.

Wang and Nihan
(2004)

Bicycle - Motor Vehicle
Crashes at a Signalized
Intersection

Intersection design impacts on bicycle safety in multiple ways.

Linear Regression Dixon et al.
(2012)

State Highways For intersection and network movement, hazardous crossings, right hook, left sneak and
complicated interactions are potentially dangerous to bicyclists. Intersection safety
influenced by vehicle volume, vehicle speed, percentage of heavy vehicles, among others.

Logit Model Eluru et al.
(2008)

Road Segments Crashes on curved/non-flat roadways tend to result in more severe injuries.

Kim et al. (2007) Bicycle-Motor Vehicle Crashes Curved rounds significantly increase the chance that a fatal or incapacitating injury will
occur during a vehicle-bicycle crash.

Pai (2011) Road Segments Horizontal and vertical curves can contribute to bicycle crashes.
Schepers and
den Brinker
(2011)

Road Segments Bicyclists colliding with a bollard, road narrowing or riding off a curve found to occur
more than when bicyclists hit an obstacle. More crashes were observed where the bicycle
had the right-of-way on a through movement at intersections with two-way bicycle
tracks that are well marked and are reddish in color. Fewer crashes occurred when there
are raised bicycle crossings (speed humps) or other speed reduction measures.

Abdel-Aty and
Keller (2005)

Signalized Intersections The division of a minor road, as well as a higher speed limit on the minor road lowered the
expected injury level, while a median on the minor road may prevent more head-on
crashes, which were found to be more severe crashes.

Haleem and
Abdel-Aty
(2010)

Unsignalized Intersections Traffic volume on the major approach, number of through lanes on the minor approach,
upstream and downstream distance to the nearest signalized intersection, left and right
shoulder width, number of left-turn movements on the minor approach, and number of
right- and left-turn lanes on the major approach are significant factors influencing bicycle
risk.

Decision Tree Rahman (2018) Pedestrian & Bicycle Crashes Highlighted the most significant predictor variables for pedestrian and bicycle crash
count in terms of three broad categories: traffic, roadway, and socio demographic
characteristics

Bayesian Model Vandenbulcke
et al. (2014)

Selected Controlled Sites or
Bikeable Road Network

Right-of-way intersections equipped with bicycle lanes tend to have higher crash risk for
cyclists, due to vehicles not respecting the right-of-way (i.e., right-hook crashes). Cyclists
riding on marked bicycle lanes in roundabouts and signalized intersections with marked
cycle lanes had higher crash risk, attributed to bicyclists being in drivers’ blind spots.
Additionally, complex intersections (high number of road legs, road users, high number of
signs, dense traffic crossings, etc.), and therefore complex traffic situations, increase
bicycle risk.

Safety Analyst and
Clustering
Algorithm

Dolatsara (2014) Roadway Segments in
Michigan

Exposure, the presence of bicycle lanes and bus stops, and the number of left-turn lanes at
intersections are positively associated with bicycle crashes.

Table 3
TN bike crashes by year.

Year Total Bike Crashes

2017 1,384
2018 1,299
2019 1,432
2020 1,232
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related DTs to grow, thus creating a forest. RF uses a technique
called feature bagging, where features are selected randomly for
individual DTs, which is similar to bagging procedure. With feature
bagging, the correlation between each DT is reduced but the over-
all accuracy of the model increases. RF performs better as it is more
robust to noise, able to capture the non-linear tendencies by put-
ting all the weak learners in an ensemble that is used to make
the prediction. It also avoids overfitting because those individual
learners are weak, so it is not one massive model that could lead
to overfitting the data (Müller et al., 2017).

In this study, we elected to use LR followed by DT and RF to
observe the model prediction outcome. It is not necessary to use
models that build on the previous ones; however, this was done
to tune the classifier and improve model performance.

The dependent variable was defined as a numerical Boolean
variable, with a value of 1 indicating a fatal or incapacitating injury
outcome, and 0 otherwise (i.e., minor injury or no injury). Prior to
conducting model estimation, data pre-processing was performed
to remove records with missing data, following that exploratory
data analysis was performed. This resulted in the selection of the
following candidate crash factors (attributes) to be considered as
independent variables in model estimation: location, functional
class, number of lanes, speed limit, average annual daily traffic
(AADT), impaired driver, weather, lighting, and weekend. Categor-
ical values for location (roadway, intersection, bridge, ramp), func-
tional class (urban, rural), impaired driver (yes, no), weather (clear,
cloudy, rain, fog, snow, severe cross wind, sleet, hail), lighting
(dark, dawn, daylight, dusk), and weekend (yes, no) were con-
verted to numerical Boolean variables (0 or 1). AADT, speed limit,
and number of lanes were scaled to help decrease the magnitude
as per a fixed ratio; this process assists with reducing fluctuations
in model performance.

The data set was divided where 80% of the observations were
used for training and the remaining 20% for testing. We attempted
to balance the training data before model insertion. Note that, as

Fig. 1. Bicycle crashes cluster in TN (2017–2020).

Fig. 2. Bike crash severity in Davidson and Shelby County.

Fig. 3. Bike crashes by time of day in Davidson & Shelby County.
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shown in Fig. 7, the dependent variable is unevenly distributed in
the training dataset, with 27% of bike crashes resulting in a fatality
and/or incapacitating injury (i.e., minority class), and 73% of bike

crashes resulting in no fatality and/or incapacitating injury (i.e.,
majority class). Attempts to balance the data for model estimation
can be performed by decreasing the majority class sample size
(under-sampling) or increasing the minority class sample size
(oversampling). Another balancing approach involves the use of
cost sensitive learning (CSL), whereby a larger weight is assigned
to the minority class and a smaller weight is applied to the major-
ity class.

All three of these sampling techniques were applied as part of
the modeling effort. We used the NearMiss algorithm for under-
sampling to prevent the problem of information loss in most tradi-
tional under-sampling techniques. Synthetic Minority Oversam-
pling Technique (SMOTE) was applied for oversampling, a
technique where synthetic samples are generated for the minority
class that helps to overcome the overfitting problem posed by tra-
ditional random oversampling techniques.

Fig. 4. Bike crashes by lane configuration.

Fig. 5. Bike crashes by road speed limit.

Fig. 6. Predictive model development framework.
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As the dataset consists of both numerical and categorical inputs,
three methods of feature selection were applied in sequential fash-
ion: (1) Correlation coefficient, (2) DT feature importance, (3)
Recursive Feature Elimination (RFE). A correlation coefficient
threshold of ±0.7 was applied to eliminate highly correlated fea-
tures. Non-zero features were selected using DT on the training
data. The RFE starting point was the set of features filtered using
DT in the training dataset.

Some limitations were identified in the crash data. The data
used for this study consists of only bicyclist –motor-vehicle
crashes. All the data are recorded at the scene of crash by law
enforcement officers. Once this police report is filed, it is then
entered into the data platform. Hence, these data can suffer from
human error when reported, collected, and processed at the vari-
ous stages. TDOT does not include near misses and unreported bike
incidents. The data do not provide information on the cause of
crash, which party involved in the crash was injured (although
we assume that if any injuries are reported, it at a minimum
involves a bicyclist), nor any details on how or in which direction
the involved parties where moving (i.e., circumstances prior to
crash).

6. Model results

The overall model performance measure is the extent to which
the model can accurately predict whether a bike crash results in a
fatality or incapacitating injury. Appendix II provides a list of rele-
vant metrics and their corresponding definitions for indicators
considered in evaluating the efficacy of model performance.

Table 4 summarizes the performance metrics for various esti-
mated models using the features that emerged from the aforemen-
tioned elimination process: lighting (dark), number of lanes, speed
limit, AADT, weekend, and location type (roadway).

As shown in Table 4, three models (oversampled LR, weighted
CSL applied to both LR and RF) perform well. However, weighted
CSL applied to RF performs slightly better due to its higher true
negativity rate (0.63) and true positivity rate (0.77) and lower Type
I and Type II errors. Moreover, RF with weighted CSL has the high-
est value of Geometric-mean (0.7) and weighted accuracy (0.7).

The Receiver Operating Characteristic (ROC) curve value for RF
with weighted CSL is also high for the testing data (0.7) and varies
the least (0.01) from the training data (0.71). This measure is
derived from a curve plotted on a graph showing the performance
of a classification model at different classification thresholds. This
curve plots two parameters: true positive rate (TPR) and false pos-
itive rate (FPR). The ROC measures the area under the curve; when
the ROC is closer to 1 but greater than 0.5, it indicates a strong
model.

Shapley additive explanations (SHAP), as shown in Fig. 8, mea-
sure the contribution of a feature in model prediction (Apley & Zhu,
2020). Note that both classes use the same feature equally (i.e., all
features have equal impact on model prediction). Among these fea-
tures, dark lighting and roadway crash location are the most
important factors affecting bike crash severity, while roads with
higher motor-vehicle speed limits, heavy traffic, multilane roads,
and weekend travel are also significant contributors.

Fig. 9 displays a bee swarm plot for the study data. This plot
helps one understand how a variable may influence model predic-
tion. In this plot, every record in the database is shown as a dot on
each row. The color of the dot represents the value of that feature
for the event, with red indicating a high value and blue a low value.
Here, one can observe that for Class 1 (killed and/or incapacitating
bike injury), when the lighting condition is inadequate and location
type is roadway, it is more likely to result in a killed and/or inca-
pacitating bike injury.

Understanding prediction for individual instances can provide
meaningful information, as it explains how individual predictions
are reached in terms of feature contribution. To illustrate, we
selected this information for two bicycle crash records, one that
resulted in a killed or incapacitating injury (Event 419), and
another where the outcome was not a killed or incapacitating
injury (Event 422). Using the feature inputs for Event 419, the
model predicts a killed and/or incapacitating bike injury with
0.71 probability. This compares with when we do not know any
features for a specific event, in which case the average model out-
put over the training dataset is 0.4995 (base value). In the case of
Event 422, the model predicts a no killed and/or incapacitating

Fig. 7. Unbalanced data for the dependent variable.

Table 4
Performance metrics for various model estimation techniques.
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bike injury with 0.74 probability, compared to a base value of
0.5005.

Fig. 10 helps identify groups of similar instances by using hier-
archical agglomerative clustering to order the instances. Each posi-
tion on the x-axis is an event in the database, where red plots
increase the model prediction and blue decreases it. A cluster is
observed towards the right of the curve with high prediction of
killed and/or incapacitating bike injury.

The heavy influence of inadequate lighting conditions on bike
crash severity is a finding consistent with prior studies and is the
largest factor influencing bicycle injury severity (Asgarzadeh

et al., 2018), with Kim et al. (2007) concluding that the probability
of a fatal bike injury doubles in the absence of streetlighting. The
magnitude of this factor in the model results suggests that risk mit-
igation strategies should seriously consider improvements to light-
ing infrastructure.

Many previous studies have focused on crashes along the inter-
sections since they have the highest conflict points. However,
within our study database, more than one-half of the bike crashes
occurred on non-intersection segments, one reason why this fea-
ture emerged as a significant explanatory factor for serious injury
outcomes. Asgarzadeh et al. (2017) similarly found these locations

Fig. 8. Summary plot displaying SHAP values for model features.

Fig. 9. Summary plot combining feature importance with feature effect for class 1 (killed and/or incapacitating bike injury).

Fig. 10. Clustering based on features for class 1 (killed and/or incapacitating bike injury).
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to be important, reporting that crashes on non-intersection seg-
ments are more likely to result in 1.31 times higher injury severity.

An increase in speed limit is also positively associated with a
killed and/or incapacitating biker injury outcome. Chimba et al.
(2012) noted a similar relationship when comparing crashes on
roads with speed limits of 30 mph to those with a 35–45 mph
speed limit. Fridman et al. (2020) describe several case studies that
significantly reduce the likelihood of a killed and/or incapacitating
bike (and pedestrian) injury by lowering road speed to 20 mph.

As a larger number of motor vehicles (AADT) travel across a
road segment, it creates greater opportunity for crash exposure.
Therefore, it is not surprising that biker injury frequency would
increase; however, it is less clear based on model results that AADT
alone accounts for more severe injury outcomes. This may be
explained by the presence of other related factors such as vehicle
speeds and number of lanes.

The same can be said for the significance of number of roadway
lanes as an explanatory factor in predicting a serious biker injury
outcome. In fact, the combination of multilane roads with higher
speed limits being associated with higher risk of fatal or incapaci-
tating injuries is one of the most consistent findings across the lit-
erature (Siddiqui et al., 2012; Huang et al., 2010; Lee et al., 2015;
Noland & Quddus, 2004; Quddus, 2015; Wier et al., 2009; Yu &
Zhu, 2015).

Finally, the weekend effect, albeit small, influences the likeli-
hood of a bike crash causing a killed and/or incapacitating injury.
Similar findings were observed in research performed by Shubo
et al. (2021).

7. Policy implications

The feature importance associated with the selected model (see
Fig. 8) provides insights into key factors that most influence serious
biker safety outcomes as well as their relative contribution to those
impacts. Foremost among these are issues related to lighting fol-
lowed by roadway type; risk mitigation strategies aimed at these
factors merit the most serious consideration.

Regarding lighting conditions, relatively simple risk mitigation
strategies would include placement of street lighting along popular
bike routes. In addition to improving illumination by providing
more and improved street lights, it would also help if the bikers
made their presence known on a roadway by wearing reflective
materials and installing blinking lights on their bikes. The latter
is required by the traffic law in Tennessee (TN), especially at night-
time. It goes without saying that personal protective wear, which
includes helmets, should always be worn by the bicyclist.

While the relationship between roadways and serious bike
crash outcomes is clear, the particular built environment and usage
may influence exposure; hence, the reason why higher AADT’s and
number of lanes also contribute to the problem. Controlling for
bicyclist exposure, Kaplan and Prato (2015) concluded that sepa-
rated bicycle facilities reduce both bicyclist injury crashes and fatal
crashes, whereas on-street bike lanes do not. This suggests that
efforts to create dedicated bikeways that are physically separated
from the roadway would be a more effective, albeit a more expen-
sive, risk management strategy. In the absence of resources to pro-
vide these means, creating sufficient street width for an on-street
bike lane is paramount, as most bicycle lanes today are placed
between the vehicular route and the curb, often at widths of no
more than four feet (including the 1–2 feet gutter pan as part of
the bicycle lane). This problem is compounded by motorist expec-
tations that bicyclists will remain in their dedicated lane, even
when physically unable to do so. It is further exacerbated by the
presence of ‘‘mixing zones,” which are placed in advance of
right-turn lanes to allow vehicles to cross the bicycle lane to enter

the right-turn lane. When combined with adequate signage and
other demarcations, these intervention strategies should help alle-
viate at least some crashes and reduce the impact of others when
they occur.

Regarding speed limits, we recommend reviewing all urban
streets with speed limits above 30 mph to assess whether the limit
should be lowered. When this is not deemed a viable strategy, sig-
nage with dynamic message boards could be placed at vulnerable
locations, reminding motorists to obey speed limits. Another strat-
egy would be to deploy speed sensors coupled with speed cameras
(either mobile or fixed) at vulnerable locations that display the
actual speed of a passing vehicle, which flashes when the speed
limit is being exceeded. Speed bumps and roundabouts are other
options to slow vehicular traffic speed along the roadway and at
intersections.

While recommendations for improving bike safety are encoded
into bicycle design guidance (American Association of State
Highway and Transportation Officials, 2014; National Association
of City Transportation Officials, 2014), the widespread use of bike
lanes generally, and mixing zones in particular, has been cited as
an example of broader professional ignorance on matters of traffic
safety (Hauer, 2016). There are recent and ongoing efforts to better
understand bicyclist safety, including NCHRP 17-84: Pedestrian
and Bicycle Safety Performance Functions for the Highway Safety
Manual, NCHRP 15-73: Design Options to Reduce Turning Motor
Vehicle – Bicycle Conflicts at Controlled Intersections and NCHRP
15-74: Safety Evaluation of On-Street Bicycle Facility Design Fea-
tures. While a lack of crash and exposure data continues to be a
hindrance to bike safety research, it has generally been accepted
that as the biker population increases, the crash rate decreases
(Elvik et al., 2009), perhaps an indication of greater awareness on
the part of motorists of the need to share the road with this travel
mode.

To that end, both Sweden and the Netherlands have developed
approaches to address this challenge. Starting in the early 1990s,
Sweden’s Vision Zero and the Netherlands’ Sustainable Safety
Vision have integrated motorists and vulnerable road users with
the concept of shared road responsibility to create homogeneous,
multimodal transportation networks (Welle et al., 2018;
Wegman et al., 2006). The same concept has been recently adopted
in Davidson County, TN (Vision Zero, 2020).

8. Final thoughts

Bike safety has been a much-discussed topic, particularly of
late, as interest in bicycling as a sustainable transportation alterna-
tive continues to gain popularity. Consequently, policy analysts
and planners have been grappling with cost-effective methods to
reduce bicycle crashes, particularly those with serious outcomes.
We believe that the results of this study have shed additional light
on the subject, in particular: (1) demonstrating the use of random
forest modeling and select sampling techniques as having the
potential to provide greater accuracy in predicting the likelihood
of a fatal and serious bike injury, and (2) utilizing the feature
weighting of the predictive model to prioritize the types of risk
mitigation strategies that offer the greatest impact.
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Appendix I. Data attributes

1. ’CASENO’ – Case Number
2. ’Region’ – Region where crash was recorded
3. ’MPO_RPO’ - Metropolitan Planning Organization or Rural

Planning Organization
4. ’County’ - County where crash was recorded
5. ’City’ – City where crash was recorded
6. ’DATEOFCRASH’ – Crash date
7. ’TIMEOFCRASH’ – Crash time
8. ’TOTALKILLED’ – Total people killed in the crash
9. ’TOTALINJURED’ – Total people injured in the crash

10. ’TOTAL_INCAP_INJ’ – Total people suffering incapacitating
injury

11. ’NBR_RTE’ - Route number where crash occurred
12. ’RTE_NME’ -Route name where crashed occurred
13. ’LocType’ – Crash location type
14. ’FunctionalClass’ – Functional classification of roadway

where crash was recorded
15. ’NBR_LANES’ – Number of lanes
16. ’SPD_LMT’ – Speed limit
17. ’Median’ – If crash occurred on median (yes/no)
18. ’TurnLane’ – If crash occurred on turn lane (yes/no)
19. ’AADT’ - Average annual daily traffic on the road segment

where crash was recorded
20. ’CollisionType’ – Type of collision
21. ’Hit_Run’- If it was a hit and run crash (yes/no)
22. ’Distraction’ – If there was any indication of distracted driv-

ing (yes/no)
23. ’ImpairedDriver’ – If the driver was impaired due to intoxi-

cation (yes/no)
24. ’Veh0_5yr’ – Vehicle age 0-5 years
25. ’Veh5_10yr’- Vehicle age 5-10 years
26. ’Veh10_20yr’ - Vehicle age 10-20 years
27. ’VehOver20yr’ - Vehicle age over 20 years
28. ’TruckBus’ – If truck/bus was involved in crash (yes/no)
29. ’Severity’ – Severity of the crash (no injury, injury, incapaci-

tating injury, and fatality)
30. ’TOTALVEHICLES’ – Total vehicles involved in crash
31. ’PeopleInvolved’- Total people involved in crash
32. ’NonMotorist’ – Non-motorist involved (bike and

pedestrians)
33. ’Construction’ – If there was construction (yes/no)
34. ’Weather’ – Weather conditions when crash occurred
35. ’Lighting’ – Lighting conditions when crash occurred
36. ’TrafficSegmentID’ – Traffic segment identification number

of the road
37. ’RdSegID’- Road segment identification number

38. ’POINT_X’ - Longitude
39. ’POINT_Y’ - Latitude

Appendix II. Definition of model outputs

Based on labeling the targets as equal to a value of 1 for killed or
incapacitating bike injury, and 0 for no killed or no incapacitating
bike injury.

Confusion matrix

Provides an overview of classification model performance and
the types of errors produced by the model. Also generates a sum-
mary of correct and incorrect predictions broken down by each cat-
egory. Four types of outcomes are possible:

True Positives (TP) – Occur when we predict that an observa-
tion belongs to a certain class and the observation actually belongs
to that class.

True Negatives (TN) – Occur when we predict that an observa-
tion does not belong to a certain class and the observation actually
does not belong to that class.

False Positives (FP) –Occur when we predict that an observa-
tion belongs to a certain class but the observation actually does
not belong to that class. This type of error is called Type I error.

False Negatives (FN) –Occur when we predict that an observa-
tion does not belong to a certain class but the observation actually
belongs to that class. This is a very serious error and it is called
Type II error.

Accuracy: Percentage of correctly classified observations. Cal-
culated by dividing the number of correct predictions by the total
number of predictions. i.e., Accuracy = (TP + TN)/(TP + TN + FP
+ FN).

Precision: Percentage of relevant observations that actually
belong to a certain class among all the samples which were pre-
dicted to belong to the same class. i.e., Precision = TP/(TP + FP).

Recall: Percentage of observations that were predicted to
belong to a certain class among all the samples that truly belong
to that class. i.e., Recall = TP/(TP + FN). Also called Sensitivity or
True Positive Rate (TPR).

False Negative Rate: It’s the percentage of observations that
were positive but identified as negative. It can be calculated by
(1-Sensitivity) or FN /(TP + FN).

Specificity: Also known as True Negative Rate (TNR) is a mea-
sure that correctly identifies the proportions of negatives i.e.,
Specificity = TN/(TN + FP).

False Positive Rate: It’s the percentage of observations that
were negative but identified as positive. It can be calculated by
(1-Specificity) or FP/(FP + TN).

F measure: or F-1 score, combines Precision and Recall as a
measure of effectiveness of classification in terms of ratio of
weighted importance on either Recall or Precision as determined
by b coefficient. i.e., F measure = ((1 + b) 2 � Recall � Precision)/
(b2 � Recall + Precision). b is usually taken as 1.

G-mean: Geometric mean measures the balance between clas-
sification performance on both true negative rate or specificity
(TN/TN + FP) and true positive rate or sensitivity or recall (TP/TP
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+ FN). A lower G-mean indicates poor classification performance.
Whereas G-mean close to 1 has a good classification for both neg-
ative and positive class.

G�Mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSensitivity X SpecificityÞ

q

Weighted Accuracy: To be more sensitive to the performance
of individual classes, weights (w) can be assigned to each class.
More weight means more influence of that particular class on the
weighted accuracy. In our case since both classes are equally
important, a weight of 0.5 is assigned to each. Weighted Accu-
racy = w* True Negative Rate+(1-w) *True Positive Rate.

ROC: Receiver Operator Characteristic or Area Under the Curve
(AUC) is a curve that plots the true positive rate and false positive
rate at various threshold. When AUC is 1 classifier is able to distin-
guish between majority and minority class perfectly. An AUC with
0.5 or lower is said to be a poor classifier.
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a b s t r a c t

Introduction: Drowning is the leading cause of death among commercial fishermen in the United States.
Approximately 30% of all commercial fishing fatalities are attributed to falls overboard. One of the sim-
plest and most affordable ways to prevent these fatalities is for crewmembers to wear personal flotation
devices (PFDs) while on deck. An examination of over 200 fatal falls overboard in the U.S. fishing industry
revealed that none of the victims were wearing PFDs when they died. PFDs are not required to be worn by
commercial fishermen in the United States, so this study was designed to encourage behavior change
using targeted health communication and social marketing. Methods: This study developed, imple-
mented, and evaluated a multi-media social marketing campaign featuring a fictitious, culturally-
relevant spokesman designed to look, talk, and act like the target audience. The messages were crafted
to address common barriers to PFD adoption and misconceptions about fleet-specific risks for fatalities
from falls overboard. The campaign was evaluated over two seasons of fishing to look at message reten-
tion and intent toward action following exposure to the campaign materials. Results: Survey respondents
indicated overall positive opinions about the spokesman and the messages. Results also show a reported
change in behavior related to using PFDs while working on deck. Discussion: Targeted multi-media mes-
saging can influence behavior of workers in high-risk occupations in remote locations. Safety message
development should focus on occupational culture to create valid and authentic communication products
for workers in high-risk industries.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Drowning is the leading cause of death among commercial fish-
ermen in the United States (National Institute for Occupational
Safety and Health, 2021). During 2000–2019, 871 fishermen died
while commercial fishing in the United States (National Institute
for Occupational Safety and Health, 2021). This resulted in the
highest fatality rate for any occupation in 2019, at 145 fatalities
per 100,000 full-time equivalent (FTE) workers, 41 times higher

than the average worker (Bureau of Labor Statistics, 2020). Most
of these fatalities were due to drownings after a vessel disaster
or from a crewmember falling overboard (Lincoln and Lucas,
2010; Lucas and Case, 2018; Case et al., 2018). Approximately
30% of all commercial fishing fatalities are attributed to falls over-
board (Lincoln and Lucas, 2010; Lucas and Case, 2018).

While the number of deaths from falls overboard in the fishing
industry has declined slightly since 2000, the lack of widespread
adoption of prevention strategies persists (Case et al., 2018). For
instance, one of the simplest and most affordable ways to prevent
these fatalities is for crewmembers to wear personal flotation
devices (PFDs) while on deck. An examination of over 200 fatal falls
overboard in the U.S. fishing industry revealed that none of the vic-
tims were wearing PFDs when they died (Case et al., 2018). This
finding is consistent with earlier studies focused in Alaska that
highlighted the lack of PFD use among fall overboard victims
(Lincoln and Conway, 1999; Lucas and Lincoln, 2007; National
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Institute for Occupational Safety and Health (NIOSH), 1994;
National Institute for Occupational Safety and Health (NIOSH),
1997).

There is a clear need to increase the use of PFDs in the fishing
industry, and understanding the barriers that workers have to
wearing PFDs is an important first step. A previous NIOSH study
of predictors of PFD use among workers in the Alaskan fishing
industry concluded that workers are likely to increase their PFD
usage if their perceptions of risk and beliefs about PFDs are
improved (Lucas et al., 2013). The study found that fishermen with
heightened risk perceptions related to falling overboard had signif-
icantly higher levels of PFD usage than fishermen with lower risk
perceptions. The study also showed a gap between fishermen’s
perceived efficacy of PFDs to prevent fatalities from falls overboard
and their use when working on deck. Of those surveyed, 85% said
PFDs were fairly or very effective at preventing fatalities from falls
overboard; however, only 33% of those same respondents indicated
that they frequently or always wore a PFD when working on the
deck of a fishing vessel (Lucas et al., 2013). The study also found
that significant barriers to PFD usage included beliefs that wearing
a PFD is uncomfortable, interferes with work, and creates an entan-
glement hazard (Lucas et al., 2013). However, field-testing of PFDs
with Alaskan fishermen showed there are commercially available
PFDs that overcome some off these barriers and are acceptable to
work in (Lucas et al., 2012). Based on these findings, researchers
recommended the development and implementation of tailored
interventions to improve risk perception and to overcome efficacy
barriers to PFD use (Lucas et al., 2013).

Health behavior research has shown that increasing risk per-
ceptions can lead to behavior change when accompanied by
increased self-efficacy (Witte, 1992; Rosenstock et al., 1988). Atti-
tudes and beliefs can be influenced, and previous research has
demonstrated that when attitudes and beliefs are modified, behav-
ior change may follow (Prochaska and Velicer, 1997). For example,
researchers with the Florida Prevention Research Center at the
University of South Florida used participatory research, peer-level
recommendations, and social marketing to increase the use of
safety glasses among citrus industry workers and overcome their
belief that safety glasses reduced their productivity (Tovar-
Aguilar et al., 2014). In this study, the researchers were able to
increase the use of safety glasses among the primary audience by
having well-respected workers model the behavior and demon-
strate the glasses had no impact on productivity. In a similar fash-
ion, based on NIOSH’s previous studies on PFD use among
fishermen, it should be possible to influence fishermen’s percep-
tions and beliefs regarding PFDs, overcome their negative attitudes
about working in PFDs, and thereby increase PFD use.

Social marketing is an intervention approach that has a strong
foundational theory, which suggests that by using a ‘‘marketing
mix” of product, price, place, and promotion to engage audiences,
one can provide an effective channel for motivating behavior
change (Kotler et al., 2002).

NIOSH has applied a social marketing approach to underground
hard rock miners, another high-risk occupation. NIOSH incorpo-
rated adult learning theory, storytelling, and a focus on occupa-
tional culture to create valid and authentic communication
products for these workers and others in high-risk industries
(Cullen and Fein, 2005; Cullen et al., 2008). As Van Maanen and
Barley (Van Maanen and Barley, 1984) explained, this shared risk
is a bonding attribute in the occupational culture of high-risk
industries:

‘‘Danger. . .invites work involvement and a sense of frater-
nity. . .Recognition that one’s work entails danger heightens
the contrast between one’s own work and the safer work of
others, and encourages comparison of self with those who share

one’s work situation. Attitudes, behaviors, and self-images for
coping physically and psychologically with threat become part
of an occupational role appreciated best, it is thought, only by
one’s fellow workers.”

Similarly, commercial fishing is a high-risk industry with a
strong occupational culture that converts high-risk to an integral
part of their occupational culture. Therefore, this combination of
adult learning theory, storytelling, and occupational culture could
also be important to increasing PFD use among commercial fishing
crews. The purpose of this study was to develop a social marketing
intervention to increase PFD use among commercial fishermen,
and to evaluate message recollection and appeal, motivation
towards action, and perceptions of fall overboard risks.

2. Methods

Researchers used the 4 Ps of the social marketing mix and
results of past PFD studies to set the parameters of the project as
shown below. The social marketing intervention ran from May
2014 to November 2015.

2.1. Product

Social marketing campaigns have two basic tenets to help focus
efforts on measurable outcomes: identifying a specific target audi-
ence and a targeted behavior to be changed. In the case of this
intervention, the product is the behavior fishermen are being
encouraged to adopt, wearing a PFD while working on deck. The
social marketing intervention targeted two fishing populations in
Alaska: Bristol Bay salmon drift gillnet fishermen (hereafter, gill-
netters) and Bering Sea and Aleutian Island (BSAI) crab fishermen
(hereafter, crabbers). These groups of fishermen were selected
because of their inclusion in the original NIOSH PFD study and
existence of baseline data on PFD use and fleet-specific attitudes
towards PFDs (Lucas et al., 2013; Lucas et al., 2012).

2.2. Price

The price was considered on both a social and monetary level.
There was potentially a social cost for adopting a behavior that
could run counter to the dominant culture of commercial fishing.
Fishermen could be perceived as being too risk adverse to be an
effective fisherman, resulting in a cost of loss of social status. The
monetary cost arose from the need for fishermen to purchase the
PFD from a gear vendor. In some cases, this could be over $200 dol-
lars for the more effective models as indicated in the NIOSH PFD
study.

2.3. Place

For the third part of the marketing mix, place, the study focused
on two aspects of this as well: the location where the messages
would be shared and the channels that would be used to spread
the messages. The locations for the dissemination of the messages
were the ports of Naknek, AK and Dutch Harbor, AK with additional
materials sent to gear vendors around the Northwest coast of the
United States including Seattle and Bellingham, Washington and
Newport, Oregon. The Northwestern target ports are areas where
fishermen purchase gear ahead of their respective fishing season
and have it shipped up to Alaska for use when they arrive.

Each of the Alaskan ports see a large influx of fishermen directly
before the start of either the salmon season (in Naknek) and crab
season (in Dutch Harbor). This concentration of workers prior to
the season makes it an ideal location to present messages related
to fall overboard safety as the fishermen gear up for the season,
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purchasing necessary equipment, and readying their vessels. Qual-
itative data gathered during the previous NIOSH PFD study indi-
cated that local fishing supply shops were the primary place
fishermen purchased their personal protective equipment for the
season such as rain gear and boots. These locations also carried
PFDs and other safety gear for the fleet. Having physical messages
in these shops was a critical channel for sharing our PFD safety
messages. Other locations targeted in the ports were grocery
stores, restaurants and bars, community centers, and health
centers.

Two print advertising channels were developed to support
these port-based channels. Half-page, full-color ads ran for two
years in a widely read commercial fishing trade magazine and
direct mail postcards with fishery-specific messages were sent to
all permit holders in the salmon drift gillnet and BSAI crab fleets
prior to the start of each season.

In addition to physical messages, researchers used web-based
channels to promote their messages including the NIOSH website,
a campaign-specific website run by a partner, digital display ads on
industry websites and blogs, and dedicated social media accounts
for the campaign on Facebook and Twitter.

2.4. Promotion

A strategic communication firm was contracted to develop the
creative concept for the promotion of the social marketing cam-
paign. The firm reviewed NIOSH research on falls overboard and
came back to the agency with three final concepts for considera-
tion: Loss, Steer, and Salty.

The Loss concept focused on highlighting the risks of falls over-
board as shown in hypothetical scenarios and pivoting to the social
and emotional toll felt by survivors. One of the key messages said,
‘‘His boots didn’t save him. A PFD would have.” The goal as stated
by the communication firm was to have fishermen start to see
PFDs as standard deck gear like their boots and rain gear, not just
as emergency or safety gear. This concept was ultimately rejected
by NIOSH as being an overly emotional appeal that was similar to
other safety messages used with the audience in the past. It could
be dismissed by fishermen because they could overestimate their
survival skills or ability to avoid the situations outlined in the sce-
narios. In essence they could tell themselves, ‘‘I’m smarter than
that and wouldn’t get myself into that situation.”.

The second concept, Steer, focused on the vessel skippers as
opinion leaders among the target audiences. There are no regula-
tions requiring fishermen to wear a PFD while working on their
vessel, however the skipper can choose to institute a PFD use pol-
icy on his vessel. The creative concept for Steer featured images of
a skipper with text stating, ‘‘There are only two acceptable answers
on board. ‘‘Yes” and ‘‘Captain.” Secondary copy discussed the skip-
per’s duty to look after the crew’s safety by saying, ‘‘Put low-
profile, purpose-built PFDs on your crew’s gear list. And require
they wear them while working on deck.” While this concept did
a good job of reaching out to strong opinion leaders in these audi-
ences, it was not selected because there was no supporting mes-
saging for the larger part of the audience, the crewmembers, who
would be ultimately responsible for performing the behavior of
wearing PFDs. This type of solution or messaging would also
reduce the self-efficacy of the deck crew and could potentially
undermine the long-term adoption of PFDs by individuals if they
were seen as something being done to them and not something
they were choosing for themselves.

The final concept, Salty, featured a fictitious, culturally-relevant
spokesman that would look, talk, and act like gillnetters and crab-
bers. The concept tagline, ‘‘Live to be Salty,” focused on the idea
that by wearing a PFD, crewmembers would reduce their risk of
a fatal fall overboard and live to be an experienced, older expert

in the industry. The main goal was to make the spokesman mem-
orable, quotable, and different from other safety messages in this
industry. This type of message was expected to jolt message recip-
ients out of their standard media consumption habits. When com-
pared to the two other concepts, this one was viewed as the most
innovative and most likely to resonate with the audience based on
what was known about their attitudes towards PFDs and their
occupational culture.

Initial concepts for the spokesman, Angus (Fig. 1), aligned with
many cultural norms associated with commercial fishermen,
including a desire for independence, bluntness, practicality, respect
for successful fishermen (known as highliners), and a master/ap-
prentice style training environment.

Based on the feedback of local fishing experts, the initial design
was refined to more fully align with the specific traits of Alaskan
gillnetters and crabbers. Stock photography images used in test
versions of the concept did not depict the correct types of vessels
or settings. These images also showed the subject holding a cigar,
which was not acceptable for a public health message. The spokes-
man character’s name was Angus McGilly, a humorous but memo-
rable name that gave license for the spokesman to speak bluntly
and sarcastically about PFD use. This name was changed to Angus
Iversen to better reflect the Scandinavian heritage of many North-
west and Alaskan fishermen. Finally, the subject was not wearing a
PFD and therefore not demonstrating the desired behavior change.

To correct these initial problems, a new version of Angus was
photographed on an Alaskan crab vessel and salmon gillnet vessel
wearing a PFD (Fig. 2). Photographs were also taken in the wheel-
house of the crab vessel to target messages to vessel captains.

2.5. Refinement with stakeholder input

Posters with revised images and proposed messages were
tested with industry stakeholders including commercial fishermen,
US Coast Guard marine safety experts, marine safety trainers, and
marine supply vendors. A small focus group featuring commercial
fishermen and marine safety trainers helped narrow down draft
quotes from Angus. Stakeholders were asked to review the con-
cepts and provide feedback, focusing on the messaging to make
sure the messages resonated with them and were appropriate for
cultural norms. Some reviewers expressed dissatisfaction in some
of the phrasing, such as using improper language (e.g., ‘‘ain’t”)
(Fig. 2), or in making crude jokes, however they approved of the
concept overall. Other reviewers expressed appreciation for the
creativity and plain-spoken tone of the messages. Using this infor-
mation, the messages were revised to better reflect the stakeholder
preferences (Fig. 3). Concurrently the draft messages were shared
with potential gear vendor partners to get buy in from them as dis-
semination channels for the physical campaign materials.
Researchers also ran workshops with sales staff at the shops to
educate them on the results of the NIOSH PFD study and give them
information about which PFDs may work best for a fisherman
based on their type of fishery and other gear preferences.

2.6. Development of social marketing intervention materials

Twelve posters were developed, combining Angus images and
quotes addressing specific hazards. For example, an image of Angus
on a salmon gillnet vessel was combined with the quote, ‘‘You may
learn to think like a fish, but you’ll never breathe like one.” This quote
was supported by a tailored hazard message and language address-
ing common barriers for salmon fishermen identified in the origi-
nal PFD study, ‘‘Salmon fishermen have the highest number of man
overboard fatalities in Alaska. It doesn’t have to be this way. Today’s
low-profile PFDs are comfortable, don’t tangle in gear, and extend sur-
vival time in the water. Choose your PFD today at livetobesalty.org.
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Wear it. And Live.” Another example focused on captains starts with
the quote, ‘‘My boat. My rules. You’re wearing one, period.” This
addresses the captain’s role as policymaker on the vessel and
responsibility for the care of the crew. The message was again sup-
ported by additional copy addressing barriers to PFD use, ‘‘Today’s
options make it easy to find a comfortable, work-friendly PFD that
extends survival time in the water. Guide your men to livetobesalty.
org. Then make PFDs mandatory on deck.” Six posters focused on
PFD comfort and cold-water hazards, three referenced specific haz-
ards to gillnet fishermen, and three were targeted at vessel cap-
tains. This series of messages formed the foundation of all the
social marketing intervention messaging.

In addition to the quote and hazard information, each poster
contained a call to action with the link to a website (livetobe-
salty.org) containing information on the results from the NIOSH
PFD study. Live to be Salty also featured a Facebook page and Twit-
ter account to disseminate messages and engage participants with
timely information and responses.

Posters and other point-of-sale collateral, including stickers,
standup cardboard displays and beverage coasters were created.
Stickers were placed on packaging of rain gear and deck boots to
encourage crews to think of PFDs as standard deck equipment,
rather than solely emergency devices (Fig. 4).

2.7. Social marketing intervention rollout

NIOSH researchers and external partners distributed interven-
tion materials in Naknek, AK in the weeks prior to the Bristol Bay
salmon season opening in June 2014. This process was repeated
in Dutch Harbor, AK in preparation for two Bering Sea Aleutian
Island crab seasons in October 2014 and January 2015. Materials
were distributed to other ports and coastal communities in Alaska

and the Pacific Northwest to engage fishermen during their off-
seasons, which ran from July 2014 through May 2015 for gillnet-
ters and March 2015 to September 2015 for crabbers.

2.8. Evaluation

A cross-sectional survey was administered during 2014 and
2015 at the beginning of the summer gillnet season and the fall
crabbing season. The survey instrument included 20 closed-
ended questions repeated from the 2008/2009 survey (Lucas
et al., 2013; Lucas et al., 2012) to measure perceptions of the risk
of falling overboard; attitudes about PFD efficacy and comfort, 6
multi-part questions to measure the social marketing intervention,
and 4 demographic questions. The survey in 2014 allowed
researchers to track any change in PFD use among the populations
of fishermen between the survey in 2008/2009 and the start of the
Live to be Salty campaign. The 2015 survey allowed researchers to
track changes in PFD use and intended behavior change based on
exposure to and recollection of the Live to be Salty messages. Skip
patterns were used in the survey. For example, if the respondent
did not recognize Angus Iversen or the Live to be Salty campaign
messages, they did not answer subsequent questions regarding
actions taken. The survey was approved by the NIOSH Human Sub-
jects Review Board and the Office of Management and Budget.

The survey methodology was the same as for the previous PFD
survey conducted in Alaska in 2008/2009. Researchers arrived in
Naknek and Dutch Harbor several days prior to the start of salmon

Fig. 1. Original Live to be Salty concept message that needed to be adjusted to meet
the needs of the campaign.

Fig. 2. Revised message concept with correct imagery.
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and crab seasons, respectively. Potential survey respondents were
identified in ports and boat yards and were invited to participate.
Paper-based surveys were completed on-the-spot with fishermen
that volunteered and met the inclusion criteria. Surveys were
administered until 100 responses had been collected in each fish-
ery. Surveys were conducted in Naknek for gillnetters in June
2014 and June 2015, and in Dutch Harbor for crabbers in October
2014 and October 2015.

2.9. Statistical analysis

Descriptive statistics were calculated to explore patterns among
variables and differences between crabbers and gillnetters working
during the 2014 and 2015 seasons. Comparisons were made to
examine overall differences between crabbers and gillnetters, as
well as within-fishery differences before and after the intervention.
Missing data were excluded from percent distributions. Statistics
describing the recognition of Angus and the intervention were cal-
culated from the 2015 survey only, since the campaign had not yet
started in the baseline year of 2014. Significance tests were not
performed since the sample sizes were small, especially when
stratifying on certain groups (such as fishermen who recalled see-
ing an Angus message).

3. Results

3.1. Demographics and PFD use

A total of 401 surveys were completed in four trips ahead of the
start of salmon and crab fishing seasons in 2014 and 2015 (Table 1).
Characteristics such as age, sex, crew position, and fishing experi-
ence were similar from year to year for each group.

Among crabbers, self-reported PFD use (measured on a scale of
never, sometimes, frequently, or always) remained high in both
years, at 83.7% sometimes, frequently, or always wearing a PFD
in 2014 and 85.9% in 2015. The proportion of crabbers who
reported always wearing a PFD remained high in 2015 at 45.5%,
and in all years was much higher than gillnetters.

Among gillnetters, any PFD use (responses of sometimes, fre-
quently, or always wearing a PFD) increased from 36.7% in 2014
to 44.8% in 2015. However, very few gillnetters reported always
wearing their PFD in both 2014 and 2015 (4.4% and 5.2%,
respectively).

3.2. Message recall

Table 2 shows unaided and aided message recall among respon-
dents. Participants were first asked about general PFD safety mes-
sages without any additional prompts or aids (e.g., photos of the
ads). Over half of crabbers (56, 56.6%) and gillnetters (52, 51.5%)
recalled hearing or seeing PFD safety messages within the previous
month. Among crabbers, recognition of the intervention increased
with additional prompting, with 56.7% recognizing the ‘‘Live to be
Salty” slogan, 62.0% recognizing Angus from a photograph, and
72.7% recognizing a complete ad involving Angus and a PFD mes-
sage. Recall with intervention-specific prompts among gillnetters

Fig. 3. - Bering Sea message with revised copy removing improper English.

Fig. 4. ‘‘Apparel Stickers” used in marine supply stores to remind fishermen to purchase a PFD while buying their ‘‘standard” deck workwear.

T.D. Teske, S.L. Case, D.L. Lucas et al. Journal of Safety Research 83 (2022) 260–268

264



also increased, but overall recognition of the ads was lower than
among crabbers, at 50.0%.

Participants were also asked to select all channels where they
saw the ads (Table 3). Magazines and posters were the most com-
monly identified channels from which respondents recalled seeing
the ads. Of the 72 crabbers who recognized the ads, 46 (63.9%) saw
the magazine ads and 33 (45.8%) recalled the intervention posters.
Stickers that had been placed at local gear shops were also fre-
quently identified (21, 29.2%). These results were similar among
the 50 gillnetters, who also selected magazine ads (26, 52.0%)
and posters (22, 44.0%), although stickers were less common (6,
12.0%).

The intervention involved internet components, including a
website and social media pages, as well as a mailing component.
These channels experienced low responses in both groups. Only
five crabbers (6.9%) and two gillnetters (4.0%) identified ‘‘internet”
as the source from which they saw the ad. Postal mail was the least
commonly identified channel in both groups, with only two crab-
bers and no gillnetters selecting this response.

3.3. Appeal

Opinions of Angus were largely positive. Among the 62 crabbers
who recognized Angus, the majority agreed or strongly agreed with
statements that he seemed ‘‘like a seasoned fisherman” (42, 71.2%),
‘‘smart” (35, 60.3%), and ‘‘funny” (33, 58.9%). These responses were
similar among 48 gillnetters, who also indicated he was ‘‘like a sea-
soned fisherman” (35, 77.8%), ‘‘smart” (32, 72.7%), and ‘‘funny” (24,
54.5%). Most respondents did not perceive Angus as a peer, with
only 42.1% of crabbers and 46.5% of gillnetters agreeing or strongly
agreeing that he was ‘‘like me.”.

Message appeal was also favorable. Overall, respondents indi-
cated they liked the PFD message. The majority of the 72 crabbers
who had seen the ads agreed or strongly agreed that the message
‘‘was meant for fishermen like me” (65, 94.2%), ‘‘grabbed my atten-
tion” (60, 87.0%), ‘‘was convincing” (56, 83.6%), and ‘‘said some-
thing important” (56, 81.2%). Likewise, gillnetters responded that
the message ‘‘was meant for fishermen like me” (47, 95.9%),
‘‘grabbed my attention” (45, 91.8%), ‘‘said something important”
(42, 85.7%), and ‘‘was convincing” (40, 81.6%).

Table 1
Demographic characteristics and PFD use by fleet and survey year.

Bering Sea Crabbers Bristol Bay Drift Gillnetters

2014 (N = 100) 2015 (N = 100) 2014 (N = 100) 2015 (N = 101)

Continuous Variables n Mean SD n Mean SD N Mean SD n Mean SD

Age (yrs) 100 36.7 10.7 100 35.9 11.1 98 36.9 14.0 101 35.4 14.4
Experience (yrs) 100 16.0 10.6 100 15.6 11.0 97 15.8 13.3 100 14.6 12.7
Season (months) 99 7.3 2.1 99 7.1 1.9 97 3.6 2.4 97 3.9 2.8
Vessel Length (ft) 100 123.8 17.8 100 123.0 18.9 95 31.9 1.5 100 32.3 3.9
Crew Size (# workers) 100 6.8 1.3 100 6.6 1.4 96 3.4 0.6 100 3.5 0.7

Categorical Variables Freq % Freq % Freq % Freq %

Sex (male) 100 100.0 99 100.0 94 95.0 92 91.1
Position
Captain 16 16.0 15 15.2 47 48.5 41 40.6
Deckhand 74 74.0 72 72.7 48 49.5 54 53.5
Other 10 10.0 12 12.1 2 2.1 6 5.9
Missing 0 – 1 – 3 – 0 –

PFD Usage
Never 16 16.3 14 14.1 57 63.3 53 55.2
Sometimes 23 23.5 28 28.3 23 25.6 26 27.1
Frequently 8 8.2 12 12.1 6 6.7 12 12.5
Always 51 52.0 45 45.5 4 4.4 5 5.2
Missing 2 – 1 – 10 – 5 –

Table 2
Intervention recall by fleet, 2015.

Bering Sea Crabbers (N = 100) Bristol Bay Drift Gillnetters
(N = 101)

n % N %

Recalled any PFD safety ads
Yes 56 56.6 52 51.5
No 43 43.4 49 48.5
Missing 1 – – –

Heard ‘‘Live to be Salty” slogan
Yes 55 56.7 26 26.8
No 42 43.3 71 73.2
Missing 3 – 4 –

Recognized Angus
Yes 62 62.0 48 48.0
No 38 38.0 52 52.0
Missing – – 1 –

Recognized campaign ads
Yes 72 72.7 50 50.0
No 27 27.3 50 50.0
Missing 1 – 1 –
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3.4. Risk perception

Fall overboard risk perceptions were examined to determine
any relationship between recalling the ads and those perceptions.
Respondents indicated, on a scale from 0 to 100%, their perceived
likelihood of ever falling overboard during their career. In general,
respondents felt they were at low risk with little variation by ad
recall status. Among crabbers, those who had seen the ads reported
a median 12.5% (IQR = 45.0) chance of falling overboard, similar to
15.0% (IQR = 50.0) among crabbers who did not recall seeing the
ads. Gillnetters who recalled the ads reported slightly higher like-
lihood at a median 35.0% (IQR = 40.0), compared to those who had
not seen the ads (median = 16.0; IQR = 45.0).

3.5. Changes in behaviors

To measure the intervention’s effect on behavior, respondents
were asked if the ads prompted them to take action in a number
of ways (Table 3). Trying on a PFD was the leading action taken
among both groups. Crabbers then most frequently purchased a
new PFD (19, 26.4%) while gillnetters sought more information
on PFD models (14, 28.0%). Visiting the Live to be Salty website
rarely occurred in either group. Overall, 32 crabbers (44.4%) and
26 gillnetters (52.0%) indicated they planned to take some type
of action based on seeing the ads.

4. Discussion

Commercial fishermen work on wet, rolling vessels and are at
risk of falling overboard while working on an open deck. Increased
wear of properly sized and fitted PFDs would help prevent further
deaths in the industry. Federal regulations require all fishing ves-
sels to carry-one US Coast Guard-approved PFD per person on
board; however, there are no requirements for them to be worn
(46 CFR §28.110). In Alaska’s cold-water fisheries, the requirement
is to carry immersion suits (buoyant, full-body suit worn in the
event of a vessel evacuation) (46 CFR §28.110), and many vessels
do not also carry PFDs that could be worn while working. This, in
conjunction with fishermen’s general resistance to additional reg-
ulations, means it is critical to continue efforts to promote volun-
tary adoption of PFDs (Weil et al., 2016).

The findings from the 2014/2015 surveys showed that PFD use
varied greatly between gillnetters and crabbers. In both years of
the study, nearly half of crabbers reported they always wore PFDs,
in contrast to over half of gillnetters reporting they never wore
PFDs. The increase in crabbers reporting they always wear a PFD
since the original survey in 2008/2009 is encouraging. Crabbers
reported a substantial increase in always wearing a PFD, from
22.3% during the 2008/2009 survey (Lucas et al., 2013) to 52.0%
in 2014. Crabbing vessels are larger, averaging 90-1200 in length,
and are often company-owned. Because the high wear rate in the
fleet occurred prior to the 2014/2015 surveys, the increase was
not primarily due to the intervention, but instead was likely due
to changes in company and vessel policies. In contrast, Bristol
Bay drift gillnet boats are smaller, about 320 in length, and tend
to be independently owned and operated and therefore not subject
to widespread company policies. The findings of continued low
PFD use among this fleet is consistent with the 2008/2009 survey
finding of 4.7% saying they always wear a PFD when working on
deck (Lucas et al., 2013). The consistent low PFD wear rate in this
fleet is of continued concern, particularly as they experience some
of the highest numbers of loss of life due to falls overboard in the
country (Case et al., 2018). It is clear that additional efforts targeted
to workers in this fishery are a priority, including increasing
awareness of commercially available PFDs that alleviate concerns
of discomfort and potential for entanglement. Additionally, manu-
facturers should incorporate feedback from workers in the design
and development of new, innovative devices. For example, based
on the 2008/2009 survey, Kent Safety Products conducted market
research to obtain feedback on a prototype PFD. In turn, adjust-
ments were made to the PFD resulting in a lightweight, inherently
buoyant vest thin enough to wear under rain gear (National
Institute for Occupational Safety and Health (NIOSH), 2014). This
process should be adopted by other manufacturers to make work-
able, wearable products for fishermen.

Our findings also showed that Angus was a memorable spokes-
man for the safety messages. Overall recognition of Angus, the slo-
gan, and the ads was higher among crabbers than gillnetters.
Because some crabbers also participate in salmon tendering during
the summer months, it is plausible that the crabbers were more
exposed to the messaging by seeing posters and other materials
in both ports. Study results also suggest that the channel selection
put Angus in places where he would be seen by the audiences. For

Table 3
Intervention channels identified and actions taken based on the intervention by fleet, 2015.*

Bering Sea Crabbers
(N = 72)

Bristol Bay Drift Gillnetters
(N = 50)

n % n %

Intervention Channels
Newspaper 6 8.3 2 4.0
Magazine 46 63.9 26 52.0
Billboard 8 11.1 5 10.0
Poster 33 45.8 22 44.0
Postcard 2 2.8 1 2.0
Internet 5 6.9 2 4.0
Email 3 4.2 1 2.0
Postal Mail 2 2.8 0 0.0
Sticker 21 29.2 6 12.0

Actions Taken
Looked for more information about PFD models 15 20.8 14 28.0
Visited the Live to be Salty website 4 5.6 1 2.0
Shared PFD message with others 19 26.4 9 18.0
Tried on a PFD 20 27.8 15 30.0
Purchased a new PFD 19 26.4 10 20.0
Wore PFD more often 18 25.0 11 22.0
Planned to take one or more actions 32 44.4 26 52.0

* Based on responses from those who recalled the ads. Responses not mutually exclusive.
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these remote workers, print channels proved to be the most suc-
cessful, especially the repetition of large ads in a popular trade
magazine. While this should be expanded in future interventions
where possible, this was also the most expensive channel to use
and could not be easily expanded without an increase in resources.
The partnerships with local gear vendors proved to be an effective
channel as well, as the posters and apparel stickers used in these
locations were seen and remembered by the fishermen. In contrast,
the online resources were not commonly used among these remote
workers. Most fishermen in Naknek and Dutch Harbor have little or
no access to the internet while in port, so directing them to a web-
site or social media was found to be of little value.

The findings show an interesting result regarding Angus’ cul-
tural appropriateness. While the majority of respondents from
both groups agreed with the statement that Angus seems ‘‘like a
seasoned fisherman,” fewer felt that he was ‘‘like me.” This may
have to do with the age demographics of our respondents. The
average respondent was in their mid-30 s, much younger than
Angus who appears to be in his late 50 s or early 60 s. Despite
the age difference, respondents showed collegial feelings for Angus
through comments while the survey was being administered:
‘‘Who is that old bastard? I’ve seen him in Pacific Fishing
[Magazine].” ‘‘I’ve seen the ads with the crusty old guy.” ‘‘Angus
Iversen? Sounds like a guy who goes to the bar, gets drunk, then
loses a fight with himself in the parking lot.” While these senti-
ments may sound harsh or dismissive, it is reassuring to see them
remembering Angus, treating him like a peer, and not dismissing
him outright.

The overarching goal of the intervention was to facilitate behav-
ior change and improve PFD use in these fleets, and the survey
results showed that a number of respondents took or planned to
take some form of action because of the Live to be Salty ads. Trying
on a PFD was the most common action taken, and nearly a quarter
of respondents reported wearing their PFD more often because of
the intervention. Although further work is needed to continue to
improve consistent PFD use in these fisheries, we consider the
intervention to be successful at motivating workers to take action,
from gathering and sharing safety information to incorporating a
PFD into their standard work gear. However, fishermen reported
low self-perceived risk of falling overboard. This potentially helps
explain the overall low rate of PFD wear among gillnetters. As dis-
cussed by Lucas et al. (Lucas et al., 2013), efforts to increase con-
cern over man overboard risks may lead to increased PFD use by
changing workers’ attitudes about the value and utility of PFDs.

The overall reaction by the target fisheries to this campaign are
encouraging and researchers should consider the further use of
social marketing to encourage behavior change in commercial fish-
ing through the use of fishery-specific campaigns. Social marketing
has been shown to be a successful method occupational safety and
health intervention in other fisheries and industries around the
Unites States. Researchers from the Northeast Center for Occupa-
tional Health and Safety (NEC) have conducted successful social
marketing interventions with lobstermen in New England related
to PFD adoption (Sorensen et al., 2021) and farmers throughout
the Northeast to encourage installation of rollover protection sys-
tems (ROPS) on farm tractors (Sorensen et al., 2011).

5. Limitations

This study is subject to a number of limitations. The first is the
sampling methodology. The researchers used convenience sam-
pling to identify and approach fishermen. The sample size for each
year for each fishery was 100 respondents, however since the sur-
veys were anonymous there was no way to determine if fishermen
had taken the survey before. Additionally, the populations of these

audiences are predominantly male, with the crab fishery being
likely 100% male, so capturing female respondents’ attitudes about
the campaign spokesman was virtually impossible. The salmon
gillnet fleet does have more gender diversity, but it is still predom-
inantly male. Future research could be conducted to evaluate
whether Angus Iversen is a suitable spokesperson for fishing work-
ers not identifying as male.

Another limitation is the inability to generalize the results to
the rest of the commercial fishing industry. Since the messages
were targeted specifically at the two Alaskan fisheries included
in the study, it is unknown if these messages would be effective
in other fisheries or areas of the country. Anecdotal evidence dur-
ing the dissemination of campaign materials showed that other
fisheries did see some value in the messages with requests for
materials coming from the east coast and Gulf coast.

6. Conclusion

The survey showed that Angus was a culturally appropriate
spokesman with a strong message that could be recalled and acted
upon. Further message development should consider focusing on
occupational culture to create valid and authentic communication
products for fishermen and others in high-risk industries.

While the printed channels (e.g., posters, ads, stickers) were
successful in delivering the messages and reaching our audiences,
the development and implementation of this intervention was
extremely resource intensive, and the images and messages may
not be easily transferrable to other fisheries or regions. Future
research may examine the utility of Angus as a messenger for other
hazards in commercial fishing or could include the development of
a new spokesman using the similar PFD safety messages for other
fisheries with high fall overboard fatality risks around the country.
Additionally, because of the small number of female respondents,
we could not examine differences in PFD perceptions or opinions
of Angus based on sex. Study of these topics among females in
the fishing industry may reveal unique differences and could pro-
vide valuable insight needed to improve future interventions.
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In Memoriam: Anne Taylor McCartt

The National Safety Council and the editorial team of the Journal
of Safety Research extend our deepest sympathies to family and
friends of Anne McCartt. Anne was a dedicated Journal of Safety
Research editorial board member for over 17 years and served on
the National Safety Council Board of Directors since 2016. Her con-
tributions of time and expertise to safety research cannot be repaid
and we will miss her immensely. Below you will find her beautiful
obituary, provided by her loving husband Michael.

Anne Taylor McCartt, PhD, 73, of Ballston Spa, New York, died
peacefully at her home on July 23, 2022. Anne was born in Durham,
NC on December 12, 1948, to the late James Spurgeon and Virginia
Ann Taylor McCartt. After a lengthy and fruitful national and inter-
national career in highway safety, Anne retired in 2016 as Senior
Vice President, Research, at the Insurance Institute for Highway
Safety (IIHS) in Arlington, Virginia. She directed a multidisciplinary
research staff whose work centered on finding ways to change dri-
ver behavior, improve highway design, and make vehicles safer.
Anne authored more than 230 technical reports and scientific
papers on alcohol-impaired driving, crash avoidance technologies,
teenage drivers, distracted driving, and other vehicle safety topics.
Anne frequently appeared on multiple media outlets to present
research findings to the public. She regularly presented research
internationally and was widely respected as a highway safety
research mentor.

Anne loved her family deeply and was eagerly awaiting the
birth of her third grandchild, Olivia Holland Taylor Curcio, first
child of Christopher and Katie Curcio. She was known by her family
and friends for her love of beauty and the created world, her pas-
sion for the New York Yankees and the Duke Blue Devils, and her
ability to quickly complete the New York Times Crossword Puzzle
in ink. Anne also loved growing up in the foothills of the Great
Smoky Mountains with her mother’s incredible baking, her beauti-
ful home and gardens in Ballston Spa, and travel. She had traveled

throughout Europe and to Australia and New Zealand multiple
times.

Beloved wife of Michael Curcio for 33 years. Remembered in
love by all of her family, including her daughter Sara Elizabeth
Scoles (Matt) and her son Christopher Michael Curcio (Katie); her
sister and brother Peg Hess (Howard) and Jimmy McCartt; her
brothers and sisters in-law Joseph Curcio (Tina), Jerry Curcio
(Diane), Anthony Curcio (Gina); her granddaughters Emilia and
Molly Scoles; her nephews and nieces Jeremy Hess (Leili Besharat)
and Kristen Hess (John Fumbanks); Casey Curcio (Kim), Karen Mur-
doch (Joseph), Tom Curcio (Holly), Trisha Curcio (Leo Munoz), Mar-
isa Curcio (Megan Coiley). Her great nieces and nephews
Clementine and Bennett Hess, Taylor Goldstein, Lexi and Rachel
Fumbanks, Joe and Isabella Curcio, Brodey and Tyler Curcio, and
Alissa Murdoch. Also loved by her aunts and uncles, Katherine
McDaniel (Edgar, deceased),Betty Lee Thompson (Charlie,
deceased), Hugh M. Taylor, deceased (Willie Love,deceased), Marie
Mirro (Joe, deceased), and Pat Mirro (Jerry, deceased) and cousins,
Linda Baber, Betsy Boyer, Kathy Love Erikson, Jana Jensen, David
Thompson and their families.

Anne grew up in East Tennessee where her father, The Reverend
J.S. McCartt, served as an ordained minister in the United Metho-
dist Church. She graduated from Fulton High School in Knoxville
as valedictorian and received a B.A magna cum laude from Duke
University (1970). She then moved to Albany, NY where she com-
pleted a MA in Secondary Mathematics Education in 1972; a MLS
in 1975; and a PhD in public administration and policy (1988),
all from SUNY Albany. She began her career in highway safety in
1982, serving as Deputy Director at the Institute for Traffic Man-
agement and Research at the State University of New York at
Albany (SUNY Albany) and an associate research professor at the
Rockefeller College of Public Affairs and Policy. After working as
a Senior Associate with Preusser Research Group, Inc., she joined
IIHS in 2001. Anne served on the boards of MADD (Mothers Against
Drunk Driving) and the National Safety Council and was a long-
time member and served as President of the Association for the
Advancement of Automotive Medicine.

A gift may be made in Anne’s name to one of Anne’s favorite
causes: Doctors Without Borders (doctorswithoutborders.org),
American Society for the Prevention of Cruelty to Animals
(ASPCA.org), Caring for a Cure at Massachusetts General Hospital
(https:because.massgeneral.org/campaign/caring-for-a-cure/
c112468).

https://doi.org/10.1016/j.jsr.2022.09.017
0022-4375/� 2022 National Safety Council and Elsevier Ltd. All rights reserved.
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